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Abstract 

This research integrates the Taguchi method, analysis of variables (ANOVA), back-propagation neural 

networks (BPNN), and hybrid PSO-GA to develop an intelligent optimization system of micro electroforming 

process for the mesh filter. From the outset of discussions with engineers in terms of past related literature survey of 

the micro electroforming process, the quality characteristics of product and control variables can be well ascertained, 

then transforming the problem of multiple quality characteristics into a single quality characteristic via the Taguchi 

method and ANOVA. However, the optimal parameter settings (solution) through the Taguchi experimental 

planning is still belong to a discrete optimal solution which is impossible to meet the process stability and quality 

goals. Therefore, this study first identifies the initial weight of BPNN，using hybrid PSO-GA with multilayer 

perceptron (MLP)，in order to improve training efficiency and precision of BPNN. Furthermore, the study constructs 

the signal-to-noise (S/N) ratios (BPNNS/N) and quality predictors (BPNNQ) based on hybrid PSO-GA and BPNN 

with the experimental data. The optimal parameter settings are obtained through a combination of BPNNS/N and 

BPNNQ with modified PSO-GA. Finally, confirmation experiments are performed to assess the effectiveness of the 

proposed system. The results show that the proposed system can create the best performance, and the optimal 

parameters not only enhance the stability in the micro electro forming process but also effectively improve the 

product quality. 
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1. Introduction 

Recently the technology of micro electroforming process has been widely used, and The mesh process can be mainly 

divided into the photolithography process and the micro electroforming process, having been widely used recently. And the 

process parameter control directly affects product quality and cost. The photolithography process consists of three main 

components: coating photoresist, exposure, and development. In order to obtain higher resolution, some baking and cooling 

steps are also adopted in the photolithography process. In the current technology, of photolithography process, entirely seven 

steps are required in the process: cleaning the substrate, pre-baking, coating the photoresist, soft-baking, exposure, 

development, and hard-baking. When the photolithography process parameters are not well controlled, defects such as the 
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excessive image size variation, poor transfer rate, and even transfer failure may occur; therefore, the photoresist must be 

stripped and the previous process repeated until the inspection is completed. Then, the semi-finished mold core formed by 

photolithography is subjected to a micro-electroforming process. The micro electroforming process consists of five main 

components: electroforming, photoresist stripping, finished stripping, cleaning and hard baking. As to the current technology 

of electrochemical micro-electroforming process for making molds, when the process parameters are not well controlled, 

problems such as the product forming failure and excessive size variation will be directly caused and hence the loss due to the 

fact that the product will not pass the quality inspection and cannot be reworked. Therefore, to improve yield and reduce cost, 

the parameter setting of the micro electroforming process control factors are even more important. 

Since the micro electroforming process can be applied to a variety of materials, and there are many types and formulations 

of chemical electroforming fluids, many scholars are devoted to studying the interaction between various chemical 

electroforming fluids and materials and the related physical phenomena in the process [1-8]. However, through the analysis of 

the materials, a suitable combination of electroforming liquid and materials, a better process and product quality, and the better 

process parameters combination all can be obtained. If an inappropriate combination of process parameters is used, it can lead 

to product defects and excessive process variations. In the past, some scholars adopted the Taguchi experimental design 

method to explore the correlation between process parameters and quality [9-11].However, the Taguchi experimental design is 

a discrete method for solving single quality characteristics, and only the local optimal solution of the pre-selected parameter 

level can be obtained specific to a single quality characteristic, but not the global continuous optimal solution. Therefore, it is 

necessary to combine the experimental design, smart predictors and applications of related theories for optimization to search 

for the best combination of process parameters by numerical simulation and prediction[12-14].The above studies only focused 

on optimizing the process parameters for product quality characteristics, but they did not assess the stability of the process in 

the micro electroforming process. Therefore, this study proposes an intelligent optimization system to find optimal process 

parameters of multiple quality characteristics in the micro electroforming process. Firstly, the Taguchi method is used to 

determine the best combination of parameter settings by calculating the signal-to-noise (S/N) ratio from the experimental data. 

The highest S/N ratio value is employed to decide the best settings for quality responses. Significant factors are determined 

through Analysis of Variance (ANOVA). The S/N ratio predictor (BPNNSN) and quality predictor (BPNNQ) are constructed 

by BPNN. In the first stage optimization, BPNNS/N is coupled with GA in order to minimize the variations of the process. In 

the second stage optimization, the optimal parameter settings are obtained via a combination of BPNNS/N, BPNNQ and hybrid 

GA-PSO. Finally, two confirmation experiments are conducted to assess the effectiveness of the proposed intelligent 

optimization system. This study focuses on not only the optimal process parameters to improve the multiple qualities, but also 

the stability of the process to enhance the productivity. The research has been motivated by the current development of AI, Big 

Data, internet of things (IoT) and cloud computing worldwide in general, which especially play their important roles in the 

future industrial automation systems. 

2. Research Methodologies 

In this study, an intelligent optimization system is proposed for the micro electroforming process of the mesh filter. The 

research integrates the Taguchi method, ANOVA, BPNN, the improved hybrid PSO-GA, statistical process control and other 

related technologies to obtain the optimization for multi-objective micro-electroforming process. And it has enabled product 

quality to be maintained within acceptable quality ranges and made the micro electroforming process more stable. 

Firstly, based on the literature reviews and discussions with engineers on the influence of process parameters to their 

quality characteristics, the control parameters and level are selected for the Taguchi orthogonal table experiment. Then the 

electroforming experiment is proceeded in the customized electroforming tank for the research. The micro electroforming 

workpiece is the mesh filter. In order to ensure that the product can be supplied to the manufacturer's required size 
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specifications, a discussion with the manufacturer is proceeded, obtaining a product diameter of 555±3μm and a deviation of 

quantity specification within 5% of the product thickness. Therefore, the quality characteristics are set to the diameter 

roundness and thickness uniformity. After literature reviews and discussions with a number of experts and engineers, the 

control factors selected for the experiments are the temperature of the electroforming liquid, current density, cathode size, the 

distance between the anode and the cathode, and oscillating rate. To acquire more accurate data, the study has to consider the 

lesser number of experimental control factors and standards, so the Taguchi L18 (2
1
 x 3

4
) orthogonal table is used for the 

experiment, in which the temperature of the casting liquid is set at two levels and the remaining control factors are set at three 

levels. However, the Taguchi experimental design is a discrete method for solving single quality characteristics, and only the 

local optimal solution of the pre-selected parameter level can be obtained specific to a single quality characteristic, but not the 

global continuous optimal solution. In addition, since the combination of process parameters obtained from the Taguchi 

experimental planning cannot meet both the stability of the micro electroforming process and the best quality of the product, a 

two-stage optimization must be carried out. 

The first stage is to obtain the measurement data of the diameter and thickness of the mesh filter by experiments. Next, for 

the Taguchi data analysis, the problem of multi-objective quality characteristics needs to be transformed into a single quality 

characteristic, so that the based-on data can be further analyzed accordingly. The data analysis includes factor response graph 

analysis and variance analysis, and the relationships between the S/N ratios and the quality characteristics of the experimental 

control factors can be known. Using the S/N ratio factor reaction map, we can find important control factors that have a 

significant impact on the quality characteristics and classify the control factors to optimize the two steps of the Taguchi process. 

Firstly, the step uses the first type factor to modulate the S/N ratios to the maximum value for the purpose of reducing the 

process variation. Secondly, the step adjusts the second type of factor level to approximate the average value of the quality 

characteristic to the target value. Finally, the third type of factor is used to reduce production costs. Based on the steps, a set of 

optimal process parameters of Taguchi can be obtained, which can be used as the initial value of the optimization of the second 

stage. Through the factor response analysis and the analysis of the variance, the significant control factors found will be 

adjusted as the basis of the subsequent solution parameters. 

In the second stage, the parameter combination obtained by the Taguchi experimental planning is used as the basis to 

establish the S/N ratio predictor (BPNNS/N) and quality predictor (BPNNQ). However, the initial weight value of the BPNN is 

often generated in a random manner, and the initial weight value affects the network training speed and prediction accuracy; 

therefore, this study uses the improved hybrid PSO-GA combined with multilayer perceptron (MLP) to obtain and preserve the 

initial weight required for BPNN. This method not only improves the training speed of BPNN, but also increase the predictive 

power of it. In this stage, the process parameter combination obtained in the first stage is used as the initial value, and the S/N 

ratio predictor and the quality predictor are combined with the hybrid PSO-GA for global search to find the process parameters 

that best meet the quality specifications and the most stable quality. The mesh microstructure diameter size target is 555 μm, 

and the acceptable thickness deviation is within 5%. For the diameter roundness, the measurement method is divided into 

twenty areas, as shown in Fig. 1. The measurement of five points in each area is averaged, thus the measurement can better 

determine the exact roundness of diameter. Formula for roundness is as shown in Eq. 1.For the thickness uniformity, the 

measurement method is divided into 20 points for the inner and outer regions, as shown in Fig. 2, taking the percentage of 

thickness deviation inside and outside. 
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 Dij  is the measured value of the mesh microstructure diameter; D  is the diameter roundness of the mesh quality 

characteristics; measuring area has 20 measuring points in five zones; and j is the number of measuring points. The main 
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purpose of this study is to find out the optimal process parameter combination of the micro electroformed mesh, so that its 

quality is within the desired range, and the product tends to stabilize and reduces the non-performing rate. The thickness 

uniformity is shown as Eq. 2. 
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T is the thickness uniformity of the mesh quality characteristics as shown in Equation 2. The maximum thickness 

measurement value is 𝑇𝑀𝑎𝑥  =Max (𝑇𝑂𝑖𝑗 ,  𝑇𝐼𝑖𝑗 ); the minimum value is 𝑇𝑀𝑖𝑛 =Min (  𝑇𝑂𝑖𝑗 , 𝑇𝐼𝑖𝑗 ); 𝑇𝑂𝑖𝑗  is the thickness 

measurement of the outer ring; 𝑇𝐼𝑖𝑗  is the thickness measurement of the inner ring; i is the measuring area; and j is the number 

of measurement points. 

  

Fig. 1 Schematic diagram of mesh diameter measurement Fig. 2 Schematic diagram of mesh thickness 

3. Results and Discussion 

3.1.   Taguchi Experiment 

In this study, the micro electroforming product is the mesh filter. In order to ensure that the product can be supplied to the 

manufacturer's required size specifications, a discussion with the manufacturer is proceeded, obtaining a product diameter of 

555±3μm and a deviation of quantity specification within 5% of the product thickness. The quality characteristics are diameter 

roundness and thickness deviation. In addition, the experimental control factors are defined as following five experimental 

control factors: temperature of the electroforming liquid (TL) (℃), current density (CD) (A/ dm
2
), cathode size (CS) (dm

2
), the 

distance between the anode and the cathode (DAC) (cm), and oscillating rate (OR) (rate/min). The range of adjustment 

parameters and the control factor level settings are shown in Table 1. The five experimental control factors in this study uses 

L18(2
1
 x 3

4
) orthogonal table. As shown in Table 2, the micro electroforming is performed on a customized experimental 

machine, and the data of the diameter roundness and the thickness deviation are obtained by measurement, and the S/N ratios 

are calculated. The diameter roundness adopts the first type formula of the eyesight characteristic, and the thickness deviation 

adopts the small characteristic formula. 18 groups from No.1 to No.18 are the Taguchi experimental data; 5 groups from No. 19 

to No. 23 are randomly generated. For the quality characteristic of diameter, the equation of Type I formula of the 

nominal-the-best is used as shown in Eq. 3. As for a deviation of quantity specification within 5% of the product thickness, the 

smaller-the-better is used as shown in Eq. 4. The experimental product is shown in Fig. 3. 
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where yi is the response value of a specific treatment under I replications, n is the number of replications, y is the average of all 

yi values, and Sis the standard deviation of all yi values. 
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Table 1 Showing different crystal growth methods, growth time  

and approximate sizes of the grown crystal 

Experimental control factors Range Level 1 Level 2 Level 3 

TL 40-50 40 50 - 

CD 1-5 1.00 3.00 5.00 

CS 1-4 1.00 2.25 4.00 

DAC 9-12 9.0 10.5 12.0 

OR 20-52 20 36 52 

Table 2 The results of the diameter and thickness deviation of the Taguchi experiment 

No Average diameter (X) (μm) Thickness deviation (Y) (%) σ(X) σ(Y) S/N ratiofor X S/N ratio for Y 

1 554.310 0.0237 0.1114 0.0018 3.1114 32.4771 

2 554.447 0.0303 0.2542 0.0017 4.3085 30.3453 

3 555.780 0.0271 0.1100 0.0020 2.0726 31.3317 

4 554.330 0.0139 0.2128 0.0016 3.0610 37.0848 

5 554.837 0.0315 0.1332 0.0015 13.5251 30.0174 

6 555.117 0.0295 0.0907 0.0020 16.6066 30.5767 

7 553.903 0.0106 0.1570 0.0022 -0.8895 39.2921 

8 555.467 0.0326 0.1986 0.0025 5.8971 29.7218 

9 555.347 0.0292 0.1986 0.0019 7.9694 30.6632 

10 554.257 0.0171 0.2194 0.0012 2.2136 35.3380 

11 554.690 0.0308 0.3568 0.0019 6.5092 30.2133 

12 555.700 0.0303 0.0954 0.0024 3.0181 30.3316 

13 554.380 0.0081 0.1153 0.0018 4.0044 41.6647 

14 554.807 0.0391 0.1069 0.0012 13.1148 28.1516 

15 555.067 0.0303 0.1097 0.0024 17.8310 30.3329 

16 553.923 0.0072 0.1222 0.0014 -0.6972 42.6330 

17 554.577 0.0321 0.1914 0.0023 6.6586 29.8436 

18 554.833 0.0367 0.2775 0.0024 9.7959 28.6889 

19* 554.767 0.0282 0.1168 0.0016 11.6699 30.9735 

20* 555.550 0.0219 0.2117 0.0012 4.5930 33.1608 

21* 555.107 0.0408 0.1570 0.0020 14.4356 27.7712 

22* 554.740 0.0359 0.1153 0.0024 10.9205 28.8752 

23* 553.997 0.0074 0.2084 0.0019 -0.2124 42.3435 

 

 

Fig. 3 The experimental product 

3.2.   Variation of pH value in the water storage tank 

This study aims to find an optimal combination of process parameters that meet the multi-objective quality. However, 

Taguchi’s experimental design belongs to a single quality response and discrete optimization method, and only can derive local 
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optimal solution of pre-selected parameter level value for a single quality characteristic. Therefore, it is necessary to first 

transform and integrate the problem of multiple quality objectives of diameter and thickness deviation into a problem of single 

quality objective, and then to conduct subsequent data analysis based on the experimental data. Data analysis includes factor 

response analysis and ANOVA in order to understand the relationships between experimental control factor pairs of S/N ratio 

and quality characteristics. S/N ratio response chart can identify important control factors with more significant effects on S/N 

ratios, while the use of quality characteristics response chart can screen control factors with more significant effects on quality 

characteristics. The Taguchi optimization process parameter combination can be used as the initial value for subsequent 

optimization, while the significant control factors found by factor response analysis and ANOVA are chosen as the basis for 

adjusting the process parameters for subsequent optimization. The method is to integrate the individual offsets of the quality 

characteristics of the diameter and thickness deviation into a total offset to achieve a single target quality. The calculation of 

the integrated diameter and thickness deviation into a single target quality is as follows [15]: 

(1) The calculation of the total offset 

Taking the Taguchi experimental product as an example, the diameter size of the experimental product is measured as X, 

and the target value of the quality characteristic is 555μm, so the diameter offset is X-555μm; The thickness deviation 

measurement is Y, and the target value of the quality characteristic is 0%, so the measured value is the thickness deviation 

offset. Thus, the same measurement unit (X-555) and Y are assumed to be two vectors, so the vector sum Z is its total offset. 

The calculation is as follows: 

Total offset Z = ((X - 555)
2
+Y

2
)

1/2
 (5) 

(2) The calculation of the total standard deviation 

In the Taguchi experiment, if the standard deviation of a certain group of diameter is σ(X), and the standard deviation of 

thickness is σ(Y), then the total standard deviation σ(X+Y) is as follows 

2 2
(X Y) (X) (Y) 2 cov(X,Y)        (6) 

(3) Conduct factors response analysis via ANOVA and main effects plot 

The S/N ratio response factor table of integrating into a single quality and the main effects plot for S/N ratios of total bias 

are demonstrated in the study. The factor response chart shows that a set of Taguchi optimal process parameter combination 

can be obtained to meet the multiple quality characteristics. This study will denote the minimum process variation and optimal 

quality characteristic, and the optimal parameter combination of Taguchi experiment and ANOVA. 

Table 3 ANOVA of the total offset - quality characteristics 

 DF Seq SS Adj SS Adj MS F P Contribution Significant 

TL 1 0.00999 0.00999 0.00999 0.34 0.578 0.64% No 

CD 2 0.39617 0.39617 0.19808 6.67 0.020 25.40% Yes 

CS 2 0.78652 0.78652 0.39326 13.24 0.003 50.42% Yes 

DAC 2 0.07188 0.07188 0.03594 1.21 0.347 4.61% No 

OR 2 0.05761 0.05761 0.02880 0.97 0.420 3.69% No 

Error 8 0.23764 0.23764 0.02971 - - 15.24% - 

Total 17 1.55980 - - - - - - 

S = 0.172352, R-Sq = 84.76%, R-Sq(adj) = 67.62% 

This integrated diameter and thickness deviation offset becomes the total offset, which is a quality characteristic of single 

target quality. Since the smaller the value is, the better the result will be, the S/N ratio chooses the smaller-the-better formula. 

For the ANOVA of the total offset of quality characteristics, the significant influence factors are selected according to the 
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contribution. First, the two control factors of cathode size (50.42%) and current density (25.40%) are spotted, as shown in 

Table 3. The above two control factors have a significant influence on the quality characteristics and can provide the basis for 

subsequent optimization of the adjustment process parameters. The optimal parameter combination of the Taguchi method is 

shown in Table 4. 

Table 4 Optimal parameter combination 

Optimal Parameter 
TL CD CS DAC OR 

50 3.00 4.00 9 20 

3.3.   Using MLP combined with hybrid PSO-GA to find the initial weight of BPNN 

As a consequence of using the Taguchi experimental analysis, the optimal combination of parameters obtained is the 

discrete parameter combination established by the original Taguchi experimental design, and the quality may not reach the 

target value. Therefore, the research uses the backpropagation neural network (BPNN) to construct the S/N ratio predictor and 

quality predictor, combining the improved hybrid PSO-GA optimized in this study. Moreover, in terms of the Taguchi 

experimental analysis, the optimized combination of parameters is used as the initial value of the algorithm search. 

Furthermore, it is hoped to find a set of continuous type of best combination of parameters that can achieve process stability 

and quality objectives. However, when the traditional BPNN is in sample training, the initial weight is often generated 

randomly, and it will affect the training speed and accuracy of the neural network. Therefore, this study proposes to use the 

improved PSO-GA combined with MLP to solve the initial weight value of BPNN and to find a better set of adaptation as the 

initial weight value of BPNN. The study uses BPNN to build the S/N ratio predictor and quality predictor, using the improved 

PSO-GA combined with MLP to find the better initial weight for the S/N ratio predictor and quality predictor respectively.The 

objective function is defined in Eq. 7. 

Min 𝑓(W) =
1

36
∑ ∑(𝑑𝑘

𝑝
− 𝑦𝑘

𝑝
(W))2

2

𝑘=1

18

𝑝=1

 (7) 

where p represents number of pth sample, k represents kth quality characteristic, 𝑑𝑘
𝑝
represents the target value of BPNN 

indexed by k , 𝑦𝑘
𝑝

(𝑊) represents the output value of MLP indexed by k, W is MLP’s weights. Through using MLP and Eq. 7 

with the modified PSO-GA to solve optimization weights, better weight values can often be found. 

3.4.   Establishing S/N Ratio Predictor and Quality Predictor 

The study uses BPNN to establish the S/N ratio predictor and quality predictor. The input values of the S/N ratio predictor 

and quality predictor are the normalized values of the 18 groups of parameters of the Taguchi experiment, and the output value 

of the predictor is the normalized value of the S/N ratio and the average value of the quality characteristics in the Taguchi 

experiment. In addition, the 19th to 23rd groups in the Taguchi experiment are used as the testing data of BPNN. In order to 

enable BPNN to training convergence, this study adopts the weighting solution of MLP-PSO-GA, stated in the previous 

section, as the initial value of BPNN for training. The S/N ratio predictor training uses 1053 generations, training RMSE to be 

0.0004940, and testing RMSE to be 0.0259. The quality predictor takes 968 generations; the training RMSE is 0.00082261, 

and the test RMSE is 0.0253. The error of the predicted value of the two predictors is analyzed within the acceptable range by 

comparing the error between the predictors and the actual values. 

3.5.   Two-stage process parameter optimization 

In the first stage, the experiment focuses on maximizing the S/N ratio. The constructed S/N ratio predictors are combined 

with a GA to identify the process parameter combination with the minimum variance and the most robust process so that the 

S/N ratio values of diameter roundness (mm) and thickness deviation must be maximized. The Taguchi optimal parameter 
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combination is used as the initial value to carry out the full range global search for the six control factors. The fitness function 

of GA is presented as follows: 

Max SNod, SNot 

s.t. 

40≤ x1 ≤ 50, 1≤ x2 ≤ 5, 1≤ x3 ≤ 4, 9≤ x4 ≤ 12, 20≤ x5 ≤ 52, 

(8) 

where X(x1, x2, x3, x4, x5) is the process parameter(control factor), SNod is the S/N ratio of diameter predicted by de-normalized 

BPNNS/N, and SNot is the S/N ratio of thickness deviation predicted by de-normalized BPNNS/N. Five control factors are 

temperature of the electroforming liquid (x1), current density (x2), cathode size (x3), the distance between the anode and the 

cathode (x4), and oscillating rate (x5). This numerical analysis is to conduct the global search for all control factors and obtained 

the process parameter combination of the first stage multi-objective S/N ratio maximization. The optimal parameter 

combinations are: x1=49.582, x2=2.152, x3=3.545, x4=9.004, and x5=51.912. 

Min F2 (x) = (yod－555) 
2
 

Max SNod, SNot 

s.t.  

 yot ≤ 0.01 

8≤ x2 ≤ 28, 62≤ x3 ≤ 78 

(9) 

where X(x2,x3)is the process parameter (control factor), yod is the output value of diameter quality predictor after 

de-normalization, and yot is the output value of thickness deviation quality predictor after de-normalization, and 555 is the 

target value of diameter quality characteristic, and 0.01 is the target value of thickness deviation quality characteristic as 

smaller as possible. The main control factors are x2is current density and x3 is cathode size. By conducting a global search for 

the two significant control factors of the second stage, and combining BPNNS/N and BPNNQ with modified PSO-GA, this study 

can obtain the process parameter combination meeting the multi-objective quality and minimizing variation. The optimal 

process parameter combination is shown in Table 5. 

Table 5 Optimal parameter combination (two-stage process) 

Optimal Parameter 
TL CD CS DAC OR 

49.582 2.002 3.85 9.004 51.912 

3.6   Confirmation of experiment and discussion 

Due to the accuracy set by the operating machine, the optimized parameter values must be rounded up according to the 

limits set by the machine. The finally confirmed experimental parameters are shown in Table 6. The experimental data will be 

confirmed according to the above-mentioned quality evaluation methods, and the comprehensive evaluation and comparison 

tables of the quality of the diameter and thickness will be separately compiled, as shown in Table 7 and Table 8. The product 

quality characteristics and ideal functions of this study are based on the manufacturer's requirements for product quality. The 

diameter roundness specification is 555 ±0.3 μm (target value: 555 μm, tolerance: ±3 μm), and the thickness deviation 

specification is 5% and expectedly smaller. (Target value: 0μm). Additionally, for the diameter quality characteristics, the 

multi-quality optimized Cpk value is 1.69, which is much larger than the 0.70 of the Taguchi method, and the average diameter 

value is also the closest to the target value. The standard deviation of 0.058 is also lower than 0.132 of the Taguchi method. It 

is found that the two-stage optimization is better. Moreover, for the thickness quality characteristics, after the two-stage 

optimization, the thickness deviation is reduced from the Taguchi method, 0.0281, to 0.0191; the standard deviation is also 

reduced from 0.0075 of the Taguchi method to 0.0036. It can be seen that after the two-stage optimization, not only the 

diameter is closer to the target value, but also the thickness deviation is reduced, and the process is more stable. The results 

show that the two-stage optimization is better in the comprehensive evaluation of each quality.
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Table 6 Optimal parameters and machine settings 

 TL CD CS DAC OR 

Taguchi + ANOVA 50 3.00 4.00 9 20 

Machine settings 50 3.00 4.00 9 20 

Two-stage optimization 49.582 2.002 3.850 9.004 51.912 

Machine settings 50 2.00 4.00 9 52 

Table 7 A comprehensively evaluation & comparison table of diameter quality  

 Cpk Average Standard deviation 

Taguchi + ANOVA 0.70 554.980 0.132 

Two-stage optimization 1.69 555.004 0.058 

Table 8 A comprehensively evaluation & comparison table of thickness quality 

 Average Standard deviation 

Taguchi + ANOVA 0.0281 0.0075 

Two-stage optimization 0.0191 0.0036 

3.7.   Process Parameters and Quality Characteristics Analysis 

 

Fig. 4 The effect of current density and cathode size on diameter S/N ratio 

This section discusses the relationship between process parameters and quality characteristics. The process parameter 

control factors of this experiment are the temperature, current density, cathode size, distance between cathode and anode, and 

oscillating rate. According to previous investigation, the current density and cathode size are the most significant factors for the 

process parameters in this research; therefore, this study uses those factors as variation factors for more in-depth analysis. The 

cathode size, the cathode-anode distance, and the oscillating rate are fixed according to the optimum parameters of the Taguchi 

experimental analysis, and their values are 50° C, 9 cm and 20 times / min respectively. When the S/N ratio predictor and the 

quality predictor are used as the variation factors for the predicted current density and the cathode size, the output of the 

predictor is shown in Figs. 4 to 7. As what is shown from Figures 4 and 5, for the diameter roundness S/N ratio, the smaller the 

value of the current density and the larger the value of the cathode size are, the greater the influence on the S/N ratio is. 

Therefore, if it is desired that the diameter roundness S/N ratio can achieve better results, the current density and cathode size 

parameters are respectively lowered and increased to perform better. For the thickness deviation S/N ratio, the smaller the 

current density and the larger the cathode size are, the greater the influence on the thickness S/N ratio is. It is clearly observed 

that the current density interacts with the cathode size. Therefore, if a thickness S/N ratio is desired to obtain a better result, the 

adjustment of the current density should be considered, followed by the cathode size. In addition, as seen from Fig. 6 and Fig. 

7, if the value of the current density is lower and the value of the cathode is higher, the influence on the diameter roundness and 

thickness deviation is more obvious. Thus, if the product process requires a larger size, the parameters with lower current 

density adjustment and higher cathode size adjustment can obtain better results. The diameter quality characteristic required 

for this experiment in this research is 555μm; and the thickness quality characteristic is the smaller the better. According to the 
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trend graph of the diameter quality predictor, the drop point is between the current density of 1~2 A/dm
2
 and the cathode size is 

about 3~4 dm
2
, and according to the trend graph of the thickness quality predictor, the drop point is about between 1~3 A/dm

2 

(current density) and 3.5~4 dm
2
(cathode size). Therefore, in this study, the optimal parameters of the S/N ratio predictor and 

the quality predictor are obtained by the hybrid PSO-GA. The best parameters are current density 2.00 A/dm
2 
and cathode size 

4 dm
2
. 

 

Fig. 5 The effect of current density and cathode size on thickness S/N ratio 

 

Fig. 6 The effect of current density and cathode size on the diameter 

 

Fig. 7 The effect of current density and cathode size on thickness 

4. Conclusions 

The micro electroforming technology has been widely adopted, and the industry has higher and more requirements for the 

product precision. How to set appropriate process parameters to meet the quality requirements and improve the production 

efficiency and process stability often bothers the engineers. Therefore, if the optimal process parameters can be found, it will 

improve product quality and reduce costs. To this end, this research studies the intelligent optimization system of the micro 

electroforming process parameters for the mesh filter, using the systematic optimization method to effectively find the optimal 

combination of process parameters. After the actual verification, for the diameter quality characteristics, the multi-quality 

optimized Cpk value is 1.69, which is much larger than the 0.70 of the Taguchi method, and the average diameter value is also 

the closest to the target value. The standard deviation of 0.058 is also lower than 0.132 of the Taguchi method. For the 

thickness quality characteristics, the thickness deviation is reduced from the Taguchi method, 0.0281, to 0.0191; the standard 
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deviation is also reduced from 0.0075 of the Taguchi method to 0.0036. Therefore, Accordingly, the results suggest that t he 

proposed intelligent optimization system not only makes the diameter closer to the target value but also reduces the thickness 

deviation and makes the process more stable. 
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