Effects of Unsteady Aerodynamic Pressure Load in the Thermal Environment of FGM Plates

Chih-Chiang Hong*

Department of Mechanical Engineering, Hsiuping University of Science and Technology, Taichung, Taiwan, ROC.

Received 13 August 2017; received in revised form 14 October 2017; accepted 20 October 2017

Abstract

The effects of unsteady aerodynamic pressure load with varied shear correction coefficient on the functionally graded material (FGM) plates are investigated. Thermal vibration is studied by using the first-order shear deformation theory (FSDT) and the generalized differential quadrature (GDQ) method. Usually, in the FGM analyses, the computed and varied values of shear correction coefficient are the function of the total thickness of plates, FGM power law index, and environment temperature. The effects of environment temperature and FGM power law index on the thermal stress and center deflection of airflow over the upper surface of FGM plates are obtained and investigated. In addition, the effects, with and without the fluid flow over the upper surface of FGM plates, on the center deflection and normal stress are also investigated.

Keywords: aerodynamic pressure, varied shear correction coefficient, FGM, thermal vibration, GDQ

1. Introduction

There are some computational investigations of generalized differential quadrature (GDQ) in the composites FGM plates and shells. In 2017, Hong [11] investigated the effects of varied shear correction on flutter value of the center deflection and the thermal vibration of FGM shells in an unsteady supersonic flow. In 2015, Tomabene et al. [12] presented a survey of strong formulation FEM focused on the numerical investigation of differential quadrature method. In 2014, Hong [13] studied the thermal vibration and transient response of Terfenol-D FGM plates by using the GDQ method and considering the first-order

* Corresponding author. E-mail address: cchong@mail.hust.edu.tw
shear deformation theory (FSDT) model and the varied modified shear correction factor effects. In 2014, Hong [14] investigated the rapid heating induced vibration of Terfenol-D FGM circular cylindrical shells by using the GDQ method and without considering the effects of shear deformation. In 2013, Hong [15] presented the thermal vibration of Terfenol-D FGM shells by using the GDQ method and also without considering the effects of shear deformation. In 2012, Hong [16] studied the thermal vibration of rapid heating for Terfenol-D FGM plates by using the GDQ method and considering the FSDT effects. In 2009, Tornabene and Viola [17] presented the free vibration analysis of FGM panels and shells by using the GDQ method and considering the FSDT model. It is interesting to study and investigate the thermal stresses and center deflection of GDQ computations by considering the FSDT and the varied effects of the shear correction coefficient of airflow over the upper surface of FGM plates with four edges in simply supported boundary conditions. Environment temperature and FGM power law index two parametric effects on the thermal stress and center deflection of airflow over the upper surface of FGM plates are also obtained and investigated. The effects of with and without the fluid flow over the upper surface of FGM plates on the center deflection and normal stress are also calculated.

Fig. 1 Fluid flow over the upper surface of two-material FGM plates

2. Formulation

For fluid flow over the upper surface of two-material FGM plates is shown in Fig. 1 with thickness h_1 of FGM material 1 and thickness h_2 of FGM material 2. The material properties are considered in the most dominated property Young’s modulus E_{fm} of FGM with standard variation form of power law index R_n, the others of material properties are assumed in the simple average form [18]. The properties of individual constituent material of FGM are functions of environment temperature T. The time-dependent, linear FSDT equations of displacements u, v, and w of FGM plates are assumed in the following [19].

$$u = u^0(x, y, t) + z\psi_x(x, y, t)$$
$$v = v^0(x, y, t) + z\psi_y(x, y, t)$$
$$w = w(x, y, t)$$

(1)

where u^0 and v^0 are displacements in the x and y axes direction, respectively, w is transverse displacement in the z axis direction of the middle-plane of plates, ψ_x and ψ_y are the shear rotations, t is time.

The normal stresses (σ_x and σ_y) and the shear stresses (σ_{xy}, σ_{yz} and σ_{zx}) in the FGM plate under temperature difference ΔT for the k th layer can be obtained as follows [20-21].

$$\begin{bmatrix}
\sigma_x \\
\sigma_y \\
\sigma_{xy}(k)
\end{bmatrix}
= \begin{bmatrix}
\overline{Q}_{11} & \overline{Q}_{12} & \overline{Q}_{16} \\
\overline{Q}_{12} & \overline{Q}_{22} & \overline{Q}_{26} \\
\overline{Q}_{16} & \overline{Q}_{26} & \overline{Q}_{66}(k)
\end{bmatrix}
\begin{bmatrix}
\varepsilon_x - \alpha_x \Delta T \\
\varepsilon_y - \alpha_y \Delta T \\
\varepsilon_{xy} - \alpha_{xy} \Delta T(k)
\end{bmatrix}$$

(2)
where α_x and α_y are the coefficients of thermal expansion, α_{xy} is the coefficient of thermal shear, Q_{ij} is the stiffness of FGM plates. ε_x, ε_y and ε_{xy} are in-plane strains, not negligible ε_{yx} and ε_{xx} are shear strains. The temperature difference between the FGM plate and curing area is given by the following equation.

$$\Delta T = T_0(x, y, t) + \frac{z}{h^*} T_1(x, y, t)$$

in which T_0 and T_1 are temperature parameters in functions of x, y, and t, h^* is the total thickness of plates.

The dynamic equilibrium differential equations of fluid flow over the upper surface of FGM plates can be represented and obtained in matrix form [15, 21]. In the matrix elements, there are some coefficients (A_{ij}, B_{ij}, D_{ij}), ($i,j = 1,2,6, A_{ij},(i^*,j^*) = 4,5$) with partial derivatives of displacements and shear rotations. The external loads are subjected to $f_1,...,f_5$ with partial derivatives of thermal loads (\bar{N}, \bar{M}), mechanical loads (p_1,p_2,q) and inertia terms (ρ, H, I). In which (A_{ij}, B_{ij}, D_{ij}), $A_{ij},f_1,...,f_5$ and (ρ, H, I) are in the following expressions.

$$f_1 = \frac{\partial \bar{N}_x}{\partial x} + \frac{\partial \bar{N}_{xy}}{\partial y} + p_1$$

$$f_2 = \frac{\partial \bar{N}_{xy}}{\partial x} + \frac{\partial \bar{N}_y}{\partial y} + p_2$$

$$f_3 = \frac{\partial \bar{M}_x}{\partial x} + \frac{\partial \bar{M}_{xy}}{\partial y}$$

$$f_4 = \frac{\partial \bar{M}_{xy}}{\partial x} + \frac{\partial \bar{M}_y}{\partial y}$$

$$(\bar{N}_x, \bar{M}_x) = \int_{-h^*}^{h^*} (\bar{Q}_{11} \alpha_x + \bar{Q}_{12} \alpha_y + \bar{Q}_{16} \alpha_{xy}) \Delta T(1,z) dz$$

$$(\bar{N}_y, \bar{M}_y) = \int_{-h^*}^{h^*} (\bar{Q}_{21} \alpha_x + \bar{Q}_{22} \alpha_y + \bar{Q}_{26} \alpha_{xy}) \Delta T(1,z) dz$$

$$(\bar{N}_{xy}, \bar{M}_{xy}) = \int_{-h^*}^{h^*} (\bar{Q}_{46} \alpha_x + \bar{Q}_{66} \alpha_y + \bar{Q}_{66} \alpha_{xy}) \Delta T(1,z) dz$$

$$(A_{ij}, B_{ij}, D_{ij}) = \int_{-h^*}^{h^*} \bar{Q}_{ij}(1,z, z^2) dz, (i,j = 1,2,6)$$

$$A_{ij} = \int_{-h^*}^{h^*} k_a \bar{Q}_{ij} dz, (i^*, j^* = 4,5)$$

$$(\rho, H, I) = \int_{-h^*}^{h^*} \rho_0(1,z, z^2) dz$$

in which k_a is the shear correction coefficient, ρ_0 is the density of ply. The values of k_a are usually functions of h^*, T, and R_x. q is the aerodynamic pressure load for the unsteady, in viscid fluid flow over the upper surface of FGM plate with free stream density ρ_∞, velocity U_∞, and Mach number M_∞.

Copyright © TAETI

The simple forms of \bar{Q}_{ij} and \bar{Q}_{ij}^* for FGM plates were introduced by Shen [22] in 2007 and used to calculate normal, shear stresses and A_{ij}. The modified shear correction factor k_α can be derived and obtained directly from the total strain energy principle derivation as follows for the FGM plates [13] by considering the varied value effect of k_α on the plates.

$$k_\alpha = \frac{1}{h} \frac{FGMZSV}{FGMZIV}$$

in which the expressions of $FGMZSV$ and $FGMZIV$ are functions of h^*, R_n, the Poisson’s ratios ν_{fgm}, the Young’s modulus of the FGM constituent materials E_1 and E_2 of the FGM plates, respectively.

The dynamic GDQ discrete equations in matrix notation can be derived and obtained for the dynamic equilibrium differential equations by considering four sides simply supported, fluid flow over the upper surface of FGM plates. The GDQ method was presented by Shu and Richards in 1990 [13, 23-25].

3. Computational results

To study and obtain the GDQ results of varied shear correction coefficient calculations with plates layers in the stacking sequence $(0/0^\circ)$, under four sides simply supported boundary condition, no in-plane distributed forces ($p_1 = p_2 = 0$) and under the external aerodynamic pressure load (q) of airflow over the upper surface of FGM plates with $\rho_\infty = 0.00000678 \text{lb/in}^3$, $U_\infty = 23304 \text{in/s}$ and $M_\infty = 2$ at altitude 50,000ft. The following coordinates x_i and y_j for the grid points numbers N and M of FGM plates are used

$$x_i = 0.5 \left[1 - \cos \left(\frac{j-1}{N-1} \pi \right) \right] a_i, i = 1, 2, ..., N$$

$$y_j = 0.5 \left[1 - \cos \left(\frac{j-1}{M-1} \pi \right) \right] b_j, j = 1, 2, ..., M$$

The displacement and temperature of thermal vibrations are used in time sinusoidal form as follows for a simple case study.

$$u = [u^0(x, y) + z \psi_x(x, y)] \sin(\omega_{mn}t)$$

$$v = [v^0(x, y) + z \psi_y(x, y)] \sin(\omega_{mn}t)$$

$$w = w(x, y) \sin(\omega_{mn}t)$$

$$q = \rho_c U^2 \left(\frac{\partial w(x, y)}{\partial x} \sin(\omega_{mn}t) \right)_{z=h'/2} + \rho_c U^2 \left(w(x, y) \omega_{mn} \cos(\omega_{mn}t) \right)_{z=h'/2}$$

$$\Delta T = [T_0(x, y) + \frac{z}{h} T_1(x, y)] \sin(\gamma t)$$

And with the temperature parameter in the following simple vibration

$$T_0(x, y) = 0$$

$$T_1(x, y) = \bar{T}_1 \sin(\pi x / a) \sin(\pi y / b)$$

in which ω_{mn} is the natural frequency in mode shape numbers m and n of the plates, γ is the frequency of applied heat flux, \bar{T}_1 is the amplitude of temperature.
The SUS304 (stainless steel) for FGM material 1 and the Si₃N₄ (silicon nitride) for FGM material 2 are used in the numerical GDQ computations. Firstly, the dynamic convergence study of center deflection amplitude w ($a/2$, $b/2$) (unit mm) in airflow over the upper surface of FGM plates are obtained in Table 1 by considering the varied effects of shear correction coefficient and with $h^*=1.2$ mm, $h_1=h_2=0.6$ mm, $m=n=1$, $R_a=1$, $k_a=0.149001$, $T=100K$, $T_1=100K$, $t = 6s$. The error accuracy is 7.2E-05 for the center deflection amplitude of $a/ b = 1$, $a/ h^*=10$. The 17×17 grid point can be considered in the good convergence result and treated in the following GDQ computations of time responses for deflection and stress of FGM plates. It might be mentioned that the deformations of plates usually increase with the increasing a/ h^* for the cases of non thermal loads. However, in the Table 1 shows the absolute values of center deflection for thin $a/ h^*=100$ are much smaller than that for thick $a/ h^*=10$ and 5 due to the phenomenon effect of thermal loads. In the FGM plates ($B_{ij} \neq 0$), varied values of k_a are usually functions of h^*, R_a and T. For $a/ h^*=10$, $a/ b = 1$, h^* from 0.12 mm to 2.4 mm, $h_1=h_2$, calculated values of k_a under $T=100K$ are shown in Table 2, used for the GDQ and shear calculations. For $h^*=0.12$mm, values of k_a (from 0.109359 to 1.08902) are increasing with R_a (from 0.1 to 2). For $h^*=2.4mm$, values of k_a (from 0.891024E-01 to 0.508881) are increasing with R_a (from 0.1 to 10). For $h^*=2.4mm$, values of k_a (from 0.836925E-01 to 0.118029E-02) are small decreasing with R_a (from 0.1 to 10). Usually, the values of k_a are dominantly in the inverse proportion to h^* at a given values of R_a and T, e.g. values of k_a (firstly 0.109359, then 0.891024E-01, finally 0.836925E-01) are decreasing with h^* (from 0.12 mm, then 1.2 mm to 2.4 mm) at $R_a=0.1$ and $T=100K$.

<table>
<thead>
<tr>
<th>a/ h^*</th>
<th>GDQ method</th>
<th>Deflection $w(a/2, b/2)$ at $t = 6s$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$N \times M$</td>
<td>$a/ b = 0.5$</td>
<td>$a/ b = 1$</td>
</tr>
<tr>
<td>100</td>
<td>13 x 13</td>
<td>0.166916E-18</td>
</tr>
<tr>
<td>15 x 15</td>
<td>0.166916E-18</td>
<td>-0.864895E-16</td>
</tr>
<tr>
<td>17 x 17</td>
<td>0.166914E-18</td>
<td>-0.864888E-16</td>
</tr>
<tr>
<td>14</td>
<td>13 x 13</td>
<td>-0.270625E-14</td>
</tr>
<tr>
<td>15 x 15</td>
<td>-0.270623E-14</td>
<td>-0.436326E-12</td>
</tr>
<tr>
<td>17 x 17</td>
<td>-0.270623E-14</td>
<td>-0.436324E-12</td>
</tr>
<tr>
<td>10</td>
<td>13 x 13</td>
<td>-0.190895E-13</td>
</tr>
<tr>
<td>15 x 15</td>
<td>-0.190895E-13</td>
<td>-0.318221E-11</td>
</tr>
<tr>
<td>17 x 17</td>
<td>-0.190893E-13</td>
<td>-0.318244E-11</td>
</tr>
<tr>
<td>8</td>
<td>13 x 13</td>
<td>-0.703716E-13</td>
</tr>
<tr>
<td>15 x 15</td>
<td>-0.703716E-13</td>
<td>-0.118357E-10</td>
</tr>
<tr>
<td>17 x 17</td>
<td>-0.703708E-13</td>
<td>-0.118450E-10</td>
</tr>
<tr>
<td>5</td>
<td>13 x 13</td>
<td>-0.108713E-11</td>
</tr>
<tr>
<td>15 x 15</td>
<td>-0.108830E-11</td>
<td>-0.167507E-09</td>
</tr>
<tr>
<td>17 x 17</td>
<td>-0.108713E-11</td>
<td>-0.174309E-09</td>
</tr>
</tbody>
</table>

Table 2 Varied shear correction coefficient k_a vs. R_a under $T=100K$

<table>
<thead>
<tr>
<th>h^* (mm)</th>
<th>$R_a=0.1$</th>
<th>$R_a=0.2$</th>
<th>$R_a=0.5$</th>
<th>$R_a=1$</th>
<th>$R_a=2$</th>
<th>$R_a=5$</th>
<th>$R_a=10$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.12</td>
<td>0.109359</td>
<td>0.140739</td>
<td>0.288792</td>
<td>0.687883</td>
<td>1.08902</td>
<td>0.989219</td>
<td>0.878104</td>
</tr>
<tr>
<td>1.2</td>
<td>0.891024E-01</td>
<td>0.939102E-01</td>
<td>0.111874</td>
<td>0.149001</td>
<td>0.231364</td>
<td>0.415802</td>
<td>0.508881</td>
</tr>
<tr>
<td>2.4</td>
<td>0.836925E-01</td>
<td>0.828082E-01</td>
<td>0.815941E-01</td>
<td>0.796610E-01</td>
<td>0.632624E-01</td>
<td>0.219191E-01</td>
<td>0.118029E-02</td>
</tr>
</tbody>
</table>

Secondly, the amplitude of center deflection w ($a/2$, $b/2$) (unit mm) for the airflow over the upper surface of FGM plates is calculated. Fig. 2 shows the response values of center deflection amplitude w ($a/2$, $b/2$) (unit mm) versus time t in FGM plate for $a/ h^*=10$, 14 and thin $a/ h^*=100$, respectively, $a/ b = 1$, $h^*=1.2$ mm, $h_1=h_2=0.6$ mm, $R_a=1$, $k_a=0.117077$, $T=653K$, $T_1=100K$, starting time $t=0.001s$ and $t=0.1s-3.0s$ with time step is 0.1s. The absolute value of center deflection amplitude is 7.04E-12 mm occurs at $t=0.2s$, the steady state value of center deflection is -4.54E-12 mm for $a/ h^*=10$. The absolute value of center deflection amplitude is 1.31E-12 mm occurs at $t=0.1s$, the steady state value of center deflection is -6.21E-13 mm for $a/ h^*=14$. The absolute values of center deflection for thin $a/ h^*=100$ are much smaller than that for $a/ h^*=10$ and 14.
Fig. 2 $w(a/2, b/2)$ versus t for $a / h^* = 10$, 14 and 100

Fig. 3 Stresses versus z and t for $a / h^* = 10$, 14 and 100 (continued)
Fig. 3 Stresses versus z and t for $a / h^* = 10$, 14 and 100

Normal stress σ_x and shear stress σ_{xy} are three-dimensional components and usually in functions of x, y, and z. Typically their values vary through the plate thickness for the airflow over the upper surface of FGM plates. Fig. 3(a) shows the normal stress σ_x (unit GPa) versus z and Fig. 3(b) shows the shear stress σ_{xy} (unit GPa) versus z at center position $(x = a/2, y = b/2)$ of plates, respectively at $t = 0.1s, a / h^* = 10$ and $a/b = 1$. The absolute value ($9.15E-04$ GPa) of normal stress σ_x at $z = 0.5h^*$ is found in the much greater value than the value ($1.3E-12$ GPa) of shear stress σ_{xy} at $z = 0.5h^*$, thus the normal stress σ_x can be treated as the dominated stress for the airflow over the upper surface of FGM plates. Figs. 3(c)-3(e) shows the time responses of the dominated stresses σ_x (unit GPa) at the center position of outer surface $z = 0.5h^*$ as the analyses of deflection case in Fig. 2 for $L / h^* = 10$, 14 and thin $L / h^* = 100$, respectively. The maximum absolute value of stresses σ_x is $9.15E-04$ GPa occurs constantly in the periods $t = 0.2 s - 3 s$ for $L / h^* = 10$.

Fig. 4 shows the center deflection amplitude $w(a/2, b/2)$ (unit mm) versus T for all different values R_n (from 0.1 to 10) of FGM plates calculated and varied values of k_q, for the airflow over the upper surface of FGM plates $L / h^* = 10$, $a / b = 1$, $h^* = 1.2$ mm, $h_1 = h_2 = 0.6$ mm, $T = 100K$, at $t = 3 s$. The maximum value of center deflection amplitude is $1.22E-11$ mm occurs at $T = 653K$ for $R_n = 10$. The center deflection amplitude values are all small, decreasing versus T from $T = 653K$ to $T = 1000K$, for $R_n = 2, 5$ and 10, they can withstand for higher temperature $(T = 1000K)$ of environment. The center deflection amplitude values are all small, increasing versus T from $T = 653K$ to $T = 1000K$, for $R_n = 0.1, 0.2$ and 0.5.

Fig. 5 shows the dominated stresses σ_x (unit GPa) at the center position of outer surface $z = 0.5h^*$ versus T for all different values R_n of FGM plates as the analyses of deflection case in Fig. 4. The absolute values of dominated stresses σ_x versus T are increasing (from $T = 100K$ to $T = 653K$) and then decreasing (from $T = 653K$ to $T = 1000K$) for $R_n = 1$, all decreasing (from $T = 100K$ to $T = 1000K$) for $R_n = 10$, all increasing (from $T = 100K$ to $T = 1000K$) for $R_n = 0.1, 0.2, 0.5$ and 2.
The effects of with and without the fluid flow over the upper surface of FGM plates on the center deflection and normal stress for $a/b = 1$, $h^* = 1.2$ mm, $h_1 = h_2 = 0.6$ mm, $R_n = 1$, $k_a = 0.117077$, $T = 653K$, $T_i = 100K$ are also considered as follows. The Fig. 6 (a) shows the response values of center deflection amplitude $w(a/2,b/2)$ (unit mm) versus time t for $a/h^* = 10$ with and without airflow over the upper surface of FGM plates. The absolute values of center deflection amplitude for without airflow (0.111079 mm) are much greater than that with airflow (5.26E-14 mm) at $t = 0.001s$. The normal stresses are almost in the same values for with ($\sigma_x = -9.12E-04$ GPa at $z = 0.5h^*$) and without ($\sigma_x = -9.25E-04$ GPa at $z = 0.5h^*$) airflow cases.

4. Conclusions

In this study, the GDQ solutions have been obtained and investigated for the deflections and stresses in the thermal vibration of FGM plates by considering the varied effects of shear correction coefficient and the airflow over the upper surface of FGM plates. The GDQ results have shown that varied values of k_a are usually functions of h^*, R_n and T. The absolute value of center deflection amplitude is 7.04E-12 mm occurs at $t = 0.2s$ for $a/h^* = 10$ at $T = 653K$. The center deflection amplitude values are all small and decreasing versus T from $T = 653K$ to $T = 1000K$, for $R_n = 2, 5$ and 10, the FGM plates also can withstand for higher temperature environment.

References

Copyright © TAETI