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Abstract 

In this paper, a new method for both fault current limiting and voltage compensating using Active 

Superconducting Current Controller (ASCC) is proposed. The main objective of this paper is to present an 

appropriate control strategy for ASCC to achieve both the fault current limiting and voltage compensation purposes. 

Three different operating modes are defined for ASCC including normal mode, fault current limiting mode, and 

voltage compensation mode and a proper control strategy is designed for each mode. For the fault current limiting, 

the model of a typical three-phase system with ASCC is simulated and different states for current limiting in different 

levels are defined. Also, for the voltage compensating mode, the PI model for the line is considered and the line 

transmission matrix is obtained when the ASCC is connected at the sending end and middle of the line. Finally, 

proper settings for ASCC are determined such that the magnitude of the receiving end and the sending end voltages 

become equal. Simulation results using MATLAB software confirm the proper performance of the proposed 

method. 

 

Keywords: active superconducting current controller, fault current limiters, reactive power control, series voltage 

compensator 
 

1. Introduction 

The recent growth of power generation capacity and application of the new distributed generation units in the micro-grids 

have increased the short circuit capacity of power systems. Increasing the short circuit level can cause damage to the circuit 

breakers and other protection devices on the power system [1]. Application of the fault current limiters (FCLs) can be an 

effective solution for this problem [2]. Different types of FCLs have been introduced in the literature such as superconducting 

type [3], transformer type [4-6], ferromagnetic materials type [7], saturated core type [8] and active superconducting type [9]. 

The performance of these FCLs is such that they provide a very low series impedance in the normal condition and suddenly 

apply large series impedance to the network when a fault occurs. 

Active superconducting current controller (ASCC), as a new ‎ nonreseno‎ no‎ enrene‎‎ compensators, is a combination of 

superconductor technology and power electronic devices [10]. This type of FCL is not only able to decrease the fault current 

continuously at different ‎ensnee‎lut also can compensate the reactive powers in the power system. According to Fig. 1, the 

ASCC consists of three air-core superconducting transformers and one three-phase PWM converter. The air-core 

superconducting transformer has some advantages such as the absence of iron losses and magnetic saturation, and it has a 

greater possibility of a reduction in size and weight than the conventional and the iron-core superconducting transformer. In the 

normal state, the primary voltage is compensated to zero, but in the fault conditions, it is controlled through the output voltage 

of the converter. Consequently, the fault current can be limited to different levels [11]. 
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Fig. 1 Equivalent circuit of a three-phase ASCC [9] 

In recent years, several methods have been presented in the literature for adjusting the ASCC to reduce the fault current at 

different levels. An experimental investigation of an active superconducting current controller has been studied in [11]. This 

reference presents parts of the important test results, including the capability of voltage regulation of the voltage source 

converter, and the characteristic of the system current controller in a laboratory power system. Analysis of an active SFCL by 

designing of control strategies for fault detection and PWM converter of ASCC is investigated in [12]. In this paper, only two 

operational modes, including normal mode and fault mode are defined for ASCC and the reference signals corresponding to 

these 2 modes are applied to the controller. Analysis of the effect of ASCC on the transient stability and the operation of the 

overcurrent relays (OCRs) operation has been studied in [13]. The operation principle of an active superconducting fault 

current limiter (SFCL) by defining the proper normal and fault operating modes is presented in [15]. The control strategy for 

the three-phase PWM converter of the active SFCL has been designed in [16] using a double-loop control strategy, consisting 

of an outer voltage loop and an inner current loop. In [19], improvement of protection coordination of overcurrent relays using 

a unidirectional fault current limiter has been studied. The objective is to estimate the optimal value of the FCL resistance 

which provides proper coordination time intervals between overcurrent relays in a distribution system. 

In previous studies, the hybrid performance of ASCC in both modes of the current limiting and reactive power control has 

not been considered. In this paper, the current limiting, as well as the line compensation, is done only with the presence of 

ASSC and without using the line compensators. In the proposed method, the ASCC is controlled such that in the fault condition, 

the fault current is reduced to the acceptable levels by generating the appropriate limiting impedances. On the other hand, in the 

normal condition, the ASCC dynamically compensates the voltage drop caused by the loads. Fault current limitation, reactive 

power control in power transmission and distribution systems, and protective coordination of overcurrent relays in the 

grid-connected micro-grid without changing the setting parameters of relays are some applications of the proposed method in 

power systems. 

This paper is organized as follows. Section 2 describes the different operating modes which are defined for ASCC and the 

design of the control strategies for each mode. In Section 3, the simulation results are presented and discussed. Finally, the 

conclusions are presented in Section 4. 

2. Modeling and Simulation of the Proposed Method 

2.1.   Design of the ASCC operating modes 

Fig. 2 shows the equivalent circuit of an ASCC, which is employed in a typical three-phase circuit [1]. The equivalent 

circuit of the air-core superconducting transformer with the controllable output current source of the ASCC converter is shown 

in Fig. 3. 
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Fig. 2 Structure of a typical three-phase circuit with ASCC [10] 

 
Fig. 3 The equivalent circuit of the air-core superconducting transformer [11] 

By neglecting the losses of the air-core superconducting transformer, the primary voltage of the transformer (in phase A) 

can be expressed as follows: 

1
ˆ ˆ ˆ

A S A S aU j L I j M I    (1) 

2
ˆ ˆ ˆ

a S a S AU j L I j M I    (2) 

1 1S SL L M   (3) 

where 1L  is the self-inductance of the primary winding of the superconducting transformer and SM  is the mutual inductance 

between the primary and secondary windings. Also ˆ
AI  and ˆ

aI  are the current phasors at the primary and secondary windings 

of the transformer, respectively. The value of ˆ
AU  is controlled depending on the ASCC operating mode. The ASCC operating 

modes are defined as follow: 

(A) Normal operating mode 

In the normal condition, the converter is controlled such that the ASCC does not affect the main circuit. Therefore, ˆ
aI  

should be adjusted as: 

1 1

1 2

ˆ
ˆ ˆ ( )S S SA

a A

S S

L L U
I I

M M Z Z
 


 (4) 

(B) Fault operating mode 

When a short circuit fault occurs in the network, e.g. a three-phase fault right after the ASCC which leads to the highest 

fault current, the line current will rise from ˆ
AI  to ˆ

AfI : 



International Journal of Engineering and Technology Innovation, vol. 10, no. 2, 2020, pp. 130-145 

 

133 

1

ˆ ˆ
ˆ SA Af

Af

U U
I

Z


  (5) 

where ˆ
AfU  is the primary voltage of the superconducting transformer during the fault. By inserting ˆ

AfU  in Eq. (5) we have: 

1 1

ˆ ˆ
ˆ SA S a

Af

S

U j M I
I

Z j L









 (6) 

The limiting impedance of ASCC (
ASCCZ ) is defined as: 

ˆ

ˆ
Af

ASCC

Af

U
Z

I
 (7) 

By inserting ˆ
AfU  and ˆ

AfI in Eq. (7), 
ASCCZ  can be calculated as: 

1 1

1

ˆ ( )

ˆ ˆ
S a S

ASCC S

SA S a

j M I Z j L
Z j L

U j M I

 





 


 (8) 

According to above equations, by adjusting the secondary winding current ( ˆ
aI ), the fault current can be controlled at 

different levels. Two different states are defined regard as follows: 

State 1  

This state is activated in the first cycles of the fault and before the fault detection and converter operation time. In this state 

ˆ
aI  is kept equal to its pre-fault value. The fault current in this state 

1( )AfI 
 can be achieved as: 

1

1

1 1

ˆ ˆ
ˆ SA S A

Af

S

U j L I
I

Z j L










 (9) 

where ˆ
AI  is the pre-fault primary current of the superconducting transformer. 

State 2 

This state is activated after the fault detection and converter operation time. In this state, the phase angle of 
aI  is regulated 

such that to make the angle difference between ˆ
SAU  and ˆ

S aj M I  becomes 180
0
, so the amplitude of the fault current in this 

state 2
ˆ( )AfI   can be achieved as: 

2

1 1

ˆ ˆ
ˆ SA S a

Af

S

U M I
I

Z j L










 (10) 

According to Eqs. (9)-(10), it is clear that 
2 1Af AfI I  . Therefore the fault current limiting is done at a higher level in State 2. 

(C) Voltage compensating mode 
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Fig. 4 Equivalent circuit of transmission line with ASCC in sending end of the line 
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Fig. 5 Equivalent circuit of transmission line with ASCC in the middle of the line 

To describe the voltage compensating mode of ASCC, it is assumed that the ASCC is used at the sending end or middle of 

the transmission line as shown in Figs. (4)-(5). 

The system transmission matrix without and with ASCC at the sending end and middle of the line are obtained according 

to Eqs. (11)-(15) respectively.  

1ˆ ˆ2
*

(1 ) 1
4 2

L
L

S R

L Ls R

YZ
Z

V V

YZ YZI I
Y

 
    

     
      
  

 (11) 

(1 (1 ) (1 )ˆ ˆ2 4 2
*

(1 ) 1
4 2

L L L
ASCC L ASCC

S R

L Ls R

YZ YZ YZ
YZ Z Z

V V

YZ YZI I
Y

 
        

     
      
  

 (12) 

1
2ˆ ˆ

*
( )

21
2 2

L

ASCC

S m

L
ASCCs m

Z
Z

V V
Z

Y ZI I
Y

 
 

    
        

 
 

 (13) 

*Y y L  (14) 

*LZ z L  (15) 

where L is the length of the line and 𝑧 and y are the impedance and admittance values per unit length of the line respectively. 

To investigate the over-voltage compensating of ASCC the no-load condition of the line is considered. By inserting 0RI  , the 

sending end voltage of the line is obtained as: 

ˆ ˆ1 1 *
2 2

L L

S ASCC R

YZ YZ
V YZ V

    
       

    
 (16) 

To control the receiving end voltage of the line at no-load condition, the value of ASCCZ  is determined such that the 

magnitudes of the receiving end and the sending end voltages become equal. Therefore, by inserting ˆ ˆ
S RV V  in Eq. (16), the 

proper impedance is calculated as: 

2

1
4

L

ASCC

L

Z

Z
YZ







 (17) 

On the other hand, to investigate the low-voltage compensating of ASCC, the full-load condition of the line is considered. 

In this case, equivalent load impedance loadZ  is modeled at the end of the line. The system voltage equations when ASCC is 

inserted at the sending end and middle of the line are given as follow: 
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1
2ˆ ˆ1 1 *

2 4

L
L ASCC

L L

S ASCC R

load

YZ
Y Z

YZ YZ
V YZ V

Z

  
   

             
    
 
 

 (18) 

ˆ ˆ ˆ*
2

L

S m ASCC m

Z
V V Z I

 
   

 
 (19) 

By inserting ˆ ˆ
S RV V  in to Eq. (18) and ˆ ˆ

S mV V  in Eq. (19), the proper impedance of ASCC for voltage compensating at the 

receiving end and middle of the line are calculated as Eqs. (20)-(21) respectively.  

1

2

1
1 1

4 2

L

load

ASCC

L L

load

Y
Z

Z
Z

YZ YZ
Y

Z

 
  

 


   
      
   

 (20) 

2

L

ASCC

Z
Z


  (21) 

According to Eqs. (20)-(21), the proper setting of ASSC can compensate for the reduced voltage under loading conditions. In 

this state, by measuring the receiving end voltage and current, the load impedance is determined and the value of the ASCC 

impedance is calculated. Finally, the proper setting of the ASCC converter is obtained for this case. 

2.2.   Control strategy for ASCC converter 

In this section, a double-loop control strategy is briefly described, and the reader is referred to [12] for more details. 

According to Fig. 2 and assuming that the switching devices are ideal and the split DC link capacitances are the same 

1 2( )C C , the current and voltage equations can be achieved as: 

sa
d sa a

sb
d sb b

sc
d sc c

di
L u i

dt

du
C u i

dt

du
C u i

dt

 

 

 











 (22) 

a
d sa a

b
d sb b

c
d sc c

du
C i i

dt

du
C i i

dt

du
C i i

dt

 

 

 











 (23) 

Further, the mathematical equations in dq0 reference frame can be obtained by: 

0
0 0

sd
d d sq sd d

sq
d d sd sq q

s
d s

di
L L i u u

dt

di
L L i u u

dt

di
L u u

dt





  

   

 











 (24) 
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0
0 0

d
d d q sd d

q
d d d sq q

d s

du
C C u i i

dt

du
C C u i i

dt

du
C i i

dt





  

   

 











 (25) 

The DC link voltage equation can be achieved by: 

1 2dc dc dcu u u   (26) 

2 1 0

2 1 03dc dc

d

du du du
C C i C

dt dt dt

 
   

 
 (27) 

Based on Eqs. (22)-(27), the control system diagram of the three-phase PWM converter is shown in Fig. 6.  According to 

the operating state of the main circuit and the current-limiting state of the ASCC, the current reference signals ( )abc refI   can be 

known. Further, the reference signals ( )abc refU   will be obtained, and then the voltage reference signals of the converter 

0( )dq refU   can be achieved by the ABC to dq0 conversion matrix according to Eq. (28). 

0

1 1 2 1 2cos sin 0
2

sin cos 0 0 3 2 3 2
3

0 0 1 1 2 1 2 1 2

d a

q b

c

u t t u

u t t u

u u

 

 

       
      

        
            

 (28) 

When an asymmetrical fault occurs, the 0 axes current reference 0si  will be generated by the difference between the 

controllers of 2dcU  and 1dcU . Since 1 2dc dc dcU U U   will be controlled to stay the same, the variation trends of 2dcU  and 1dcU  

will be opposite with each other, to keep the voltage balance of the split DC link capacitors. 

 
Fig. 6 Control strategy for a three-phase PWM converter [12] 

2.3.   Flowchart of the proposed method 

Fig. 7 shows the flowchart of the proposed method. By comparing the system and reference current in the dq0 reference 

frame according to Eq. (29) i  is calculated and when i exceeds the threshold value, the fault is detected.  

   
2 2

qd d ref q refi i i i i      (29) 



International Journal of Engineering and Technology Innovation, vol. 10, no. 2, 2020, pp. 130-145 

 

137 

The values of thresholdi  and , ,a b c refi   are calculated considering an overload factor for the system currents concerning the 

nominal currents, e.g. 50%. 

 

Fig. 7 Flowchart of the proposed method 
 

If the fault state is not detected, the no-load and full-load state of the line is detected by measuring the receiving end 

voltage of the line and ASCC is adjusted to the proper voltage compensating mode. 

2.4   Feasibility of implementation 

One of the main issues in the development of the ASCC will be the cost. The power electronic converters as well as the 

superconducting transformers used in the ASCC, especially at high voltage levels, can result in the high cost of using this 

equipment. On the other hand, the high costs caused by replacing the existing circuit breakers with higher power types as well 

as the use of the separate voltage compensator equipment can reduce when ASCC is applied in the power system. Coordination 

of protective relays and proper placement of ASCC are other issues that should be considered when ASCC is used in power 

systems. In this paper, the feasibility of implementing the proposed method is investigated by simulating a 500 kV sample 

transmission line with ASCC. The simulation of ASCC in the KEPCO distribution system by considering the current limiting 

and OCRs coordination is carried out in our other work in [13-14]. Also, a laboratory prototype of 800V/30A active 

superconducting current controller is tested in [11]. 

3. Simulation Results 

In this section, simulation results for evaluating the performance of the ASCC in different modes, including the fault 

current limiting mode and the voltage compensation mode are presented. 
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3.1.   Testing the current limiting mode 

At first, to assess the performance of three aforementioned states of the current limiting mode, the model shown in Fig. 2 

with the parameters in Table 1 is simulated in MATLAB. 

Table 1 Parameters of ASCC and simulated system [1] 

Parameter Value 

Tape Bi2223/Ag(0.3mmt*4.3mmw) 

Inner diameter 88mm 

Outer diameter 154mm 

Turns of the double pancake 265 

The Self-inductance and mutual- inductance of the 

primary and secondary windings 

[10, 9] (mH) 

Source voltage and DC link voltage  USA=220(V), Udc=600(V) 

Source and load impedances Z1=0.19 + 2.16 i (Ω), Z2=15 + 2 i (Ω)  

Filtering capacitor and inductance Ld=6(mH), Cd=30 (µF) 

DC link capacitors C1=C2=2000 (µF) 

Table 2 and Fig. 8 show the voltage and current reference signals of the converter for the normal state, a three-phase and 

a single-phase fault at the load location in Fig. 2. These signals are used as inputs of the control strategy shown in Fig. 6. As 

illustrated in Fig. 8 following the occurrence of the single-phase fault, the AC components of 1dcU  and 2dcU  are opposite to 

each other, and the total DC voltage is kept constant at the level of 600 V. 

Table 2 Control parameters for the cases of normal operation, three-phase fault and single-phase fault [16] 

Single-Phase Fault Three-Phase Fault Normal state Reference signals 

15.7sin(ωt+90) 15.7sin(ωt+90) 15.7sin(ωt-15.3) Ia-ref   (A) 

15.7sin(ωt-135.3) 15.7sin(ωt-30) 15.7sin(ωt-135.3) Ib-ref   (A) 

15.7sin(ωt+104.7) 15.7sin(ωt-150) 15.7sin(ωt+104.7) Ic-ref   (A) 

4.7 3.1 -8.6 Ud-ref    (V) 

-45.4 -142.4 3.1 Uq-ref   (V) 

48.7sin(ωt+4.6) 0 0 U0-ref   (V) 

300+20sin(ωt-143) 300 300 Udc2-ref   (V) 

KP=0.03, KI=1.5, f=60, ω=2𝛑f, Ld=6e-3, Cd=30e-6  

 
(a) The reference currents for normal state 

 
(b) The reference currents for three phase fault state 

Fig. 8 Reference parameters for the cases of normal operation, three-phase fault and single-phase fault 
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(c) The reference currents for single phase fault state 

 
(d) DC link voltages for single phase fault state 

Fig. 8 Reference parameters for the cases of normal operation, three-phase fault and single-phase fault (continued) 

 
Fig. 9 Comparison of the fault current levels for different operating state 

 
Fig. 10 Fault current without and with ASCC operation in current limiting mode 

A comparison of the fault current levels without ASCC and with ASCC in different states of current limiting mode is 

shown in Fig. 9. As can be observed in Fig. 9, state 2 which is based on the phase angle regulation has the best performance in 

fault current suppression. Fig. 10 shows the amplitude of the fault current when ASCC operates in current limiting mode. 
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Interval    t = 0.2 (Sec) to t = 0.23 (Sec) is the time which is considered to detect the fault for the operation of the converter and 

the line current is reduced to 44.38 (A) since the ASCC operates in state 1. Similarly, from t = 0.23 (Sec) to t = 0.4 (Sec), by 

setting the phase angle of compensating current ( aI ) to 90 °, defined as state 2, the fault current is reduced to 30.76 (A). 

Fig. 11 shows the magnitude and angle of the compensating current ˆ
aI  during fault current limiting. The best limiting 

performance is obtained for the phase angle of 90° for ˆ
aI . Besides, increasing the magnitude of compensating current or 

voltage improves the effect of fault current limiting. 

 

Fig. 11 IA-peak vs. the Ia phase angle characteristic 

 
Fig. 12 ASCC response for current limiting mode 

The voltages and currents of the primary and secondary winding of the superconducting transformer in the fault current 

limiting mode are shown in Fig. 12. As can be observed in Fig. 12, in the normal operating mode, by proper setting of ASSC 

converter, the primary series voltage is compensated to zero and thus ASCC does not affect the main circuit in this mode. 

Immediately after the fault occurrence, in the first state of current limiting mode, the output voltage of the ASCC converter is 

increased and the fault current is reduced. After that (in t=0.23s), the ASSC setting of the second state of the current limiting 

mode increases the output voltage of the converter and decreases the fault current at the higher level. 

Since the power electronic devices have been used in the ASCC structure, this equipment will generate some harmonics in 

the power system. However, according to Fig. 12(d) it can be seen that, in the normal operation mode, the output voltage of the 

converter is set to a small amount to compensate the effect of ASCC in the main circuit. Therefore the effect of harmonics 

generated with the ASCC converter can be negligible. Also the filtering capacitors and inductors used in the ASCC structure 

(Ld and Cd in Fig. 2) can reduce the effect of these generated harmonics. 
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3.2.   Testing the voltage compensating mode 

To evaluate the performance of the voltage compensation mode of ASCC in the proposed method, a three-phase 

transmission line and ASCC with the parameters listed in Table 3 is simulated. 

Table 3 The line and ASCC parameters for the voltage compensating test [13] 

Line parameters ASCC parameters 

Nominal Voltage Vn=500kV Nominal Voltage Vn=500kV 

Nominal Frequency f=60Hz Nominal Frequency f=60Hz 

Length of the line L=300km Rated power S=100MV.A 

Line resistance r =0.016Ω/km DC link nominal voltage Vdc=40000V 

Line inductance l=0.97 mH/km DC link total equivalent capacitance C= 375µF 

Line capacitance C=0.0115µF/km Self and mutual inductances 
Ls1=100mH 

Ms=90mH 

3.2.1   Over-voltage compensation 

To investigate the effect of ASCC on over-voltage compensating, a typical transmission line with the parameters in Table 

3 is considered at no- load condition. Fig. 13 shows the receiving end voltage of phase A without compensation and with 

compensation in the presence of ASCC. As can be seen in Fig. 13 and referring to Eq. (17), the proper setting of ACCC can 

compensate for the over-voltage created in the no-load condition at the receiving end of the line. 

 
Fig. 13 Receiving end  voltage in no-load condition without and with ASCC 

 
Fig. 14 ASCC response for the no-load condition of the line 
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The setting parameters of ASCC in this case including the primary and secondary current and voltage are shown in Fig. 14. 

According to Fig. 14, it is observed that the ASCC setting in this state generates a series lagging voltage with the network and 

thus creates negative impedance according to Eq. (17) for the voltage compensating at the no-loaded condition. Fig. 15 shows 

the voltage profile diagram along the transmission line at no-load condition. 

It can be observed in Fig. 15 that in the no-load state using ASCC, the line voltage profile is improved and the increased 

voltage at the receiving end of the line is compensated and reaches its value on the sending end side. 

 
Fig. 15 Voltage profile with and without ASCC for  the no-load condition of the line 

3.2.2.   Low-voltage state 

In this case, it is assumed that the three phase load with the parameters listed in Table 4 is connected to the receiving end 

of the line. 

Table 4 Load parameters for the full-load compensating mode [13] 

Load Parameters 

V=500kV P=800MW PF=0.8Lag 

Fig. 16 shows the receiving end voltage of the line at full-load condition. As can be observed, in the full-load condition of 

the line, the receiving end voltage is lower than its acceptable range, thus the voltage compensating mode of ASCC is activated. 

As can be seen, by ASCC proper setting, the dropped voltage at the receiving end is compensated and reaches its value on the 

sending end side. 

 
Fig. 16 The receiving end  voltage at full-load condition without and with ASCC 
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According to Fig. 17, it can be seen that the voltage compensation in the middle of the line requires less voltage injection 

from the ASCC converter and so the power of the ASCC converter is reduced significantly. To compare the voltage 

compensation in these two states, the voltage profiles of the line in different condition including without compensation, the 

receiving end voltage compensation and the middle voltage compensation are shown in Fig. 18. 

 
Fig. 17 ASCC response for the full-load condition of the line 

 
(a) Voltage profile of the line at full-load condition without ASCC 

 
(b) Voltage profile of the line at full-load condition with ASCC in sending end of the line 

 
(c) Voltage profile of the line with ASCC in middle of the line by setting  for receiving end voltage compensation 

 
(d) Voltage profile of the line with ASCC in middle of the line by setting  for middle end voltage compensation 

Fig. 18 Voltage profile of the line at full-load condition 
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According to Fig. 18(a), in the non-compensating state, the magnitude of the voltage at the receiving end of the line is 

reduced by about 75% of the nominal voltage. By inserting the ASCC at the sending end of the line (Fig. 18(b)), although the 

voltage at the receiving end is compensated, the voltage increasing at the sending end, in this case, can have adverse effects on 

the equipment at the sending side. By placing the ASCC in the middle of the line, the voltage profile can be improved in two 

different cases. In the first case, according to Fig. 18(c) ASCC is adjusted to keep the receiving end voltage at its nominal value. 

Increasing the voltage in the middle of the line and increasing the ASCC converter power are some problems in this case. 

Finally, Fig. 18(d) shows the voltage profile of the line when the ASCC is inserted in the middle of the line and compensates 

for the voltage in the middle of the line. According to Fig. 18(d), it can be seen that in this case, the voltage at the receiving end 

will be reduced by about 50% of the non-compensating state and also there will be no increase in the voltage along the line. So, 

this case can perform the best operation in the full-load condition. 

4. Conclusion 

In this paper, a proposed method for the fault current limiting and voltage compensating using an active superconducting 

current controller is presented. In this method, different operating modes of ASCC including normal mode, short circuit fault 

mode, over-voltage, and low-voltage compensating mode were defined. The simulation results show that in the case of a short 

circuit fault, ASCC rapidly suppresses the fault current in the first cycles of the fault immediately after the fault occurrence by 

adjusting the amplitude and the phase angle of the compensation current. The results also confirmed that application of the 

ASCC with the proposed operating modes can improve the line voltage profile in over-voltage and low-voltage states without 

using the conventional shunt compensators. Therefore, according to the proposed method, the unique ability of the ASCC in 

the simultaneous operation of the fault current limitation and line voltage compensation was presented and shows the 

superiority of this equipment compared with other conventional type FCLs. 

Symbols and Abbreviations 

ASCC Active Superconducting Current Controller 

FCL Fault Current Limiters 

SFCL Superconducting Fault Current Limiter 

PWM Pulse Width Modulation 

OCR Over-Current Relay 

1 2( , )L L  The primary and secondary self- inductance of superconducting transformer 

SM  The mutual-inductances of superconducting transformer 

1 2( , )C C  The split DC link capacitors 

( , )d dL C  The inductance and capacitor for filtering the harmonics generated by the PWM converter 

( , )A aU U  The primary and secondary voltages of superconducting transformer 

( , )A aI I  The primary and secondary current of superconducting transformer 

1 2( , )Z Z  The line and load impedances 

AFI  The phase A fault current 

1 2 3( , , )AF AF AFI I I  The fault current in the three operation modes ASCC 

SCCZA  The limiting impedance of ASCC 

i  The difference between actual and desirable currents 

t hresholdi  The threshold value for i  

0( , )abc dqi i  The three phase currents in the abc and dq0 reference frame 

Z The model of line Impedance 

Y The model of line capacitor admittance 

( , )S RV V  The sending end and receiving end voltages of the line 

( , )S RI I  The sending end and receiving end currents of the line 
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