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Abstract 

A numerical computer model based on the dual reciprocity boundary element method (DRBEM) is 

extended to study magneto-thermoelastic coupled wave propagation problems with relaxation times involving 

anisotropic functionally graded solids. The model formulation is tested through its application to the problem of a 

solid placed in a constant primary magnetic field acting in the direction of the z-axis and rotating about this axis 

with a constant angular velocity. In the case of two-dimensional deformation, an implicit-explicit time domain 

DRBEM was presented and implemented to obtain the solution for the displacement and temperature fields. A 

comparison of the results is presented graphically in the context of Lord and Shulman (LS) and Green and 

Lindsay (GL) theories. Numerical results that demonstrate the validity of the proposed method are also presented 

graphically. 
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1. Introduction 

The dynamical interaction between the thermal and mechanical fields in anisotropic materials has great practical 

applications in modern aeronautics, astronautics, earthquake engineering, soil dynamics, mining engineering, nuclear 

reactors and high-energy particle accelerators, for instance. Lord and Shulman [1] developed the theory of generalized 

thermoelasticity with one relaxation time by constructing a new law of heat conduction to replace the classical Fourier's law. 

This law contains the heat flux vector as well as its time derivative. It contains also new constant that acts as relaxation time. 

Since the heat equation of this theory is the wave-type, it automatically ensures finite speeds of propagation for heat and 

elastic waves. Green and Lindsay [2] included a temperature rate among the constitutive variables to develop a temperature–

rate-dependent thermoelasticity that does not violate the classical Fourier's law of heat conduction when the body under 

consideration has a center of symmetry; this theory also predicts a finite speed of heat propagation and is known as the 

theory of thermoelasticity with two relaxation times. According to these theories, heat propagation should be viewed as a 

wave phenomenon rather than diffusion one. Relevant theoretical developments on the subject were made by Green and 

Naghdi [3, 4], they developed three models for generalized thermoelasticity of homogeneous isotropic materials which are 

labeled as model I, II and III. These theories of thermoelasticity Lord and Shulman (LS), Green and Lindsay (GL) and Green 

and Naghdi (GN) theories are known as the generalized theories of thermoelasticity with finite thermal wave speed. It is hard 

to find the analytical solution of magneto-thermoelasticity problem in a general case, therefore, an important number of 
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engineering and mathematical papers devoted to the numerical solution have studied the overall behavior of such materials 

(Das and Kanoria [5]; Huacasi et al. [6]; Paulino and Kim [7]; Abd-Alla et al. [8-10]; Fahmy [11-16]; Fahmy and El-Shahat 

[17]; Han and Hong [18]; Xiong and Tian [19]). 

The first step of the boundary element method (BEM) is the transformation of the physical problem at hand to an 

integral equation. The latter is defined frequently solely on the boundary, in which case the dimensionality of the problem is 

reduced by one. The presence of domain integrals in the BEM formulation implies domain discretization and this makes the 

BEM inefficient when compared with domain discretization techniques such as finite element method (FEM) or finite 

difference method (FDM). Thus, many efforts have been made to convert the domain integral into a boundary one (Marin et 

al. [20]; Wen and Khonsari [21]; Javaran et al. [22]). One of the most widely used techniques to accomplish this task is the 

dual reciprocity boundary element method (DRBEM) developed by Nardini and Brebbia [23] in the context of two-

dimensional (2D) elastodynamics and has been extended to deal with a variety of problems wherein the domain integral may 

account for linear-nonlinear static-dynamic effects (Brebbia et al. [24]; Wrobel and Brebbia [25]; Partridge and Brebbia [26]; 

Partridge and Wrobel [27]; Partridge et al. [28]; El-Naggar et al. [29, 30]; Gaul et al.[31]; Fahmy [32-34]). 

The main purpose of this work is to study the generalized magneto-thermoelastic coupled wave propagation problems 

with relaxation times in anisotropic functionally graded solid placed in a constant primary magnetic fieldacting in the 

direction of the z-axis and rotating about this axis with a constant angular velocity. An implicit-explicit time integration 

procedurewas developed and implemented for use with the dual reciprocity boundary element method (DRBEM) to obtain 

the solution for the governing equations of the considered problem. A comparison of the results is presented graphically in 

the context of LS and GL theories. Numerical results that demonstrate the validity of the proposed method are also presented 

graphically. 

2. Formulation of the Problem 

Consider a Cartesian coordinates system      as shown in Fig. 1, we shall consider a functionally graded anisotropic 

solid placed in a primary magnetic field    acting in the direction of the  -axis and rotating about it with a constant angular 

velocity. The solid occupies the region                              , the material properties are 

assumed to be graded through the   direction. Here we address the generalized two-dimensional deformation problem in   -

plane only.We also consider the following variant form of the power law material model       , where   is a 

dimensionless constant. 

 

Fig. 1 The coordinate system of the solid 

According to the Lord and Shulman (    ,     ,    ) and Green and Lindsay (       ,    ) theories, 

the governing equations for the generalized magneto-thermoelastic coupled wave propagation problems of anisotropic 

functionally graded solidsin the absence of heat sources can be written in the following form: 

http://www.worldscientific.com/action/doSearch?action=runSearch&type=advanced&result=true&prevSearch=%2Bauthorsfield%3A(XIONG%2C+QI%5C-LIN)
http://www.worldscientific.com/action/doSearch?action=runSearch&type=advanced&result=true&prevSearch=%2Bauthorsfield%3A(TIAN%2C+XIAO%5C-GENG)
http://www.springerlink.com/content/?Author=S.+Hamzeh+Javaran
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3. Numerical Implementation 

Making use of (2) and (3), we can write (1) as follows: 
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(6) 

The field equations can now be written in operator form as follows, 

              (7) 

         (8) 

where the operators     and     are defined in equation (5), and the operators     and     are defined as follows: 

       
 

   

 

   
 (9) 

                                
           (10) 

Using the weighted residual method (WRM), the differential equation (7) is transformed into an integral equation 

               
 

 

     (11) 

Now, we choose the fundamental solution    
  as weighting function as follows, 

      
             (12) 

The corresponding traction field can be written as 

   
            

    (13) 

The thermoelastic traction vector can be written as follows, 

                                      (14) 
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Applying integration by parts to (11) using the sifting property of the Dirac distribution, with (12) and (14), we can 

write the following elastic integral representation formula 

           
       

       
        

 

          
   

 

 (15) 

The fundamental solution   of the thermal operator    , defined by 

    
          (16) 

By implementing the WRM and integration by parts, the differential equation (8) is transformed into the thermal 

reciprocity equation 

       
      

                  

  

 (17) 

where the heat fluxes are independent of the elastic field and can be expressed as follows: 

            (18) 

          
    (19) 

By the use of sifting property, we obtain from (17) the thermal integral representation formula 

                 

 

      
   

 

 (20) 

The integral representation formulae of elastic and thermal fields (15) and (20) can be combined to form a single 

equation as follows, 

 
     
    

      
   
     

      
    

  
  
 
   

   
  

    
  
  
        

   
  

    
  
   
    

   

  

 (21) 

It is convenient to use the contracted notation to introduce generalized thermoelastic vectors and tensors, which 

contain corresponding elastic and thermal variables as follows: 
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The thermoelastic representation formula (21) can be written in contracted notation as: 

            
                      

      

  

 (27) 

The vector    can be written in the split form as follows: 

       
     

     
     

      
      

      
   (28) 

where 
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  (35) 

The thermoelastic representation formula (21) can also be written in matrix form as follows: 

       
     
 

   
    
 

   
              

 
   

 
           

   
 

             
     

 
           

   
    

             
  

 (36) 

Our task now is to implement the DRBEM. To transform the domain integral in (27) to the boundary, we approximate 

the source vector     in the domain as usual by a series of given tensor functions     
 

 and unknown coefficients   
 

 

         
 
  
 

 

   

 (37) 

According to the DRBEM, the surface of the solid has to be discretized into boundary elements. In order to make the 

implementation easy to compute, we use    collocation points on the boundary   and another    in the interior of   so that 

the total number of interpolation points is         . 

Thus, the thermoelastic representation formula (27) can be written in the following form, 
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By applying the WRM to the following inhomogeneous elastic and thermal equations: 

      
 
    

 
 (39) 

    
     

 
 (40) 

The elastic and thermal representation formulae are as follows (Fahmy [35]), 
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(42) 

The dual representation formulae of elastic and thermal fields can be combined to form a single equation as follows, 
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With the substitution of (43) into (38), the dual reciprocity representation formula of coupled thermoelasticity can be 

expressed as follows, 
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To calculate interior stresses, (44) is differentiated with respect to    as follows, 

      

   
          

            
       

 

 

      
    

    

   
         

     
 
       

     
 
   

 

 

 

   

  
 

 

(45) 

According to the steps described in Fahmy [36], the dual reciprocity boundary integral equation (44) can be written in 

the following system of equations: 

                    (46) 

The technique was proposed by Partridge et al. [27] can be extended to treat the convective terms, then the generalized 

displacements    and velocities     are approximated by a series of tensor functions    
 

 and unknown coefficients   
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The gradients of the generalized displacement and velocity can be approximated as follows, 

           
 
     

 

 

   

 (49) 

            
 
      

 

 

   

 (50) 

These approximations are substituted into equations (30) and (34) to approximate the corresponding source terms as 

follows, 
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where 

 
   

             
 

 (53) 

 
   

              
 

 (54) 

The same point collocation procedure described in Gaul, et al. [31] can be applied to (37), (47) and (48). This leads to 

the following system of equations, 

                                         (55) 

Similarly, the application of the point collocation procedure to the source terms equations (31), (32), (33), (35), (51) 

and (52) leads to the following system of equations: 

                    with                                  
                                                          

  (56) 

                     (57) 

                       (58) 

          (59) 

        (60) 

             
     (61) 

Solving the system (55) for   ,   and    yields 

                                               (62) 
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Now, the coefficients   can be expressed in terms of nodal values of the unknown displacements  , velocities     and 

accelerations     as follows: 

                                         
             

                                 (63) 

where     and    are assembled using the submatrices     and       respectively. 

Substituting from Eq. (63) into Eq. (46), we obtain (Fahmy [37]) 

             (64) 

in which       and  are independent of time and are defined by 

                                                 

(65)                          
    

  
   

                                          

where  ,    and represent the volume, mass, damping and stiffness matrices, respectively;          and   represent the 

acceleration, velocity, displacement and external force vectors, respectively. The initial value problem consists of finding the 

function        satisfying equation (64) and the initial conditions                  where       are given vectors 

of initial data. Then, from Eq. (78), we can compute the initial acceleration vector    as follows (Prevost and Tao [38]) 

               (66) 

An implicit-explicit time integration algorithm of Hughes and Liu [39, 40] was presented and implemented for use 

with the DRBEM. This algorithm consists of satisfying the following equations 
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                      (69) 

where 

                       
   

 
     

(70) 

                      (71) 

in which the implicit and explicit parts are respectively denoted by the superscripts  and  . Also, we used the quantities 

      and       to denote the predictor values, and      and       to denote the corrector values. It is easy to recognize that 

the equations (68)-(71) correspond to the Newmark formulas (Newmark [41]). 

At each time-step, equations (67)-(71), constitute an algebraic problem in terms of the unknown      . The first step in 

the code starts by forming and factoring the effective mass 

                  (72) 
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The time step    must be constant to run this step. As the time-step    is changed, the first step should be repeated at 

each new step. The second step is to form residual force 

    
        

         
         

        
       (73) 

Note that in the implicit part,    is always non-symmetric. However,    still possesses the usual "band-profile" 

structure associated with the connectivity of the DRBEM mesh, and has a symmetric profile. So the third step is to solve 

            
  using a Crout elimination algorithm (Taylor [42]) which fully exploits that structure in that zeroes outside 

the profile are neither stored nor operated upon. The fourth step is to use predictor-corrector equations (68) and (69) to 

obtain the corrector displacement and velocity vectors, respectively. 

4. Numerical Results and Discussion 

Following Rasolofosaon and Zinszner [43] monoclinic North Sea sandstone reservoir rock was chosen as an 

anisotropic material and physical data are as follows: 

Elasticity tensor 
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Mechanical temperature coefficient 

     
          
          
      

      N/K   (75) 

Tensor of thermal conductivity is 

     
       
          
          

        (76) 

Mass density ρ= 2216 kg/m
3 and heat capacity       J/(kg K),            Oersted,       Gauss/Oersted, 

   ,              . The numerical values of the temperature and displacement are obtained by discretizing the 

boundary into 120 elements          and choosing 60 well spaced out collocation points         in the interior of the 

solution domain, refer to the recent work of Fahmy [44-46]. 

The initial and boundary conditions considered in the calculations are 
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Figures 2 and 3 show the variation of the temperature   with time  . We can conclude from these figures that the 

maximum temperature   occurs at     in the LS theory, but it occurs at      in the GL theory. It is seen also from these 

figures that the oscillation period in the GL is less than the oscillation period in LS theory. 

  

Fig. 2 Variation of thermal stress     with time   (LS) Fig. 3 Variation of the thermal stress     with time   (GL) 

Figures 4 and 5 show the variation of the displacement    with time  . It may be seen from these figures that the 

displacement    appears to have an intense oscillation. The oscillation period of LS theory is less than the oscillation period 

of GL theory. It can be seen that the maximum displacement    occurs at      for the LS theory, but it occurs at       

for the GL theory. The minimum magnitude of displacement    occurs at homogeneous case. 

  

Fig. 4 Variation of the thermal stress     with time   (LS) Fig. 5 Variation of the thermal stress     with time   (GL) 

  

Fig. 6 Variation of the thermal stress     with time   (LS) Fig. 7 Variation of the thermal stress     with time   (GL) 
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Figures 6 and 7 illustrate the variation of the displacement    with time  . It may be seen from these figures that the 

displacement    appears to have an intense oscillation. The oscillation period of LS theory is less than the oscillation period 

of GL theory. It can be seen from these figures that the maximum displacement    occurs at        for the LS theory. But 

it occurs at         for the GL theory. 

Figures 2-7 show the difference between the LS and GL theories for the thermal stresses    ,     and     at          . 

We can see also from these figures that the thermal sresses appear in an intense oscillation. 

Figures 2 and 3 illustrate the variation of the thermal stress     with time  . It can be seen that the maximum thermal 

stress     occurs at        for the LS theory. But it occurs at       for the GL theory. 

Figures 4 and 5 show the variation of the thermal stress     with time  . It can be seen that the maximum thermal 

stress     occurs at      for the LS theory. But it occurs at       for the GL theory.  

Figures 6 and 7 illustrate the variation of the thermal stress     with time  . It can be seen that the maximum thermal 

stress     occurs at      for the GL theory. But it occurs at       for the LS theory.  

It can be noted from these figures that the maximum thermal stress occurs in GL theory. It is seen also from these 

figures that the oscillation period of LS theory is less than the oscillation period of GL theory for the thermal stresses     and 

   . But the oscillation period of GL theory is less than the oscillation period of LS theory for the thermal stress    . 

The present work should be applicable to any dynamic coupled magneto-thermoelastic deformation problem. The 

proposed technique in the present study was discussed in the context of the viscoelastic problems in Fahmy [47, 48] and 

discussed in the context of the generalized theories of thermoelasticity in Fahmy et al. [49-52]. The example considered by 

Mojdehi et al. [53], may be also considered as a special case of the current general study. Also, there are a lot of practical 

applications may be deduced as special cases from this general study and may be implemented in commercial finite element 

method (FEM) software packages FlexPDE 6. 

In the special case under consideration, the results are plotted in figures 8-10 to show the validity of the DRBEM. 

These results obtained with the DRBEM have been compared graphically with those obtained using the Meshless Local 

Petrov-Galerkin (MLPG) method of Mojdehi et al. [53] and also the results obtained from the FlexPDE 6 are shown 

graphically in the same figures to confirm the validity of the proposed method. It can be seen from these figures that the 

DRBEM resultsare in excellent agreement with the results obtained by MLPG and FEM, thus confirming the accuracy of the 

DRBEM. 

 

Fig. 8 Variation of the temperature T with time   for three methods: DRBEM, MLPG and FEM 
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Fig. 9 Variation of the displacement u1 with time   for  

three methods: DRBEM, MLPG and FEM 

Fig. 10 Variation of the displacement u2 with time   for  

three methods: DRBEM, MLPG and FEM 

 

Nomenclature 

   components of displacement   time 

  temperature    perturbed magnetic field 

  specific heat capacity   magnetic intensity vector 

  magnetic permeability   density 

    mechanical stress tensor       constant elastic moduli 

    Maxwell's electromagnetic stress tensor     stress-temperature coefficients 

    heat conductivity coefficients   uniform angular velocity 

         , tractions    reference temperature 

      relaxation times   
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