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Abstract 

This work illustrates a complete design flow of an electronic system developed to support applications in which 

there are the need to measure motion parameters and transmit them to a remote unit for real-time teleprocessing. In 

order to be useful in many operative contexts, the system is flexible, compact, and lightweight. It integrates a tri-axial 

inertial sensor, a GPS module, a wireless transceiver and can drive a pocket camera. Data acquisition and 

packetization are handled in order to increase data throughput on Radio Bridge and to minimize power consumption. 

A trajectory reconstruction algorithm, implementing the Kalman-filter technique, allows obtaining real-time body 

tracking using only inertial sensors. Thanks to a graphical user interface it is possible to remotely control the system 

operations and to display the motion data. 
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1. Introduction 

Nowadays, in many research fields such as body motion recognition (BMR), fall detection (FD), aerial photogrammetry 

(AP), inertial navigation (IN), etc, there is the necessity to acquire and wireless transmit all body motion parameters (axial 

accelerations, angular rates, global position, speed, etc.) to a remote host system for tracking and control purposes. With regard 

to BMR [1], [2] and FD [3], there are several areas of interest (e.g.: 3D virtual reality, biomedical applications, robotics) in 

which it is extremely important to detect human body movements, in order to measure, recognize or reproduce them using a 

robot. AP [4] and IN [5], [6] fields are older than BMR and FD, but a number of different and innovative applications can still 

be found, such as pedestrian navigation in harsh environments [7], agriculture automated vehicles [8], [9], or animal motion 

analysis [10]. Although several kinds of similar systems can be found in the market [11], [12], they are usually highly 

specialized for a particular application and not very flexible. Some systems use high performance and high cost devices, others 

are not wireless-based or are too heavy. The main purpose of this work was to describe the whole top-down design flow of a 

low-cost, complete and flexible system which can be customized for several applications. This system should be powerful, 

compact and lightweight. 
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2. System Design Strategy 

To reach these features, it is necessary to carefully design the system architecture and to select the components in order to 

save space and to decrease system weight as much as possible. In the market, there are many kinds of high performance inertial 

measurement units (IMU), such as the HoneyWell HG900, but they do not fulfil our requirements of small size, low weight and 

low cost. In our prototype, we chose the ADIS16350 module, a MEMS IMU that integrates a tri-axial accelerometer and a 

tri-axial gyroscope. This IMU is a strapdown type system which is intrinsically compact, highly integrated and low-cost, even if 

of limited accuracy. Table 1 shows the ADIS16350 characteristics w.r.t. HG900 ones. We chose to battery-operate the system 

using two rechargeable NiMh AAA cells. Two high-efficiency switching step-up voltage regulators convert the 2-2.4V input 

voltage range in the required output voltage levels: 5V and 3.3V. In order to efficiently handle and transmit motion data, it is 

important to exploit the available wireless transmission band organizing data in packets [13]. In addition to hardware system 

side, a graphical user interface (GUI) has been developed for the remote PC-based receiver in order to control system operations, 

set inertial sensor parameters (offset, calibration, alignment, etc), display motion variables progress, track trajectories, drive the 

camera, etc. A Kalman-based trajectory reconstruction algorithm is implemented in the remote PC software for supporting 

applications such as inertial navigation or motion parameters detection. 

Table 1 Comparison between HG900 and ADIS16350 IMUs 

IMU Name HG900 Honey Well ADIS16350 Analog Devices 

Typology Laser MEMS 

Gyros Bias (1) [°/hr] <0.003 54 

Gyros Random Walk [°/√hr] <0.002 4.2 

Accelers Bias (1) [mg] <0.025 0.7 

Accelers Random Walk [m/s/√hr] 0.0143 2.0 

Acc_Bias Pos. Error (1hr) [km] ~ 1.59 ~44.5 

Size [mm] 139.7x162.6x135.6 23.2x22.7x23.3 

Weight [kg] <3.0 <0.016 

Power Consumption [W] <10.0 <0.285 

Price [k$] ~100 ~0.6 

3. System Architecture 

 The system printed circuit board hosts two subsystems: System Control Block (SCB) and Power Management Block 

(PMB). SCB manages all control operations, acquiring data from inertial sensor and GPS module, sending data packets to the 

host pc and receiving command packets from it; PMB provides the two supply voltage levels to SCB. Fig. 1 shows system 

architecture together with power and communication connections. Fig. 2 is a picture of the system prototype.  

 

Fig. 1 Complete system block diagram 
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3.1. Power Management Block 

The Power management block is constituted by two step-up converters (Maxim MAX756) which allow to provide both 

and 3.3V voltage guaranteeing up to 400mA load current and an efficiency of about 85% (input voltage over 2.2V). As said 

before, the two rechargeable NiMh battery packs have a nominal voltage of 2.4V and a nominal capacity of about 2650mAh. 

Considering a nominal input energy of about 6.36Wh against a max required load power of about 625mW (worst case), our 

system has an autonomy of about 9 hours (experimentally verified). 

3.2. System Control Block 

The system control block is the control core of whole system. The modules on the board are: two 8 bit microcontrollers 

(Atmel ATMEGA8) (defined as Master and Slave), an inertial sensor (AnalogDevice ADIS16350), a GPS module (Fastrax 

UP500), and a wireless transceiver (Maxstream XBEE). To support some applications such as aerial or ground photogrammetry, 

a pocket camera (Canon SX200IS) was interfaced through its USB port. Main features of these devices are: 

(1) ADIS16350: is a low-power (165mW @ 5V) complete inertial measurement station. It is constituted by one tri-axial 

accelerometer, one tri-axial gyroscope and a triple thermometer for thermal compensation. It transfers inertial data with 14 bit 

resolution to the output registers, accessible via a 2MHz SPI interface, at a maximum sample rate of 819.2Hz (350Hz 

bandwidth). The inertial sensors are precision aligned across axes, and are calibrated for offset and sensitivity. 

(2) UP500: is a low-power (90mW @ 3V) GPS receiver module with embedded antenna and fix rate up to 5Hz. Communication 

is based on NMEA protocols, via RS232 link up to 115.2kbps. It supports WAAS/EGNOS correction to improve position 

resolution up to about 2m. 

(3) XBEE: is a low-power (165mW@ 3.3V) 2.4GHz transceiver which implements ZigBee
TM

 protocol and has a transmission 

range of about 80m. Transmission and reception buffers allow efficient data stream packetization, also required to reach the 

rated communication speed because every data exchange requires the presence of an about 20 bytes long header. It is interfaced 

through RS232 protocol up to 115.2kbps. As we can see in Fig. 1, Master microcontroller is connected to ADIS16350 through 

SPI interface, to XBEE through USART interface, to Slave microcontroller through TWI interface and to the high resolution 

camera by means of a digital output pin. The Slave microcontroller is connected only to UP500 by means of USART interface 

and to Master microcontroller as said before. A Slave output pin is used to send an interrupt to Master when a new GPS frame 

is ready. Master and Slave are clocked with two 14.7654MHz quartz. 

3.3. Pocket Camera 

We used a low-cost 12.1 Mpixels Canon SX200IS camera (5-60mm lens focus, 4X digital zoom, 12X optical zoom, 

shutter speed 1s -1/3200s). The firmware was updated with an unofficial version in order to acquire full control of the camera 

functions. In particular, we exploited the possibility to remotely shot photos applying a 3V pulse to the USB port and to store 

photos in uncompressed format (RAW), as required for photogrammetry applications. For georeferencing each picture, a 

progressive number, corresponding to the file number on the memory card, is recorded on the inertial data frame. 
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Fig. 2 Picture of the system prototype 

4. System Working and Data Protocol 

Thanks to a simple but complete remote GUI, the PC-host can start every system operation, as will be explained in next 

sections. There are three kinds of command packets that can be sent to the system: 

(1) Operation request (GPS/Inertial data readout, photo shooting, offset readout); 

(2) Configuration setting; 

(3) Configuration readout. 

 
Fig. 3 System operations 

Every command packet is identified by means of different opcodes. The system requirement was to transmit synchronized 

data from inertial sensor, operating at 100Hz, and GPS module operating at 5Hz (Fig. 3). The inertial sensor sample rate is 

important to get a good position resolution in case of trajectory tracking calculations. Hence the data stream has to contain 20 

inertial frames plus one GPS frame every 200ms. The inertial data frame is 20 bytes long and contains the following fields: 

supply voltage, x/y/z temperatures, x/y/z angular rates, x/y/z linear accelerations. The sensor has to be read by the Master every 

10ms and this is guaranteed by a dedicated hardware timer of the microcontroller. A problem is posed by the verboseness of 

GPS serial message: in fact, NMEA sentences contain hundreds of bytes. So we had to select only the necessary information, in 

order not to compromise the desired data-rate. To this aim, at start-up, the slave microcontroller initializes the GPS module to 

send only four sentences: 
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(1) GGA: Global Positioning System Fix Data; 

(2) GSA: GPS DOP and active satellites; 

(3) VTG: Track Made Good and Ground Speed;  

(4) RMC: Recommended Mininum Navigation Information. 

These NMEA sentences contain main information which can be useful for different applications. The Slave creams off the 

received sentences and stores in RAM only the information to display, i.e. a total of 72 bytes. Even if reduced in this way, the 

time required to send such information is still too high (about 6.25ms) in order not to compromise the regularity of the inertial 

sensor reading. So we decided to divide the GPS answer in 8 packets of 9 bytes and to send, every 20 ms, two inertial frames 

plus a GPS packet. So, in 200ms, we send 8 frames of 51 bytes (frame number, 2 inertial frames, 1 GPS packet, photo number) 

and last 2 frames of 42 bytes (frame number, 2 inertial frames, photo number) as shown in Fig. 4. Data acquired from PC are 

reconstructed, displayed and stored in a text file for further elaboration; GPS data are also processed at run-time to display the 

trajectory. The frame number is used to identify each frame within a second (50 frames/s) and is used for: 

(1) Reconstruction of GPS information; 

(2) Identification of any frame lost in reception. 

 
Fig. 4 GPS/Inertial data timing (in red the GPS data, in green the inertial data) 

Finally, the photo number allows for the association of picture files in the SD card with time, position and attitude of the 

camera. The complete system protocol is better explained in the flow chart of Fig. 5. After the reception of a data request from 

host pc, master microcontroller sends a GPS data request to slave microcontroller and waits for response checking the GPS data 

ready flag. When slave acquires and creams off a GPS frame, it sets the GPS data ready flag so that master starts a 10ms timer 

up and acquires an inertial frame storing it on RAM. Then master asks slave a single GPS packet which is received on TWI line 

and immediately stored on RAM. When 10ms timer stops, master acquires a second inertial frame storing it on RAM. In the end 

master sends the two inertial frames and a GPS packet to XBEE module which sent them to host-pc. When these operations are 

over, master restarts 10ms timer and begin a new operation cycle. If there is an interruption of GPS operations, master continues 

to send to host-pc only inertial frames respecting the 10ms timing. 
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Fig. 5 Data protocol flow chart 

5. Inertial Data Elaboration 

Data acquired from the inertial sensor can be processed to obtain position and orientation of a body and to track a three 

dimensional trajectory. This technique is called inertial navigation and it is used in a wide range of applications. 

Inertial data are processed following the scheme [14] in Fig. 6. where: 

(1) U_acc: signals from accelerometers; 

(2) U_omega: signals from gyroscopes; 

(3) a: linear acceleration; 

(4) v: linear velocity; 

(5) ω: angular velocity; 

(6) C: rotation matrix. 

The subscripts b denote the body coordinate system (that is the navigation system’s reference frame) while the subscripts 

n denote the local coordinate system (in which the body move). The first step of trajectory reconstruction algorithm is the 

correction of accelerometers and gyroscopes signals. The correction of errors on signals is the most important step of algorithm, 

because errors influence overall system performance [15]. In particular, propagation of orientation errors caused by noise, 

perturbing gyroscope signals, is identified as the critical cause of a body position drift. The main cause of errors are: scale factor, 

bias, drift, temperature, non-orthogonality. In order to compensate them it is necessary to perform a procedure of calibration. A 

first coarse calibration was executed using the automatic calibration of ADIS16350 managed from remote GUI software. Then 

a finer calibration was conducted manually. Among all calibration methods proposed in literature, the most appropriate 

calibration technique for low-cost sensors is the “modified multi-position calibration method” [16-17]. Its aim is to find all 

calibration parameters (bias, scale factor, non-orthogonality, etc) of sensors. It consists in laying out sensors in different linearly 

independent positions in order to define a system of linearly independent equations which outnumbers the set of calibration 
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parameters to find. 

 
Fig. 6 Block diagram of the trajectory reconstruction algorithm 

The linear acceleration and angular velocity error can be modeled as Eqs. (1)-(2):  

               
 _ 0acc acc acc T acca b a c T T      

 
(1) 

              
 _ 0gyro gyro gyro T gyrob c T T       

  
(2) 

where: 
accb  and 

gyrob  are the sensor bias; 
acc  and 

gyro  are the sensor scale factors; 
_acc Tc  and 

_gyro Tc  are the sensor thermal 

constants; 
acc  and 

gyro  are the sensor measurement noises, _acc acc sample rate   , 

_gyro gyro sample rate   and, 
acc  and 

gyro  are noise density, and T and 
0T  are the temperatures during the 

measurement and at sensor start-up respectively.  

In Table 2, there are the calibration parameters obtained according to refs. [16] and [18]. 

Table 2 Calibration parameters 

Parameter Value 

_acc xb  0.012133g 

 _yaccb  0.023295g 

 _acc zb  -0.03593g 

 gyro_ xb  0.3766°/s 

 gyro_ yb  0.1963°/s 

 gyro_ zb  0.6270°/s 

 _xacc  0.00775 

 _yacc  0.008838 

 _zacc  0.008041 
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Table 2 Calibration parameters (cont.) 

Parameter Value 

 gyro_x  0.004818 

 gyro_y  0.004042 

 gyro_z  0.009385 

 _acc Tc  4mg/°C 

 _gyro Tc  0.1°/s/°C 

 acc  1.85mg Hz  

 gyro  0.05°/s Hz  

After the calibration phase, it is necessary to compensate the centrifugal acceleration and the acceleration of gravity effects 

obtaining accelerations in body coordinate system .The former is compensated subtracting the vector product between angular 

velocities (from gyroscopes) and linear velocities (from numerical integration of accelerations), the latter is compensated 

adding the scalar product between transposed rotation matrix and the gravity acceleration. After a numerical integration, 

velocities in body coordinate system are obtained. In order to pass to local coordinate system, the linear velocities are multiplied 

by the rotation matrix and then are integrated to have body trajectory. The angular velocities are also integrated, obtaining the 

information about the orientation (Euler angles) (3-5) and the rotation matrix (for transformation from b-frame to n-frame) (6), 

(Table 3). The equations to integrate and the rotation matrix A are: 

              
 _ _ _sin cos tany b z b x b        

 
(3) 

             
 _ _cos siny b z b     

 
(4) 

            
 _ _sin cos secy b z b      

 
(5) 

Table 3 Rotation matrix elements 

Matrix Element Value 

11A  cos cos   

12A  cos sin sin sin cos       

13A  sin sin cos sin cos      

21A  cos sin   

22A  cos cos sin sin sin      

23A  sin cos cos sin sin       

31A  sin  

32A  sin cos   

33A  cos cos   

                   

11 12 13

21 22 23

31 32 33

A A A

A A A A

A A A

 
 

  
 
   

(6) 

where transformation from reference axes to a new frame is expressed as: (1) Rotation through angle about reference z-axis; 

(2) Rotation through angle  about new y-axis; (3) Rotation through angle  about new x-axis. 



International Journal of Engineering and Technology Innovation, vo. 5, no. 3, 2015, pp. 141-155 

Copyright ©  TAETI 

149 

However, also with a tight correction of errors, it is not possible to obtain great position accuracy for long time using only 

MEMS IMU, but it is necessary to include information from GPS module, integrated in our system. Inertial and GPS modules 

are complementary: the former is characterized by high measurement frequency, but short-term accuracy while the second by 

long-term accuracy but low measurement frequency. The main idea is to be able, in the further system versions, to precisely 

reconstruct the trajectory by means of the high-rate inertial data acquired between two GPS acquisitions and then to correct 

accumulated errors using the low-rate but accurate information coming from the GPS module. The Kalman filter is the most 

used algorithm for this purpose. In literature, there are several implementations of Kalman filter depending on the features of 

devices [19]-[20]. To be able to correctly integrate Inertial and GPS data, it is important to have high synchronization between 

data acquisitions. In the present prototype, limited to the gyroscopes and accelerometers, the implementation of a typical 

Kalman filtering is included into remote PC and its variance, and noise parameters are chosen on the basis of empirical 

measurements and calibration. 

6. GPS Data Handling 

In order to plot a GPS trajectory in a two dimensional graph, it is necessary at first to transform GPS geodetic coordinates 

(longitude latitudeheight h) to ECEF (Earth-Centered-Earth-Fixed) coordinates (Xe, Ye, Ze) and then to NED 

(North-East-Down) coordinates (xn, yn, zn) according to (7-9) equations [21]. N() is the grand normal (the largest radius of 

curvature of ellipsoid defined at a specified latitude) that is the distance from the surface to the Z-axis along the ellipsoid normal. 

a is the lenght of the semi-major ellipsoid axis and e is the first numerical ellipsoid eccentricity. Rn/e is a transformation matrix 

(12) from ECEF to NED coordinates. Xer, Yer, Zer are ECEF reference coordinates. 

               
 ( ) cos coseX N h   

 
(7) 

              
 ( ) cos sineY N h   

 
(8) 

             
 2( ) 1 cos coseZ N e h     

   

(9)  

            
2

( )
1 sin

a
N

e






 

(10) 

            

/

n e er

n n e e er

n e er

x X X

y R Y Y

z Z Z

   
   

    
        

(11) 

             

/

sin cos sin sin cos

sin cos 0

cos cos cos sin sin

n eR

    

 

    

  
 

  
      

(12) 

7. Remote GUI 

The Remote GUI is developed using LabWindows
©
 development environment based on C language. The GUI allows 

managing every system operation. As seen in Fig. 7 in the window, there are three main sections: a graph section to display GPS 

trajectory, angular velocity and linear acceleration; a boxes section to show inertial sensor parameters (supply voltage, x-y-z 
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linear accelerations, angular velocities and temperatures) and GPS parameters (time, latitude, longitude, altitude above mean 

sea level, height of geoid above WGS84 ellipsoid, speed, heading and PDOP; a command section to initializing XBEE 

radio-bridge, to start/stop system operations and to shoot photos. It is also possible to save data into a text file for offline 

analysis. In the top of window, there is a menu in which user can access inertial sensor setting mode and manually change 

gyroscope dynamics, number of tapes of Bartlett FIR digital filter, sample rate, accelerometer and gyroscope offset or use 

automatic procedures of axial alignment, offset compensation, calibration (Fig. 8, 9). The numerical integration algorithm, the 

Kalman filter and the coordinate transformation are integrated into the GUI as already said. 

 

Fig. 7 System GUI with an example of GPS trajectory 

  
Fig. 8 Calibration sub-window Fig. 9 Operation control sub-window 

8. System Testing 

In order to verify proper working of system many kind of tests are conducted on system modules. 

8.1. Accelerometers/Gyroscopes Test 

To test accelerometers and gyroscopes, two type of tests were conducted. In the first test, the system was placed on a strobe 

speed-controlled turntable with velocity of 33 rpm and 45 rpm, to evaluate biases and the correct angular velocity measured by 

gyroscopes; in the second test, system was placed on a radio-controlled toy car and various movements were performed to test 
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the performance of the whole inertial system (Fig. 10, 11, 12). 

 
Fig. 10 Sensor responses for slewing rounds movement performed 

 

  
Fig. 11 Sensor responses for spins movement performed Fig. 12 Sensor responses for back/forth movement 

performed 

8.2. GPS Module Test 

Moreover, the system was mounted on a car in order to verify GPS module operations and the coordinate transformation 

algorithm using GPS data (Fig. 7). Another kind of test allows to analyze the proper working of GPS module along a closed path 

and comparing results with a high accuracy differential GPS module.  

The reference GPS receiver is a Leica VIVA GNSS, used in combination with the permanent reference GNSS station at the 

University of Calabria. The reference station is a node of the "ITALPOS" national reference network, and it is positioned close 

to the path followed during the test (100 to 400 m). The data processing has been performed by using the software Leica Geo 

Office. A standard deviation less than 1 cm has been obtained for both planimetric and height position. Thus, the results of 

DGPS have been assumed as reference. From this test we valued position errors along x, y and z axis using a statistical analysis. 

In Fig. 14 the trajectory comparison between our GPS SBAS module and the reference differential GPS module is shown. As it 

is possible to see, the two trajectories (red and blue) are almost undistinguishable, due to the scale of the mapIn Table 4, there 

are the error distribution parameters. The mean position error is lower than 1m for x and y axis with a standard deviation lower 
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than 2m, only for the z axis the mean position error is of about 5m. 

 
Fig. 14 Results comparison between our GPS (left) and differential GPS (right); the two trajectories are almost totally 

overlapped and undistinguishable 

Table 4 Error distribution parameters 

X-error Mean 0.573m 

Y-error Mean -0.143m 

Z-error Mean 4.267m 

X-error  1.825m 

Y-error 1.480m 

Z-error  1.997m 

8.3. Inertial-based Trajectory Reconstruction Test 

After the GPS trajectory reconstruction test, we conducted an Inertial-based trajectory reconstruction test to verify the 

quality of trajectory reconstruction algorithm and of Kalman filtering. For this test the strobe speed-controlled turntable was 

used. As it can be seen in Fig. 15 using just the reconstruction algorithm, after about 25 loop at 33rpm, there is an increasing of 

offset and bias which deforms the circular trajectory with a spiral divergence; with Kalman filtering the trajectory is very stable 

and it is evident the decreasing of x/y error as shown in Table 5 comparing to values in Table 6. The x/y position error 

fluctuations are shown in Figs. 16 - 17. 
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Fig. 15 Trajectory reconstruction without (left) and with (right) Kalman filtering 
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Fig. 16 X/Y axis error fluctuations with Kalman filtering 
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Fig. 17 X/Y axis error fluctuations without Kalman filtering 

Table 5 Distribution parameters (with Kalman filter)  

Abs Max X-error 0.0066m 

Abs Max Y-error 0.0084m 

X-MSE (mean square error) 3.30e-3m
2
 

Y-MSE (mean square error) 6.50e-3m
2
 

Table 6 Distribution parameters (without Kalman filter) 

Abs Max X-error 59.68m 

Abs Max Y-error 60.57m 

X-MSE (mean square error) 1.53e+5m
2
 

Y-MSE (mean square error) 1.49e+5m
2
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Table 7 Main technical features 

Dimensions [cm] 10.5x12.5 

Weight [g] 155 (395 with camera) 

Maximun transm. range [m] 80 (outdoor) 

Inertial frame transm. rate [Hz] 100 

GPS channels 32 

GPS sensitivity (Track, Nav) [dBm] -159 

GPS frame transm. rate [Hz] 5 

Position resolution with EGNOS [m] < 5 (experimental) 

Accmeters dynamic range [g] ±10 

Accmeters sensitivity [mg] 2.522 

Accmeters axis non-orthogonality [°] ±0.25 

Accmeters temp. coefficient [ppm/°C] 100 

Gyros dynamic range [°/s] ±300, ±150, ±75 

Gyros sensitivity [°/s] 0.07326, 0.03663, 0.01832 

Gyros axis non-orthogonality [°] ±0.05 

Gyros temp. coefficient [ppm/°C] 600 

Nominal input voltage [V] 2.4 

Nominal input energy [Wh] 6.36 

Max power consumption [mW] 625 

Max battery autonomy [hr] 9 (working continuously) 

9. Conclusions 

A flexible and low-cost wireless GPS/Inertial system which can be used for many kinds of applications is presented. The 

main features of prototype are low weight, high compactness, high autonomy, fast remote data managing and elaboration (Table 

7). The future developments will be the GPS/Inertial data fusion, the replacement of MEMS sensor station with the new model 

which integrates a tri-axial magnetometer and an automatic thermal compensation, the replacement of the ZigBee module with 

the new model having a transmission range up to 1km, the using of a single microcontroller device with an integrated I/O 

(USART) DMA in place of the two microcontrollers and assembling all new modules. In addition, the remote system GUI will 

be modified to manage data elaboration for various applications such as fall detection, body motion recognition, inertial 

navigation, etc. Much kind of tests in several scenarios will be conducted in order to demonstrate flexibility and general purpose 

capability of platform. This paper can be used also as a simple didactic reference which proposes introducing a complete 

top-down system design flow, touching clearly all steps of a system design: hardware components selection, power supply 

section designing, microcontroller firmware programming, PCB board designing, GUI software programming, high-level data 

elaboration and system testing.  
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