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Abstract 

The efficiency of prestressed stayed elements when designing very slender steel columns was proved for both 

stability and strength capacity of the columns. With an increasing number of crossarms placed along the length of the 

column the effectiveness is further growing in comparison to a stayed column with just one crossarm. First the 

stability of an “ideal” (perfect) prestressed stayed column with two crossarms is investigated analytically. Similar 

principal behavior as in the case of prestressed stayed columns with just one crossarm is confirmed and the three 

zones depending on the value of prestressing are revealed. Expressions for minimal, optimal and maximal prestress 

are derived analytically. After receiving critical buckling value of the stayed column with the two crossarms without 

any prestressing by linear buckling analysis (LBA), the maximal critical buckling loading of the column under 

optimal prestressing is derived. The results are fully demonstrated on a practical example. Second the strength 

capacity of such column but with relevant initial deflections is investigated by the geometrically and materially 

nonlinear analysis with imperfections (GMNIA) using ANSYS software. Comparisons of critical and strength 

values under various prestressing are analyzed with respect to a practical design. Finally some recommendations for 

following studies and practical use are given. 
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1. Introduction 

Extremely slender columns suffer with a low strength capacity due to buckling. A smart solution of the problem provide 

prestressed stayed steel elements. The crossarms connected by prestressed cables or rod stays with the column ends rapidly 

increase both the critical column load and its collapse capacity, see Fig. 1. 

 
 

 
(a) Grande Arche, Paris (b) Parc del centre del Poblenou,Barcelona (b) Estádio Algarve, Faro 

Fig. 1 Examples of structures using stayed columns 
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The prestressed stayed columns with just one crossarm were deeply investigated analytically, numerically and 

experimentally within several last decades. Among others, the milestones were achieved by Smith et al. [1] and Hafez et al. [2], 

who discovered the three zones of behavior depending on the prestressing level of the stays and Wadee et al. [3], who 

investigated the maximal load capacity. These results are roughly demonstrated in Fig. 2, where the “zones” may be explained 

as follows: zone 1 (up to Tmin), where the prestressing in the stays disappears when the applied load is less or equal to the Euler 

load (Ncr = NE); zone 2 (up to an optimal prestressing Topt), where the stays remain effective until the applied load triggers a 

buckling; zone 3 (above Topt), where all the stays remain active (in tension) even after the buckling. Higher prestressing than 

Topt increases the column loading and, therefore, decreases the critical column load Ncr. 
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(a) planar (b) spatial (c) relationship of critical load vs prestressing 

Fig. 2 Stayed columns with one central crossarm 

Deep investigations covering critical values, initial imperfections or maximal capacity of the stayed columns with just one 

crossarm were provided by Wong and Temple [4], Chan et al. [5], Saito and Wadee [6], [7], experimental and numerical 

investigations by Araujo et al. [8], Servitova and Machacek [9], Lima et al. [10], Osofero et al. [11], Ribeiro et al. [12], Serra et 

al. [12] and were mostly commented also by the Authors in [14], [15], [16], [17]. 
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Fig. 3 Stayed columns with two crossarms 

Nevertheless, both researchers and designers were aware of a greater capacity of the prestressed stayed columns with 

more than one crossarm since the origin of the studies (see several masts designed by Vojevodin [18], Fig. 3). While this 

knowledge was supported by numerical analysis and some tests (e.g. Khosla [19], Jemah and Williams [20]), the more deep 

investigation was performed in the last years only. Martins et al. [21] tested double crossarm stayed tube columns with a total 

length of 18 m, two different column cross-section diameters and various prestressing. The tests provided valuable 

experimental data for axial shortening and lateral deflections under loading. Yu and Wadee [22] investigated numerically triple 

crossarm stayed columns using ABAQUS software. Apart from varying the entry data concerning ratio of the column length to 

crossarms, diameter of cable stays and value of prestressing, the “efficiency indicators” were used to optimize the total design 
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and optimal prestressing. For the same columns these authors [23] further developed a nonlinear analytical model verified by 

ABAQUS nonlinear analysis, studied parametrically buckling modes and drew attention to the possibility of a mode jumping. 

Lapira et al. [24] analyzed triple crossarm prestressed stayed columns and also columns with additional stay system located in 

the middle quarters of the system. They derived analytical formulas in 3D for maximal critical values, corresponding optimal 

and any other prestressing, which verified by FEM using ABAQUS software. 

In this paper the Authors follow-up the mentioned previous investigations concerning stayed columns with just one 

crossarm and analyze 3D prestressed stainless steel stayed columns with two crossarms in accordance with Fig. 3, both 

analytically for “ideal” (perfect) column and numerically for “ideal” or imperfect column using ANSYS software. 

2. Stability Behavior of an “Ideal” Prestressed Stayed Columns with Two Crossarms 

The three approaches leading to the determination of critical loads are presented. First the geometrical analysis based on a 

geometry and equilibrium conditions, second linear buckling analysis (which however, as shown later, can be used for 

unprestressed columns only) and third the finite element method (FEM) using geometrically nonlinear analysis with 

imperfections (GNIA). 

2.1.   Geometrical analysis 

First the “ideal” (perfect) column is analyzed in the similar way as was done for just one single crossarm by Smith et al. [1] 

and Hafez et al. [2]. The geometrical analysis of a stayed column in accordance with Fig. 3 is based on a change of element 

lengths due to axial deformation at the instant of buckling. The fundamental assumptions of the derivation are: 

- The column is perfectly straight and concentrically loaded. 

- The connections between column and crossarms are assumed to be rigid and between the stays and column/crossarms are 

assumed as ideal hinges. 

- The maximal buckling load of the central column is assumed to be obtained by linear buckling analysis (LBA) for the 

column without any prestressing. This analysis assumes the stays active both in tension and compression, while neglecting 

buckling of stays. 

- The axial deformations of the column and crossarms are not considered in LBA, however, need to be considered for 

analytical derivation of the magnitude of tension in the stays. 

The changes of element lengths at the instant of buckling are shown in Fig. 4. The shortening of the outside and central 

stays gives: 
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Fig. 4 Axial compression changes of the column and force resolution in the crossarm 
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The spatial column has 4 stays (n = 4), the planar one 2 stays (n = 2). The initial axial force in the column, Ni, induced by the 

initial stay pretension, Ti, and final one, Nf, after the application of the external load, Na, are: 

i iN nT cos    and   4f a f a fN N nT cos N T cos      (2) 

The stiffness of the column, Kc, of the crossarm member, Kca, and of the stay, Ks, are: 
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(3) 

After evaluation of the shortening of the column, elongation of the crossarm member and shortening of the stay, the decrease of 

the tension in the stays and substitution of these values in Eq. (1) gives: 
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After some substitutions the final tension in the stays, Nf, may be written as: 
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For the applied (external) load, Na, the substitution into Eq. (2) yields: 
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(6) 

Using these formulas, the behavior of the stayed column with the two crossarms may be described similarly as behavior of 

the column with just one crossarm. In Fig. 5 the resulting three zones of behavior with respect to value of prestressing are 

shown. Also, for a column with two crossarms analyzed in following Paragraphs (see the entry data given in Paragraph 2.2) the 

buckling modes and critical loads of unprestressed column are shown. 
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(a) Initial pretension (b) Ncr,1,T=0 = 44.43 kN Ncr,2,T=0 = 72.12 kN Ncr,3,T=0 = 91.90 kN 

Fig. 5 Initial pretension vs buckling load and example of the first three buckling modes corresponding to the later analyzed 

column using LBA 

Zone 1: 

The initial prestressing is small (Tf ≤ Tmin) and after external loading disappears. The column behaves as unstayed and 

buckles at the Euler load, NE. Minimal prestressing, Tmin, corresponding to this behavior, follows from Eq. (4): 
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Zone 2: 

The prestressing is larger than the minimal one but smaller than the optimal one, Tmin < Tf < Topt. After triggering of 

buckling the prestressing in the stays disappears (Tf = 0), but the stays at convex side will become active immediately. The 

resulting critical load, Ncr, will be higher than Euler’s one and according to Eq. (4) will correspond to prestressing Ti: 
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Maximal critical load, Ncr,max, follows from Eq. (6), after substituting for Na = Ncr,n,T=0, where the latter is the value of critical 

load received from LBA for fully active stays without any prestressing (Ti = 0), see Fig. 5: 
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Corresponding optimal prestressing is given by: 

ncropt CNT ,1max,
 

(10) 

Zone 3: 

The prestressing is larger than the optimal one. After buckling the stays remain in a tension and the critical load falls off 

due to respective force components in the stays. The residual tension in the stays follows from Eqs. (5) and (9) as: 
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The critical load in Zone 3 can be obtained from Eq. (6) after substituting for Na = Ncr and Nf = Ncr,max: 

  nicrcr CTnNN ,2max, cos
 

(12) 

2.2.   Numerical stability analysis using 3D GNIA 

The analytical investigation of the critical load based on geometrical analysis of an “ideal” (perfect) central column may 

be verified by using FEM. In the field of prestressed elements the stability behavior in the full range of prestressing can’t be 

solved by linear buckling analysis (LBA) but due to the sudden change of inner energy at the instant of buckling the 

geometrically nonlinear analysis with imperfections (GNIA) is necessary (see, Saito and Wadee [5] or previous articles of the 

Authors, e.g. [15], [17]). Under a small prestressing the stays at buckling become slacked and the ones at convex side are 

immediately activated (Zones 1 and 2). If all the stays, both at convex and concave sides are activated, the column behavior 

corresponds to the Zone 3. 

The actual behavior of the stayed column with the two crossarms was therefore investigated by using ANSYS software in 

3D and geometrically nonlinear analysis with imperfections (GNIA). The results are demonstrated on the same example as 

analyzed by the Authors in [16], however, now with the two crossarms instead of one crossarm. The entry data (length, area, 

second moment of area, modulus of elasticity) are as follows, see Fig. 3: 

- Central stainless steel tube Ø  50x2 [mm]: L = 5000 mm, Ac = 302 mm2, Ic = 87009 mm4, Ec = 200 GPa. 

- Crossarm stainless steel tubes Ø  25x1.5 [mm]: a = 250 mm, Aa = 111 mm2, Ia = 7676 mm4, Ea = 200 GPa.  
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- Stays as Macalloy cables 1x19 stainless steel Ø  4 mm: Ls = 2513 mm, As = 12.6 mm2, Es = 200 GPa. 

Substituting these values into the formulas presented in Chapter 2.1 yields: 

- The invariables: C1,4 = 0.0351, C2,4 = 1.1612. 

Critical loads and prestressing (using Ncr,1,T=0 = 44.43 kN from LBA, see Fig. 5): 

- NE = 6870 N; Tmin = 241 N; Ncr,max = 38262 N; Topt = 1343 N; Ncr,3Topt = 25925 N. 

The ANSYS model involved BEAM188 elements for the central and crossarm tubes and LINK180 elements for the cable 

stays, with the same boundary conditions as mentioned in the Chapter 2.1 (connections between column and crossarms are 

assumed to be rigid, between stays and column/crossarms are ideal hinges). The meshing study resulted into division of L/250 

and a/25 as satisfactory one. First, the required initial deflections were introduced, followed by the relevant prestressing of 

stays through their thermal change (i.e. by cooling). Finally, axial deflections to the central column (giving an external load) up 

to collapse were imposed. A standard Newton-Raphson iteration was used. To verify the analytical values, first GNIA was 

used, with elastic material behavior, followed by GMNIA for stainless steel material. 

For the stability analysis the “ideal” column was analyzed, the initial imperfections need to be negligible, therefore 

infinitesimal deflections were employed with the amplitude of w0 = L/500000 = 0.01 mm (in the 3D as w0y = w0z = w0/√2) for 

both symmetric and antisymmetric modes, see Fig. 6. 
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(a) stayed column (b) initial deflections (c) GNIA results 

Fig. 6 Initial deflections w0 = L/500000 for “ideal” column and GNIA results (identical for both initial deflection modes) 

The resulting load-prestressing relationship received from the GNIA is presented in Fig. 6. The curves for critical and 

maximal loading were received from rather lengthy numerical calculations of 26 prestressing values (in reality cooling of the 

stays), each with 1000 of compression steps. In low prestressing, roughly up to 1.6 kN, when at the instant of attaining the 

critical load (i.e. when the tension in all stays become zero) the both stays at the convex side become active in tension (while at 

concave side being slacked) and the maximal (capacity) load of the “ideal” column becomes higher than the critical one. With 

higher value of prestressing the all four stays remain in some tension (Zone 3) and both critical and maximal values are 

identical (show also the explanation in Fig. 8 for GMNIA). 

Comparison of analytical and numerical (GNIA) values is rather difficult (see Fig. 6) but the analytical values, i.e. Ncr.analyt 

= 38262 N at prestressing of Topt,analyt = 1343 N, may be compared with the GNIA ones when the stays on the concave side at 

the buckling don‘t slacken and critical and maximal loads merge together, i.e. Ncr,GNIA = 38200 N at prestressing of Topt,GNIA = 

1599 N, being acceptable. Nevertheless, GNIA maximal load for “ideal” column of roughly 52618 N arises at prestressing of 

9808 N. It should be noted, that deflected shape for both modes of negligible initial deflection are identical, after Ncr = 47852 N 

first interactive (in combination of symmetric and antisymmetric mode), after prestressing of T = 9808 N becomes 

antisymmetrical. 
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3. Maximal Loading of an Imperfect Prestressed Stayed Columns with Two Crossarms 

The investigation of a maximal loading (strength capacity) of a compression element requires the modelling of a real, 

imperfect column. The initial imperfections in such stayed columns were introduced in accordance with Eurocode EN 

1993-1-1 as equivalent initial deflections with amplitude w0 = L/200 = 25 mm (valid for cold-formed thin-walled tubes and 

elastic analysis). The deflection was considered again in the spatial direction, i.e. with w0y = w0z = w0/√2. The first two modes of 

initial deflections were considered only, in accordance with figure 5: antisymmetrical with the amplitude w0,L/2 = L/400 and 

symmetrical with the amplitude w0 = L/200. 
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(a) antisymmetrical initial deflection (b) symmetrical initial deflection 

Fig. 7 GNIA critical and maximal capacity for the initial deflection w0 = L/200 

The GNIA for the above analyzed example with the same stainless steel elastic modulus (according to EN 1993-1-4) E = 

200 GPa resulted in various prestressing into values presented in Fig. 7. As in the LBA the decisive mode proved to be the 

antisymmetric one, giving maximal loading Nmax = 31988 N at prestressing of Ti = 8353 N. 

Another study employed GMNIA (geometrically and materially nonlinear analysis with imperfections), differing just in 

using the nonlinear material behavior as tested by the Authors in [16], resulting in the stress-strain relationship acc. to Fig. 8. 

 
(a) stress-strain relationship of the stainless steel material 

  
(b) load-axial deflection curve for prestressing of Ti = 1278 N (c) corresponding tension 

Fig. 8 example of forces in the stays  
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Again both the “ideal” (perfect) central columns with infinitesimal amplitude of initial deflections w0 = L/500000 = 

0.01 mm were analyzed (an example of one analysis under initial prestressing of Ti = 1278 N is shown for illustration in Fig. 8). 

The results for the critical loads (concerning “ideal” stayed columns) for antisymmetrical initial deflections now partly differ 

from results in the same column but with symmetrical initial deflections, show in Fig. 9. Nevertheless, the important value of 

Ncr,GMNIA = 34429 N at prestressing of Topt,GMNIA = 1583 N corresponds well with the former GNIA Ncr,GNIA = 38000 N at 

prestressing Topt,GNIA = 1599 N, considering the ratio of the elastic moduli in GNIA/GMNIA as Ein/E = 184/210 = 0.92. A 

simple reduction using this factor gives Ncr,GNIA,E=184 MPa = 38000·0.92 = 34960 N which differ from Ncr,GMNIA = 34429 N by 1.5 

%. 

  

(a) antisymmetrical initial deflection (b) symmetrical initial deflection 

Fig. 9 GMNIA results for the “ideal” column with initial deflections w0 = L/500000 

The GMNIA results of the real column with an amplitude of initial deflection of w0 = L/200 = 25 mm are shown in Fig. 10. 

In comparison with GNIA (Fig. 7) the maximal (capacity) loadings are significantly lower due to nonlinear stress-strain 

relationship of the stainless steel material. The decrease of the maximal loading for decisive antisymmetrical initial deflection 

mode from 31988 N to 25040 N gives 27.7 %, while for symmetric initial deflection mode the drop from 41544 N to 34000 N 

is 22.2 %. 
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(a) antisymmetrical initial deflection (b) symmetrical initial deflection 

Fig. 10 GMNIA critical and maximal capacity for the initial deflection w0 = L/200 

4. Conclusions 

The paper investigates prestressed stainless steel stayed columns with two crossarms, located at the thirds of the central 

column length. In the first part the analytical stability of an “ideal” column is investigated. Based on 2D geometrical analysis 

the behavior of the column is described for an arbitrary prestressing and general geometry. Similarly as in the case of the stayed 

columns with just one central crossarm the three zones according to the extent of prestressing are revealed and formulas for 

minimal and maximal critical loadings in 2D and 3D together with “optimal” prestressing are derived. 

The resulting formulas are applied to a practical example, which has all the geometric and material characteristics the 

same as for the stayed column which was investigated both experimentally and theoretically by the Authors in the past, 

presented e.g. in [17]. The only difference consists in the two crossarms in the thirds of the column length instead of just one 

central crossarm. 
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Numerical analysis started with a linear buckling analysis (LBA) under zero prestressing and stays active in compression, 

giving critical loadings and deflection modes required for the use in the above analytical solution. Subsequently a 3D model in 

ANSYS software was prepared to analyze both the stability of “ideal” (perfect) column and maximal loading (column capacity) 

of the “real” (imperfect) stayed column. The “no compression option” for the stays was adopted to simulate any slackening of 

these elements and respective initial deflections were introduced: infinitesimal ones for critical loadings in the case of “ideal” 

column (L/500000) and required ones according to Eurocode 1993-1-1 for imperfect column (L/200 for thin-walled 

cold-formed members). The initial deflection modes were introduced in accord with LBA either as antisymmetrical one with 

two half sine waves or symmetrical one with the full sine wave. 

The main results of the investigation may be summarized as follows: 

(a) The analytical formulas for the double crossarm prestressed stayed columns concerning minimal and optimal prestressing 

giving maximal critical analytical loading were derived. 

(b) Numerical modelling (using ANSYS software) of the column with a practical size was presented for a verification of the 

analytical approach. It was shown, that the stability behavior of an “ideal” prestressed column is more complex in comparison 

to the simple analytical approach and a postcritical behavior even for “ideal” column need to be evaluated. Nevertheless, the 

analytical value of the maximal critical loading was well comparable with the numerical one for the prestressing when the stays 

on the concave side at buckling do not slacken. 

(c) Numerical analysis using GNIA with the initial deflections of the main column corresponding to thin-walled cold-formed 

tubes (with amplitude L/200) gives significantly lower maximal (capacity) loading in comparison with the critical loading. 

This decrease in the comparison with analytical critical loading in the specified shown example is at 84 % and in comparison to 

maximal loading of “ideal” column is roughly at 61 %. 

(d) Considering GMNIA with the stainless steel material nonlinearity leads to even greater reduction in comparison to the 

former values. The decrease of maximal (capacity) loading due to initial lower Young’s modulus and due to material 

nonlinearity is another 27.7 %. 

(e) Finally the comparison of effectivity between the stayed column with just one crossarm (see [17]) and the column with the 

two cross arms (with the above specified geometry otherwise unchanged) in the GNIA shows due to adding the second 

crossarm increase of both critical loading of “ideal” column and maximal loading of imperfect column. The increase of the 

critical loading is 21.0 % (from 31580 N to 38200 N) and increase of the maximal loading is 63.5 % (from 19570 N to 

31988 N). 

Although the presented percentage values are perfectly valid just for the specific geometry only, the higher efficiency of 

the two crossarms is undisputable and may provide designers with a guidance for more economical and reliable design. 
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