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Abstract

The objective of this study is to provide the frequency solutions of free vibration in thick FGM circular
cylindrical shells by mainly considering both shear correction coefficient and nonlinear coefficient term. This paper
investigates the effects of third-order shear deformation theory (TSDT) and the varied shear correction coefficient on
the free vibration of thick functionally graded material (FGM), the circular cylindrical shells with simply
homogeneous equation under thermal environment. The approach of derivations are given as follows, the varied
value of shear correction coefficient is included in the simple homogeneous equation. The nonlinear term of
displacement field of TSDT is also included to derive the simply homogeneous equation, some reasonable
simplifications in the elements of homogeneous matrix under free vibration of thick FGM circular cylindrical shells
are assumed, thus, the natural frequency can be found. Three parameters effect on the frequency of thick FGM
circular cylindrical shells are computed and investigated, they are nonlinear coefficient ¢; term, environment
temperature and power law index. There are some main conclusions obtained, generally the natural frequency results
are in decreasing value with the mode shape numbers for the thicker circular cylindrical shells. The values of natural

frequencies are also affected by the nonlinear coefficient term.
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1. Introduction

There are some free vibration frequency investigations with shear deformation effect and experimental studies in the
functionally graded material (FGM) circular cylindrical shells. In 2019, Shahbaztabar et al. [1] presented the free vibration of
FGM circular cylindrical shells, including the Pasternak foundation and stationary fluid by using the first order shear
deformation theory (FSDT). Some effects on the result of the natural frequencies are investigated e.g. fluid depth ratio, elastic
foundation, volume fraction exponent, geometrical parameters and boundary conditions. In 2019, Zippo et al. [2] used the
experimental method and the model of finite element method (FEM) to study the linear and dynamic behavior of vibrations in
the polymeric circular cylindrical shell with FGM equivalent thermal temperature properties. In 2018, Baltacioglu and Civalek
[3] used the Love’s shell theory and FSDT of the displacements to obtain the numerical results for the circular cylindrical FGM
with carbon nanotube reinforced (CNTR) panels. For the thick FGM shells, it is necessary to consider the nonlinear terms of
displacement theories to obtain more accurate results of analyses, e.g. third-order shear deformation theory (TSDT),
higher-order shear deformation theory and triangular function shear deformation theory. In 2018, Torabi and Ansari [4]
presented a formulation of higher-order isoparametric supplement to study the free vibration of FGM shells, considering the
structural effects of circular cylindrical, conical, spherical and toroid shells. In 2017, Baltacioglu and Civalek [5] used the

extended FEM to obtain the frequency of the vibration of cracked FGM shells considering the structural effects of cylindrical
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shell, conical shell and spherical on the vibrations. In 2017, Wang and Wu [6] presented the free vibration analysis of porous
FGM cylindrical shells based on a sinusoidal shear deformation theory (SSDT). In 2014, Fazzolari and Carrera [7] presented
the hierarchical trigonometric Ritz formulation (HTRF) and used in the free vibration analyses for the doubly curved FGM
shells and sandwich shells with FGM core. In 2016, Fantuzzi et al. [8] presented free vibration analyses of cylindrical and
spherical shells by using the FEM and the generalized differential quadrature (GDQ) methods. There are some new and
improved TSDT used in the investigations of FGMs. In 2016, Bui et al. [9] presented the numerical results of deflection and
frequency by using the TSDT and FEM for the static bending behaviors of FGM plates. A similar new TSDT in terms of five
un-known variables was used in the eigenvalue equation to calculate the natural frequency. In 2017, Do et al. [10] presented the
numerical results of deflection and stress by using the TSDT and FEM for the static buckling and bending behaviors of FGM
plates. The same new TSDT in terms of five un-known variables was used in the bending equation and pre-buckling equation
respectively to calculate the numerical solutions without considering the effect of shear correction factors. In 2018, Vu et al.
[11] presented the numerical results of deflection and frequency by using the TSDT and meshfree method for the static bending,
free vibration and buckling behaviors of FGM plates. A similar refined TSDT in terms of four un-known variables was used in

the equations to calculate the numerical solutions.

) FGM material 2
T FGM material 1

Fig. 1 Two-material thick FGM circular cylindrical shells

There are some importance and relevance of studied topics in the dynamics of cylindrical shells composed of FGMs. In
2012, Zhang et al. [12] presented the nonlinear dynamics of clamped-clamped FGM circular cylindrical shells under an
external excitation and uniform temperature change. The similar equations were used and based on the FSDT and von-Karman
nonlinear strains-displacement relation to obtain the numerical response of displacements. In 2016, Dai et al. [13] presented the
reviews of coupled mechanics on the FGM cylindrical structures during years 2000-2015. Some of the existing mechanical
theories and hypotheses were assumed and would be improved in the future for obtaining the more accuracy of the results. In
2008, Ansari and Darvizeh [14] presented a general analytical approach in arbitrary boundary conditions of FGM circular
cylindrical shells. The FSDT of displacements was used to derive the homogeneous linear system and obtained the natural
frequency under different boundary conditions. The author has some GDQ computational experiences in the composited FGM
circular cylindrical shells. In 2017, Hong [15] used the approach of FSDT model and the varied shear correction factor to
present the numerical GDQ results of thermal vibration and flutter of a supersonic air flowed over thick FGM circular
cylindrical shells. In 2017, Hong [16] used the approach of Love’s theory for thin multilayered shells to present the numerical
GDQ results of displacement and stresses of thin FGM laminated magnetostrictive shells with the value effects of velocity
feedback and control gain subjected to thermal vibration. It is interesting to investigate the natural frequency in the TSDT
approach of thick FGM circular cylindrical shells under free vibration with simply homogeneous equation and four edges in
simply supported boundary conditions. The value effects of three parametric: nonlinear coefficient ¢, term, environment
temperature and power law index on the natural frequency of thick FGM circular cylindrical shells are investigated. The main

contribution and novelty of paper is to provide and investigate the analytic solutions of natural frequencies in the free vibration
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of thick FGM circular cylindrical shells by considering the varied effects of shear correction coefficient and nonlinear terms of
TSDT. The motivation of the paper is listed as follows. To obtain the natural frequency values of FGM shells considering the
nonlinear coefficient terms of TSDT within the simply homogeneous matrix equation. Also by considering the calculated

values of shear correction coefficient usually varied with thickness, power law index and environment temperature.
2. Formulation

For a two-material thick FGM circular cylindrical shells in thermal environment with thickness b of FGM material 1 and
thickness h, of FGM material 2. Fig. 1 shows a colorful figure that can illustrate the FGM material for the approach of the
study. The material properties of power-law function of FGM circular cylindrical shells are considered with a Young’s
modulus Eg,, of FGM in the standard variation form of power law index R, the others are assumed in the simple average
form [17]. The properties B, of individual constituent material of FGMs are functions of environment temperature T in the

following form [18],
R=R(PT1+1+RT+RT2+ RT3 1)

where Ry, P4, B, B, and P; are the temperature coefficients.

The time dependent of nonlinear displacements u, v and w of thick FGM circular cylindrical shells are assumed in the

nonlinear coefficient C; term of TSDT equations [19] as follows,

U =Ug(X,0,t) + 2dh (X, 0,t) — .23 (dy +%\;V)

V=Vy(X,0,t) + 2¢y(x,0,t) — 0123(¢3 + %) @)

w=w(x,6,t)
where u, and v, are tangential displacements in the in-surface coordinates x and ¢ axes direction, respectively, w is
transverse displacement in the out of surface coordinates z axis direction of the middle-plane of circular cylindrical shells, ¢,
and ¢, are the shear rotations, R is the middle-surface radius of FGM shell, t is time. Coefficient for ¢, =4/(3h"?) is given
as in TSDT approach, in which h" is the total thickness of circular cylindrical shells. The linear time dependent of
displacements also can be obtained by letting ¢, =0 in the equations. The nonlinear coefficient ¢, term of displacement fields
of TSDT [19] is used in the thick FGM circular cylindrical shells to investigate the nonlinear value effect on the natural
frequency results. For the normal stresses (o, and oy ) and the shear stresses (o,y, oy, and o,, ) in the thick FGM circular

cylindrical shells under temperature difference AT for the k th layer are in the following equations [20-21],

Oy §11 §12 §16 &x —ayAT
o9 =|Qu Qu Qs g9g—apAT ¢,
%) (ky |Qie Qo6 Qss ® &0 = oA (3)

{0'92} :FM §451 {392}
Oxz (k) Q45 Q55 (k) &x (k)
where ¢, and ¢, are the coefficients of thermal expansion, ¢, is the coefficient of thermal shear, 5ij is the stiffness of

FGM circular cylindrical shells. ¢,, ¢,and ¢,, are in-plane strains, not negligible ¢,, and &,, are shear strains.
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The dynamic equations of motion with TSDT for a thick FGM circular cylindrical shells are given as follows [22],

where

where N” is the total number of layers, p(k) is the density of k th ply. J; = |;

There are some assumptions for the terms in the strains, e.g. the higher order terms (ow/ox)

(ow/ ox)[ow/ (RoH)] can’t be neglected. The Von Karman type of strain-displacement relations with ovy/ oz
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By substituting equations (3) and (6) into equation (4), the dynamic equilibrium differential equations with TSDT of thick

FGM circular cylindrical shells in terms of partial derivatives of displacements and shear rotations subjected to the expressions

terms ( f;, ...,
derived and expressed in matrix forms. By assuming that mid-plane strain terms (1/ 2)(ow/ ox)

and (1/2)[(1/R)(ow/ 80)]2 are in constant values, the f;, ...,

f5) in partial derivatives of thermal loads (N, ﬁ,ﬁ), mechanical loads ( p;, p,q) and inertia terms can be

P, (aw/ ox)(1/ R)(aw/ 06)

f5 can be expressed in the derivative terms as Eq. (7)-(8),
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where P, and P, are external in-plane distributed forces in x and & direction respectively. q is external pressure load. k,
is the shear correction coefficient. h™ is the total thickness of FGMs circular cylindrical shells. The computed and varied
values of k, are usually functions of total thickness of circular cylindrical shells, FGM power law index and environment
temperature [23]. The Q_)Is i and @I i for thick FGM circular cylindrical shells with z/R terms cannot be neglected are used in

the following simple forms in 2014 by Hong [23], in 2010 by Sepiani et al. [24],
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611 :622 =Egnm /(1—Vfgm2)

Q1 =Qp1 = (VignEsgm) /[A+ 2/ RYA-v g 2)]

Qus = Eign / [20+ v ign)] )
Qs = Qg6 = Efgm IT2(L+ 2 1 RYA+vgm)]

Q16 - Q26 _Q45 -

where Vfgm:(Vl+V2)/ 2 is the Poisson’s ratios of the FGM circular cylindrical shells, Etgm =(E27E1)[(Z+h*)/ h*]R” +E is the
Young’s modulus of the FGM circular cylindrical shells, R, is the power-law exponent parameter, E; and E, are the Young’s
modulus, v, and v, are the Poisson’s ratios of the FGM constituent material 1 and 2, respectively. The simpler stiffness forms of
Qs s and Q* ~ are used to calculate the stresses, As. i Biiss Disisy Ejsisy Fsisy Hiss and A.., B, Do, Enn, Furs, Haun .
R o R o L o A N Y A IV R I A
For example, by using change of variable in integration calculation, the A;, E;;, R;, Hy; and H,, of thick FGM circular

cylindrical shells are given as follows,

*
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3. Vibration Frequency

The thick FGM circular cylindrical shells with layers in the stacking sequence (0°/0°) are used to study the free
vibration frequency results with the effects of environment temperature and varied shear correction coefficient calculations,
under four sides simply supported boundary condition, no thermal loads (AT =0), no in-plane distributed forces ( P, = P, =0)
and no external pressure load (g =0) . The free vibration frequency a,, with mode shape numbers m and n for four sides
simply supported boundary condition can be derived by simply assuming that I; =13=J; =0, B; =E; =0, Ag=Ay =0
Djg =D, =0 and A5 =D,5 = F,5 =0 under the following time sinusoidal displacement and shear rotations forms with

amplitudes a,,,, by, Cpn s Ay @Nd ey, -

mn > ~mn?

Up = 8y COS(MzX / L)sin(nzé | R)sin(@pt)
Vo = by, sin(mzx / L) cos(nzé | R)sin(@y,t)
W = Cppy, SiN(MzX / L)sin(nz6 I R) sin(@pt) (11)
@y = d, cos(mzx / L)sin(nzé / R)sin(@mt)
@p =e€mn Sin(mzx / L)cos(nzé / R)Sin(@pt)
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where m is the number of axial half-waves, n is the number of circumferential waves. By substituting equations (11) into

dynamic equilibrium differential equations under free vibration (f; =f,=..=1f;=0) with the assumed reasonable

simplifications of FH;3=FH;, =FH;5=FHy3=FHy, =FHy;=0 and I;=J;=15=J,=0 in the elements of homogeneous

matrix, thus the simply homogeneous equation can be obtained as follows.

where

and

[FH11— Amn FHy, 0 0 0
FHy  FHyy— A 0 0 0 am] [0
0 0 FHa3 — Ay FHa, FHas bn | |0
0 0 FHy,  FHy -2 FH s Con =197 (12)
Iy dun| [0
0 0 FH s FH s FH55-u$ézmn e ) (0
L 0 i
2
ﬂ’mn = |0a)mn
FHy, = A (mz 1 L)? + Ag(nz [ R)?
FH,, = (A, + A)(mz / L)(n7 / R) 13)

FH,, = Az (mz/ L)* + Ay, (nz / R)?
FH,, = A (mz / L) + A, (n 1 R)? +¢,°Hyy (mz / L)* +(2¢,°H,, +4c Heg )(mz / L)? (nz [ R)?
+¢,°H,, (71 R)* =3¢, (2Ds5-3¢,Fis ) (M7 / L) — 3¢, (2D,, -3¢, F,, ) (N7 / R)?

FHa, = As (M / L) = (6, Ry -¢,*Hyy ) (M / L)® = (26, Feg -3¢, Higg ¢, Fip ¢, *Hy, )(mz / L) (nz / R)?
— (6¢,Dgs 90, Fys) (M / L)
FHas = Ay (n7/ R) = (6,F,-¢,°Hyp, (N / R)® — (2, Fe -3¢, Hg +, -, *Hyy (M / L) (nz [ R)
—(6¢,D,,-9¢,"F,)(n7 / R) (14)
FH 4 = (Dyy-26,F; ¢ Hyy ) (M 1 L)? + (Dgg-26,° Fog +6,°Hgg ) (N7 / R)® + Ayg — 66, Dy + 96, Fig
I:H45 = (D12 +D66 '2C1F12 +012H12 '2C1F66 +C12H66)(m”/ L)(nz /R)
FHy5 = (D20, s +,"Hg ) (M7 / L)? + (Dyy-26,F,, +¢,°Hy, ) (N7 / R)? + Ay, —6€,D,, +9¢,°F,,

The determinant of the coefficient matrix in equation (12) vanishes for obtaining non-trivial solution of amplitudes can be

represented in the simply five degree polynomial equation as follows, thus the «,,, can be found.

where

A A + A Amn” + AB) A + AB) Ay + AB) Ay + A6) =0 (15)

A(l)=-sd

A(2) = (FH4, + FH;,)sd +sc

A@) =-{(FH;FH,, — FH,,FH;,)sd + (FH;; + FH15)sc + sb]
A(4) = (FH;1FH,, — FH{,FH;5)sc + (FH 1 + FHy,)sb + sa
A(5) ={(FHq;FH,, — FH,,FH;,)sb + (FH4; + FH,,)sal
A(6) = (FH,FH,, — FH;,FH;,)sa

(16)
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in which
SC= FH33Sd + FH44K2 / IO
sb = (FH33FHsg + FH 3y FHsg + FHa3FH 44 — FHasFH s — FHo,FH, ) K, /1 — FH 45 FH 4 (17)
sa = FHa3FH 3, FHsg + FH 3y FHo, FH e + FHa5FH, FH 45 — FHs FHasFH,, — FHg, FHo, FH,

—FHsFH5FH33

4. Results and Discussion

Table1 f° for SUS304/SisN,

=
* C "
L/h Rn W mlmz) Present solution, h™ =1.2 mm, varied k,,

T=1K T =100K T =300K T =600K T =1000K

05 0.925925 3.178485 3.434401 3.873990 4111627 3.662770

' 0 8.567362 9.391482 10.984527 12.617598 13.538765

1 0.925925 3.318237 3.570262 4.005848 4.253132 3.862303

5 0 7.958229 8.647485 9.985663 11.39358 12.597763
2 0.925925 3.477849 3.723252 4151720 4.409905 4.098108

0 7.132526 7.690617 8.763615 9.831241 10.888006

10 0.925925 3.756482 3.984509 4,394140 4.670961 4.532945

0 6.452526 6.885567 7.695008 8.305713 8.563466

05 0.925925 2.238668 2.419486 2.730914 2.897884 2.576800

' 0 6.204801 6.788758 7.907682 9.025515 9.594029

1 0.925925 2.336488 2.514541 2.823131 2.996852 2.716518

8 0 5.856612 6.350593 7.296222 8.251528 8.981841
2 0.925925 2.448283 2.621661 2.925246 3.106589 2.881696

0 5.856612 6.350593 6.587167 7.313977 7.905719

10 0.925925 2.643672 2.804862 3.095301 3.289678 3.186499

0 5.107512 5.428395 6.021389 6.482052 6.638852

05 0.925925 1.926014 2.081703 2.349735 2.830540 2.217255

' 0 5.478031 5.986835 6.954710 7.897100 8.325227

1 0.925925 2.010152 2.163467 2.429062 2.578504 2.337450

10 0 5.224647 5.659943 6.485115 7.288469 7.833433
2 0.925925 2.106326 2.255628 2.663339 2.672919 2.479556

0 4.906995 5.272914 5.956491 6.573925 6.987514

10 0.925925 2.274471 2.413313 2.663339 2.830540 2.741827

0 4.,730258 5.024359 5.565807 5.980343 6.078461

The composited thick FGM SUS304/SisN, material is used to implement the numerical computation of vibration under
environment temperature T (free stress assumed). The FGM material 1 at inner position of circular cylindrical shells is SUS304
(stainless steel), the FGM material 2 at outer position of circular cylindrical shells is SisN, (silicon nitride) used for the free
vibration frequency computations with simply homogeneous equation. For the preliminary FGM circular cylindrical shells
study, it did not considered the effect of nonlinear coefficient term on the calculation of varied shear correction coefficient. The
varied values of k, are usually functions of h*, R, and T in the thick FGM circular cylindrical shells ( Bjj #0). For L/IR=1,
hy =h,, h"=1.2mm, calculated values of k, are increasing with R, (from 0.1 to 10). Thus values of k, are used for
frequency calculations of the free vibration (no thermal loads under no temperature difference ( AT =0) including the effects of
nonlinear coefficient C, term. Firstly, for the frequency parameter f" :4”6011Rm values under the effects of C, =
0.925925/mm’ and C,= 0O/mm’ for L/h" =5, 8 and 10 are shown in Table 1, where @, is the fundamental first natural
frequency (m = n = 1). For SUS304/SisN, thick circular cylindrical shells under free vibration with h* =1.2 mm, the ” values

under T =1K, 100K, 300K, 600K and 1000K with varied k, and C, effects are in the values not greater than 13.538765.
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The frequency parameter Q= (w312 /h"),[o/E; values under the effects of C, =0.925925/mm?and C, = 0/mm?for L/h"=
5,8 and 10 are shown in Table 2, p, is the density of FGM material 1, for SUS304/Si3N, thick circular cylindrical shells under
free vibration with h” =1.2 mm, the Q values under T =1K , 100K, 300K, 600K and 1000K with varied k, and C, effects are
in the values not greater than 32.380783.

It is easy to judge the machining abnormality by the external sensor signal in this experiment. At this time, the internal
condition data could be combined to determine the type of abnormality as chatter. The accuracy of the monitoring is improved.
There are a variety of visualization methods in this monitoring system, which could help to quickly locate abnormal positions.
In addition, it helped to grasp the information of CNC machine tool conditions at all times, which reduced the difficulty of

subsequent fault analysis and diagnosis.

Table 2 Q for SUS304/SizN,

Q
) c, — .
L/h Rn , Present solution, h™ =1.2 mm , varied k,
(1/ mm?)

T=1K T =100K T =300K T =600K T =1000K

05 0.925925 5.781036 6.101545 6.693336 7.132169 7.123131

' 0 15.582337 16.684873 18.978658 21.886919 26.329359

1 0.925925 5.782522 6.103089 6.694982 7.133930 7.124928

5 0 13.868399 14.782213 16.689058 19.110862 23.239543
2 0.925925 5.783707 6.104272 6.696166 7.135265 7.126575

0 11.861481 12.608768 14.134532 15.907033 18.934150

10 0.925925 5.784393 6.104699 6.696107 7.135397 7.128233

0 9.935876 10.549432 11.726208 12.687871 13.466383

Q
* Cl . * .
L/h Rn , Present solution, h™ =1.2 mm , varied k,
(1/ mm?)

T=1K T =100K T =300K T =600K T =1000K

05 0.925925 6.514712 6.877522 7.549395 8.042832 8.017926

' 0 18.056488 19.297414 21.860160 25.049551 29.852609

1 0.925925 6.514685 6.877464 7.549288 8.042762 8.018013

8 0 16.329633 17.369365 19.510704 22.144931 26.510597
2 0.925925 6.514442 6.877144 7.548845 8.042382 8.017992

0 16.329633 17.369365 16.998745 18.934526 21.996770

10 0.925925 6.513346 6.875763 7.546949 8.040542 8.017431

0 12.583626 13.307022 14.681323 15.843253 16.703767

05 0.925925 7.006078 7.396695 8.119573 8.647910 8.623964

' 0 19.926910 21.272380 24.032178 27.397165 32.380783

1 0.925925 7.005980 7.396562 8.119391 8.650032 8.623955

10 0 18.209449 19.350477 21.677169 24.450416 28.901228
2 0.925925 7.005695 7.396207 8.117177 8.649613 8.623854

0 16.320789 17.289890 19.214038 21.273336 24.302459

10 0.925925 7.004657 7.394913 8.117177 8.647910 8.623262

0 14.567711 15.395722 16.963157 18.271238 19.117235

It is interesting to compare the present vibration values of frequency with some authors' work as shown in the Tables
(3)-(4). The values of f* vs. h” for SUS304/SisN, under L/h"=10and T =300K with varied k, and C, effects are shown in
Table 3. The compared value f*=8.426538 at h' = 2mm, R,= 0.5 is greater than " = 8.0 at n= 13 with silicon nitride-nickel
under classical shell theory (CST), no external pressure ( K, =0) by Sepiani et al. in 2010 [24]. The values of Q vs. h" for
SUS304/SisN, under L/h"=10 and T=700K with varied k, and C, effects are shown in Table 4. The compared value Q=
2.459972 at C, = 0.925925/mm?, h*=1.2mm, R, = 0.5 is greater than Q= 1.71137 with the material variation type A, three
layers thickness ratio 1-8-1, the L directional radius of curvature is oo, L/h"=10, R,= 0.5 for the FGM sandwich shell

presented by Chen et al. in 2017 [25].
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Table 3 Comparison of frequency f* for SUS304/Si3N, and silicon nitride-nickel

e
* _ Sepiani et al. 2010,
C (1/mm?) h* (mm) Present .method . L/h=10, T __300K ' for silicon nitride-nickel,
varied K, , for SUS304 / SizN,4 n=13
R,= 0.5 R,=1 R,= 2 -
0.925925 1.2 2.349735 2.429062 2.516924 -
0.333333 2 8.426538 8.711254 9.026930 8.0
0.000033 200 842669.2 871142.9 902712.1
0.000014 300 253980.0 262560.1 272073.1
0.000003 600 18903.19 19542.01 20250.14
0.000001 900 43930.59 45414.97 47060.53
Table 4 Comparison of frequency Q for SUS304/SisN,
Q
. Present method, L/h" =10, Chen et al. 2017, type A,
G (Umm2) | h (mm) T — 700K , varied k,, 1-8-1, R,= 05
R,= 0.5 Ry=1 R,= 2
0.925925 1.2 2.459972 2.550420 2.651571 1.71137
0.333333 2 8.821661 9.146189 9.509387
0.000033 200 882174.8 914629.0 950949.6
0.000014 300 267903.0 277757.0 288785.0
0.000003 600 19897.76 20629.82 21448.99
0.000001 900 46307.33 48010.84 49917.17
Table 5 Fundamental natural frequency @y, for h"=1.2 mm
*| R 1/ mm? a1
L | R al ) T T T=100K | T=300K | T=600K | T =1000K
05 0.925925 0.001620 0.001730 0.001906 0.001947 0.001614
) 0 0.004366 0.004731 0.005406 0.005975 0.005968
1 0.925925 0.001620 0.001730 0.001907 0.001947 0.001615
5 0 0.003886 0.004191 0.004753 0.005217 0.005267
2 0.925925 0.001620 0.001730 0.001907 0.001948 0.001615
0 0.003324 0.003575 0.004026 0.004343 0.004291
10 0.925925 0.001620 0.001731 0.001907 0.001948 0.001615
0 0.002784 0.002991 0.003340 0.003464 0.003052
05 0.925925 0.000713 0.000761 0.000840 0.000857 0.000709
) 0 0.001976 0.002137 0.002432 0.002671 0.002643
1 0.925925 0.000713 0.000761 0.000840 0.000857 0.000709
8 0 0.001787 0.001924 0.002170 0.002361 0.002347
2 0.925925 0.000713 0.000761 0.000839 0.000857 0.000709
0 0.001787 0.001924 0.001891 0.002019 0.001947
10 0.925925 0.000712 0.000761 0.000839 0.000857 0.000709
0 0.001377 0.001474 0.001633 0.001689 0.001479
05 0.925925 0.000490 0.000524 0.000578 0.000590 0.000488
' 0 0.001396 0.001508 0.001711 0.001870 0.001835
1 0.925925 0.000490 0.000524 0.000578 0.000590 0.000488
10 0 0.001275 0.001371 0.001543 0.001668 0.001637
2 0.925925 0.000490 0.000524 0.000578 0.000590 0.000488
0 0.001143 0.001225 0.001368 0.001452 0.001377
10 0.925925 0.000490 0.000524 0.000578 0.000590 0.000488
0 0.001020 0.001091 0.001208 0.001247 0.001083
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Secondly, the natural frequency a,, values (unit 1/s) of free vibration (AT =0) according to mode shape numbers m and

n for the SUS304/SisN, FGM thick circular cylindrical shells are calculated. For the values of fundamental first (m=n=1)

natural frequency @, vs. R,with h"=1.2mm, varied k, and the effects of C,=0.925925/mm’and C,=0/mm’for L/h"=5,

8 and 10 are under T =1K , 100K, 300K, 600K and 1000K are shown in Table 5. For the values of natural frequency @, Vs.

m,n=1,2,....9 with R,=0.5, T =300K, h" =1.2mm under varied k, and the effects of C,=0.925925/mm?and C, = 0/mm? for

L/h"=5and 10 are shown in Table 6.
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Table 6 Natural frequency @, vs. m and n under variedk,, ¢;, R,= 0.5 and T =300K
G L/ 20
(1/ mm?) n=1 n=2 n=3 n=4 n=>5 n==6 n=7 n=8 n=9
0.925925 5 0.001906 | 0.001347 | 0.001098 | 0.000949 | 0.000847 | 0.000772 | 0.000713 | 0.000666 | 0.000627
10 0.000578 | 0.000409 | 0.000334 | 0.000289 | 0.000258 | 0.000236 | 0.000218 | 0.000204 | 0.000193
0 5 0.005406 | 0.005285 | 0.005244 | 0.005209 | 0.005170 | 0.005126 | 0.005077 | 0.005022 | 0.004963
10 0.001711 | 0.001621 | 0.001602 | 0.001595 | 0.001592 | 0.001590 | 0.001588 | 0.001587 | 0.001586
G (2
(1/ mm?) L7h n=1 n=2 n=3 n=4 n=5 n==6 n=7 n=38 n=9
0.925925 5 0.001347 | 0.000953 | 0.000778 | 0.000673 | 0.000602 | 0.000549 | 0.000508 | 0.000474 | 0.000447
10 0.000409 | 0.000289 | 0.000236 | 0.000204 | 0.000183 | 0.000167 | 0.000154 | 0.000144 | 0.000136
0 5 0.002712 | 0.002647 | 0.002633 | 0.002626 | 0.002620 | 0.002613 | 0.002606 | 0.002606 | 0.002590
10 0.000861 | 0.000811 | 0.000801 | 0.000797 | 0.000796 | 0.000795 | 0.000794 | 0.000794 | 0.000794
“ L/h" o
(1/ mm?) n=1 n=2 n=3 n=4 n=5 n=6 n=7 n=38 n=9
0.925925 5 0.001098 | 0.000778 | 0.000635 | 0.000550 | 0.000492 | 0.000449 | 0.000415 | 0.000388 | 0.000366
10 0.000334 | 0.000236 | 0.000192 | 0.000167 | 0.000149 | 0.000136 | 0.000126 | 0.000118 | 0.000111
0 5 0.001817 | 0.001766 | 0.001757 | 0.001753 | 0.001751 | 0.001748 | 0.001746 | 0.001744 | 0.001741
10 0.000578 | 0.000541 | 0.000534 | 0.000532 | 0.000531 | 0.000530 | 0.000530 | 0.000529 | 0.000529
C * Wy
(1/ mm?) L7h n=1 n=2 n=3 n=4 n=>5 n=6 n=7 n=38 n=9
0.925925 5 0.000949 | 0.000673 | 0.000550 | 0.000476 | 0.000426 | 0.000389 | 0.000360 | 0.000337 | 0.000317
10 0.000289 | 0.000204 | 0.000167 | 0.000144 | 0.000129 | 0.000118 | 0.000109 | 0.000102 | 0.000096
0 5 0.001373 | 0.001326 | 0.001318 | 0.001316 | 0.001314 | 0.001313 | 0.001312 | 0.001311 | 0.001309
10 0.000438 | 0.000407 | 0.000401 | 0.000399 | 0.000398 | 0.000397 | 0.000397 | 0.000397 | 0.000397
“ L/h “n
(1/ mm?) n=1 n=2 n=3 n=4 n=5 n=6 n=7 n=38 n=9
0.925925 5 0.000847 | 0.000602 | 0.000492 | 0.000426 | 0.000381 | 0.000348 | 0.000322 | 0.000301 | 0.000284
10 0.000258 | 0.000183 | 0.000149 | 0.000129 | 0.000115 | 0.000105 | 0.000098 | 0.000091 | 0.000087
0 5 0.001111 | 0.001062 | 0.001055 | 0.001053 | 0.001052 | 0.001051 | 0.001050 | 0.001050 | 0.001049
10 0.000355 | 0.000326 | 0.000321 | 0.000319 | 0.000318 | 0.000318 | 0.000318 | 0.000317 | 0.000317
(/ ;lmz) L/b" o
n=1 n=2 n=3 n=4 n=5 n==6 n=7 n==8 n=9
0.925925 5 0.000772 | 0.000549 | 0.000449 | 0.000389 | 0.000348 | 0.000317 | 0.000294 | 0.000275 | 0.000259
10 0.000215 | 0.000167 | 0.000136 | 0.000118 | 0.000105 | 0.000096 | 0.000089 | 0.000083 | 0.000079
0 5 0.000941 | 0.000886 | 0.000880 | 0.000878 | 0.000877 | 0.000876 | 0.000876 | 0.000875 | 0.000875
10 0.000300 | 0.000272 | 0.000267 | 0.000266 | 0.000265 | 0.000265 | 0.000265 | 0.000265 | 0.000265
G , L/ h* Wy
1/ mm?) n=1 n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9
0.925925 5 0.000713 | 0.000508 | 0.000415 | 0.000360 | 0.000322 | 0.000294 | 0.000272 | 0.000254 | 0.000240
10 0.000218 | 0.000154 | 0.000126 | 0.000109 | 0.000098 | 0.000089 | 0.000082 | 0.000846 | 0.000073
0 5 0.000826 | 0.000761 | 0.000754 | 0.000752 | 0.000751 | 0.000751 | 0.000751 | 0.000750 | 0.000750
10 0.000263 | 0.000234 | 0.000229 | 0.000228 | 0.000227 | 0.000227 | 0.000227 | 0.000227 | 0.000227
( ;lmz) L/b" i
n=1 n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9
0.925925 5 0.000666 | 0.000474 | 0.000388 | 0.000337 | 0.000301 | 0.000275 | 0.000254 | 0.000238 | 0.000224
10 0.000204 | 0.000144 | 0.000118 | 0.000102 | 0.000091 | 0.000083 | 0.000078 | 0.000072 | 0.000069
0 5 0.000744 | 0.000668 | 0.000661 | 0.000658 | 0.000658 | 0.000657 | 0.000657 | 0.000657 | 0.000656
10 0.000236 | 0.000205 | 0.000201 | 0.000199 | 0.000199 | 0.000199 | 0.000198 | 0.000198 | 0.000198
(/ ncwlmz) L/b° o
n=1 n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9
0.925925 5 0.000627 | 0.000447 | 0.000366 | 0.000317 | 0.000284 | 0.000259 | 0.000240 | 0.000224 | 0.000212
10 0.000193 | 0.000136 | 0.000111 | 0.000096 | 0.000087 | 0.000079 | 0.000073 | 0.000069 | 0.000064
0 5 0.000684 | 0.000596 | 0.000588 | 0.000586 | 0.000585 | 0.000584 | 0.000584 | 0.000584 | 0.000584
10 0.000215 | 0.000183 | 0.000179 | 0.000177 | 0.000177 | 0.000176 | 0.000176 | 0.000176 | 0.000176




Advances in Technology Innovation, vol. 5, no. 2, 2020, pp. 84-97 95
(th, e,
00025 00007
0.0006 |
00020 |
00005 |
00015 - 00004 |
0.0010 | 0.0003
0.0002 |
0.0005 |
00001 |
DDDDD 1 1 1 1 1 1 1 1 1 IFII DDDDD i Il 1 i i 1 1 i 1 Ii|':
o1 2 3 4 5 6 T & 9 10 o 1 2 3 4 5 6 T & 9 10
- * - *
Fig. 2 @, vs. R, for L/h =5 Fig. 3 @, vs. R, for L/h =10
hs @lu ﬂ)]_:!
0.0025 T —300 K 00007 - —»— T=300K
00006 |
00020 L —&— T=1000K
m T =600K 00005 |
0.0015 00004 |
0.0010 | 00003
0.0002 |
00005 |
0.0001 |
00000 1 1 L L L L L 1 1 TR 00000 I I I I I I I I I 1
o 1 2 3 4 5 6 T &8 9 10 o 1 2 3 4 5 6 T & 9 10
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Finally, the natural frequency w,,, values (unit 1/s) vs. R,and T of free vibration (AT =0) according to mode shape
numbers m=1 and n (from 1 to 9) for the SUS304/SizN, FGM thick circular cylindrical shells are calculated. Figs. (2)-(3) show
the values of @y, vs. R,in FGM circular cylindrical shells for thick L/h” =5, 10 respectively, with the effects of varied k,,
andC, = 0.925925/mm? under T =300K . Generally the values of «, are decreasing with values of n (from 1 to 9) for L/h"=
5, R,= 0.5, 1 and 10. The greatest value of ;= 0.00191 (unit 1/s) is found for L/h"= 5. The values of @y, are also
decreasing with values of n (from 1 to 9) for L/h"= 10, R,= 0.5, 1 and 10. Figs. 4-5 show the values of @, vs. T in FGM
circular cylindrical shells for thick L/h"=5, 10 respectively, under the effects of varied k,, , C= 0.925925/mm? and R,=0.5.
Generally the values of @, are decreasing with values of n (from 1to0 9) for L/h"=5, T =300K , 600K and 1000K, the values
of a, are almost in the same for T =300K and 600K, but in greater values than that in the T =1000K . The greatest value of
@ = 0.00191 (unit 1/s) is found for L/h"=5, T =600K . The values of «, can stand for higher temperature T =1000K at
L/h"=5. The values of «,are decreasing with values of n (from 1 to 9) for L/h"= 10, T =300K , 600K and 1000K , the
values of @y, are almost in the same for T =300K and 600K, but in greater values than that in the T =1000K . The greatest
value of ;= 0.00059 (unit 1/s) is found forL/h" = 10, T =600K . The values of @, can stand for higher temperature
T =1000K at L/h"=10. The values of @y, at L/h"=5 are also found in the greater values than thatat L/h"= 10.

5. Conclusions

The values of natural frequency and frequency parameters are calculated and obtained by using the simply homogeneous

equation with the polynomial equation in fifth-order of A, in the free vibration of thick FGM circular cylindrical shells. The



96 Advances in Technology Innovation, vol. 5, no. 2, 2020, pp. 84-97

three items of value effects are considered in nonlinear coefficient term C,, shear correction coefficient and environment
temperature. Some of the important results are found as follows. (a) Data investigated in the three kinds of frequency
parameters under free vibration with and without the effects of C, . (b) Generally the values of @y, are decreasing with values
of n (from 1 to 9) for L/h"=5and 10, R,= 0.5, 1 and 10. (c) The values of «, can stand for higher environment temperature
T =1000K at L/ h"= 10. (d) The values of @y, Vvs.environment temperature T at L/h"=5 are found in the greater values than

thatat L/h"=10.
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