
International Journal of Engineering and Technology Innovation, vol. 2, no. 4, 2012, pp. 265-272

A Modeling & Simulation Implementation Framework

for Large-Scale Simulation

Song Xiao1,*, Teng Da1, Qian Lidong1, Shi Xuecheng1

1Science and Technology on Aircraft Control Laboratory, School of Automation Science and Electrical Engineering,
Beihang University, Beijing, China

Received 15 July 2012; received in revised form 30 August 2012; accepted 29 September 2012

Abstract

Classical High Level Architecture (HLA) systems are facing development problems for lack of supporting

fine-grained component integration and interoperation in large-scale complex simulation applications. To provide

efficient methods of this issue, an extensible, reusable and composable simulation framework is proposed. To

promote the reusability from coarse-grained federate to fine-grained components, this paper proposes a modelling &

simulation framework which consists of component-based architecture, modelling methods, and simulation services

to support and simplify the process of complex simulation application construction. Moreover, a standard process

and simulation tools are developed to ensure the rapid and effective development of simulation application.

Keywords: simulation environment, HLA federate, component, system architecture

1. Introduction

The modeling and simulation technology is widely used in many fields such as industry, scientific research and military

analysis. As the simulation applications become more and more complicated, constructing these systems become more

difficult. There are measures to simplify the simulation development. Standard process models, such as Distributed Simulation

Engineering and Execution Process (DSEEP) [1], define common, unified process models, which provide a common

framework for different communities to describe their engineering practices, so the engineers can communicate with each

other well.

And standard simulation interoperation protocols, such as HLA [2], DIS [3] and TENA [4] provide common distributed

interoperation methods between different member applications, so subsystems can be composed to construct a more complex

simulation system. This paper presents a simulation environment, which is intended to utilize the best practices in the field of

simulation to support simulation applications for large-scale complex system.

The rest of this paper is organized as follows. Section 3 provides a brief introduction to the whole simulation

development process and the architecture of the simulation environment. Simulation model components are discussed in

Section 4, including the definition of components and how to compose these components. In Section 5, simulation services are

described, which form the runtime for simulation models. At the last runtime, object database is presented in Section 6, which

provides distributed communication capabilities.

*

Corresponding author. E-mail address: songxiao@buaa.edu.cn
Tel.: +86-13671289267; Fax: +86-10-823385776

International Journal of Engineering and Technology Innovation, vol. 2, no. 4, 2012, pp. 265-272

Copyright © TAETI

266

2. Related Work

Large-scale simulation requires advanced implementation simulation software approaches. Many pioneering works

have been done to construct the theory base, including [1-6]. However, most of the works are focused on simulation process

and components theoretic methods while they are lack of implementation techniques.

[11-12] proposed cell-DEVS and developed CD++ tools, which is open source and supporting discrete event system

modeling and simulation. [13] designed HyperWarpSpeed time management algorithms, developed parallel simulation engine

and used the engine in military simulation systems. [14] developed simulation engine GTW and the product named FDK, using

in multi-field including biology, physiology, traffic and communication etc. All the works are useful for reference. However,

they did not address the scheduling service management of local multi-components.

Moreover, HLA is also recognized with its low running efficiency because of losing fine-grained component integration

and interoperation in local HLA federates. Here we have an underline prerequisite is that a lower HLA federation is made slow

for the lowest federate waiting by other federates. Therefore, to provide more efficient methods of this issue, an extensible,

reusable and compensable simulation framework is proposed in this paper and we start discussing the development of a

promoted and standardized process and architecture.

3. Process and Architecture

A standard process can provides a common language for simulation developers to communicate and gives a better

understanding to the life-cycle of the simulation application. To suit this component-based simulation environment, a process

is proposed which tailored and specialized from DSEEP. The process is summarized as follows.

Step 1: Define simulation application objective. The user, the sponsor, and the development/integration team define and

agree on a set of objectives and document what must be accomplished to achieve those objectives.

Step 2: Perform conceptual analysis. Scenario development and conceptual modeling take place in this step. The output

including scenarios and conceptual models guides the rest of the development process.

Step 3: Design simulation application. Existing simulation model components which are reusable is selected, and new

components are designed. Component model is described in the next section.

Step 4: Develop simulation application. The new simulation model components are implemented, and data exchange

model is developed for Runtime Object Database.

Step 5: Integrate and test simulation application. Simulation model components are composed to form simulation

entities, and simulation services suitable for this simulation are selected and integrated.

Step 6: Execute simulation and analyze results. The simulation is executed and output data from the execution is

collected and analyzed.

The scenarios, conceptual models and model components created in the process can be stored in repositories for reuse in

other simulation applications.

In the simulation environment, common simulation services are provided to form the simulation runtime, so the

simulation application developers can focus on simulation modeling. The simulation environment consists of four layers,

which are network communication layer, runtime object database layer, simulation services layer and models & tools layer.

Inte

. Simulat

Compone

ots of advantag

ways to simula

omponents), a

o be flexible c

apidly assemb

pplications can

Conceptu

utputs, conten

omponent arch

ommunicate.

escribed in the

n DEVS [6], a

M X

where X is the s

 i

nce last trans

nvironment, X

 , , ta are

1. Interfaces

An interf

ervice through

o reuse and ext

2. Events

The notio

ventSink. Com

he component

f a specified ty

ernational Jou

tion model

ent-based com

ges compared

ate complex s

and then comp

configured to a

le and configu

n vary in not o

ual model is a

nts, assumptio

hitecture, it is

So the conce

e following pa

discrete even

int, , , , extX S Y  

set of input va

is the external

sition;

X and Y are ma

e translated to

face declares a

h the operation

tend compone

on of events

mponents whic

to generate ev

ype.

urnal of Engin

S

Netw

Sim

F

component

mposability is

to large granu

system is bre

posing them to

adapt to a ran

ure a unique

only scenarios

a non-softwar

ons and simp

vital to model

eptual model

aragraphs.

nt system is pr

, , ta 

alues; S is a se

l transition fun

 is the outpu

apped to interf

implementati

a set of operati

ns of this interf

ents as the wh

is also descri

ch support eve

vents of a spec

neering and Te

Runtim

imulation Mod

work Communication
Layer

m Engine [Services]

Fig. 1 Simulati

ts

one of the key

ular models. Fo

aking the sys

ogether to form

nge of mission

simulation sy

s but also beha

re description

lifications of

l component d

formalism is

resented as

et of states; Y i

nction, where

ut function;

faces and even

ons of compo

ions that a clie

face. Compon

hole system is

ibed by interf

ents must impl

cified type. An

echnology Inn

me Object Data

dels Sim

HLA

Monitor
Services

Ev
Dispa

Ser

ion environm

y features of t

or example, th

stem into sma

m the whole sy

ns, scenarios a

ystem from ex

aviors.

of the compu

f the model [8

development b

briefly introd

is the set of ou

 is

nts of compon

onents.

ent may reque

nents commun

described by

faces. There a

lement one or

n event sink em

novation, vol.

abase

mulation Tools

DIS TENA

vent
atching
vices

Scheduling
Services

ent architectu

the simulation

hey are easy to

aller sub mod

ystem. Compo

and simulation

xisting simulat

uter simulatio

8][9]. Althoug

because it restr

duced here; a

utput values;

the set positi

ents, S are ma

st. A compone

icate only thro

interfaces not

are two speci

r both of them.

mbodies the po

2, no. 4, 2012

re

n environment

o understand an

dels (also refe

osability refers

n models [7].

tion componen

on model, des

gh conceptua

rains what the

and how it is

 is th

 is the total s

ve reals with

apped to prope

ent which sati

ough interface

t specific comp

ific interfaces

 An event sou

otential for the

2, pp. 265-272

Copy

t. Small granu

and develop. S

erred to as si

rs to the ability

With compos

ents. These cre

scribing the o

al model is no

e components

converted to

he internal tran

state set , e is

h 0 and  . In

erties of comp

isfies the inter

es they implem

mponents.

s which are E

urce embodies

e component t

2

yright © TAE

2

ular models ha

o one of the b

mulation mod

y of a simulati

sability, one c

eated simulati

bjective, inpu

ot a part of t

do and how th

o components

nsition functio

the time elaps

n the simulati

onents, and

rface provides

ment, so it is ea

EventSource a

the potential f

to receive even

ETI

267

ave

est

del

ion

can

ion

uts,

the

hey

 is

on;

sed

ion

,

its

asy

and

for

nts

International Journal of Engineering and Technology Innovation, vol. 2, no. 4, 2012, pp. 265-272

Copyright © TAETI

268

interface EventSource {

Events getEvents();

}

interface EventSink {

void pushEvent(in Event e);

}

The event dispatch strategy is not specified by the components but decided when composing the components into a

system. Two dispatch strategies are provided by now, and more can be added. To solve the problem of confliction, each type of

events can only has one dispatch strategy. The publish/subscribe strategy is that the event sources, sinks publish, subscribe

types of events, and event dispatching service transmits the specified types of events from publishers to subscribers. The

connect strategy is defined by connections between components with each connection linking two components. Events are

transmitted through the connections.

4.3. Components

There are two types of DEVS components: atomic components and composed components [6]. A composed component

consists of atomic components and/or other composed components, while atomic components cannot be divided into smaller

parts.

The definition of a component includes interfaces, references, input events and output events. Interfaces indicate the

operations provided by this component. References are connection points to other components, so this component can use

services supplied by the referred object. Input and output events are the types of events used to communicate with other

components.

4.4. Component Composition

Component composition is implemented by references which link to subcomponents. References to other components

are usually though not specific components but interfaces. The component can refer to any component which satisfies the

specified interface. Component connections are specified by an assembling script based on XML. The script describes which

instances of components are in the system, their initialization parameters and how they connect to each other.

In this simulation environment, simulation entity is a kind of component, which satisfies special constrains including the

initial parameter loading interface and simulation engine event interfaces. Simulation entities are relatively independent

components, because they do not have references to other components and they communicate only through events. Simulation

entities are the smallest process units scheduled by the simulation runtime.

5. Simulation services

5.1. Simulation Engine

Simulation services forms Simulation engine, which includes simulation monitor service, time management service,

event dispatching service and simulation scheduling service. The engine drives simulation models to advance the simulation

and generate output data. The kernel classes of the simulation engine are shown in Fig. 2.

Entity and Event are the fundamental elements of discrete event simulation. Events are passed form Event Sources to

Event Sinks by Event Dispatcher. Scheduler manages Logical Processes which manipulate the runtime states of the Entities.

The running process is illustrated in Fig. 3 .

International Journal of Engineering and Technology Innovation, vol. 2, no. 4, 2012, pp. 265-272

Copyright © TAETI

269

Fig. 2		Kernel classes

Fig. 3 Running Process of Simulation Engine

LogicalProcess

Event

Entity

EventSink

SchedulerEntityManager

EventDispatcher

EventSource

+1

+1

send
receive

schedule

+1 +n

dispatch

RuntimeObjectDatabase

store properties

International Journal of Engineering and Technology Innovation, vol. 2, no. 4, 2012, pp. 265-272

Copyright © TAETI

270

5.2. Simulation Monitor Service

Simulation monitor service controls the working state of the simulation engine. These states include the initializing,

suspending, running, saving, restoring and terminating states. After the simulation engine has been initialized, it goes

automatically into the suspending state. In the simulation process, the engine can be in suspending or running state, controlled

by the commands from the client. When the simulation terminating condition is satisfied or the monitor receives terminating

commands, the simulation engine goes into terminating state, and the simulation process finishes.

5.3. Event Dispatching Service

The notion of events has been introduced above, and two event dispatch strategies between components have been

proposed. At the inter-entity level, a third strategy is provided to enrich the semantics of events. As each simulation entity has

a unique identifier, so simulation entities can send events to the certain entities which they want to communicate with by using

this unique identifier. The types of events using this dispatch strategy must have an identifier to indicate the event target and a

time tag, and the events are delivered to the target specified by target identifier and sorted by the time tag. More strategies can

be added at the inter-entity level, and events must register their dispatch strategies before simulation starts.

5.4. Scheduling Service

Scheduling service is responsible for scheduling simulation models to processing units. There are two ways which are

serialization and parallelization to do this. Serialization way is relatively simpler and runs faster on single processing unit,

while parallelization way is more effective on multiple processing units, because it can utilize the parallel computation

capability of multi-processors.

The simulation entities are processed one by one in the serialization method, which is described as follows.

for each simulation entity Entityi {
for each simulation event Eventij of Entityi {
 process Eventij
}

}

The parallelization method consists of a monitor thread and multiple worker threads. The monitor thread is responsible

for computation task assignment to worker threads, while the worker threads complete the computation tasks. The scheduling

is committed at the simulation entity level, which means a simulation entity with all its child components is assigned to one

worker thread. As simulation entities do not refer to other simulation entities, the worker threads do not have shared variables

and the simulation can be paralleled without synchronization between worker threads. The algorithm is presented below.

Worker thread:
while the simulation is running {

if there are computation task Taski {
 run Taski
} else
 notify the monitor thread and wait for next task

}
Monitor thread:
while there are simulation entities to be processed {

if worker thread Threadi is idle {
 assign one of the simulation entities to Threadi
}

}

5.5. Event-driven Conservative Time Synchronization Mechanism

An important concept in the field of distributed simulations is time synchronization mechanism, which maintains a

consistent causality in the process. This paper uses the event-driven conservative time management mechanism.

Monitor thread receives the Lower Bound on Time Stamp (LBTS) in the message format from the Worker threads,

calculates the minimum of all LBTSs, and then returns the minimum as Greatest Available Logical Time (GALT) to all the

Worker threads.

International Journal of Engineering and Technology Innovation, vol. 2, no. 4, 2012, pp. 265-272

Copyright © TAETI

271

According to logical time management strategy in HLA, the relationship of a federate to other federates is divided into

two types: logical time regulating and logical time constrained. So there are four logical time management states: not only

logical time-regulating but also constrained, neither logical time-regulating nor constrained, only logical time-regulating and

only logical time constrained. Accordingly, Worker threads are divided into four types in this paper:

Only logical time regulating Worker threads: Its time synchronization affects other Worker threads’ time

synchronization without being affected by the others. So its LBTS is constantly 1. Only logical time constrained Worker

threads: Its time synchronization is affected by other Worker threads’ time synchronization without affecting others’ time

synchronization. So its LBTS can be calculated by the formula below:

()i j jLBTS Min Ltime Lookhead 

jLtime is the current logical time of Worker thread j, jLookhead is the looking ahead time of Worker thread j, i, j = 1, 2, . . .n.

Not only logical time regulating but also constrained Worker thread: Its time synchronization not only affects other

Worker thread’s time synchronization but also is affected by other Worker thread’s time synchronization. When it is

considered as the logical time regulating Worker thread, its LBTS is 1. When it is considered as the logical time constrained

Worker thread, its LBTS can be calculated according to only logical time constrained Worker thread. Neither logical time

regulating nor constrained Worker thread; It is not referred in this platform, so we do not discuss it in this paper.

6. Runtime object database

Runtime object database is a virtual database, which provides a unified method to represent simulation object data and

the transparent distributed communication capabilities. The database supports publish/subscribe facility. Simulation entities

publish their states to the database and subscribe the messages they interested in. Runtime object database supplies the

interoperation environment between simulation entities, and provides data access ports for simulation tools, such as

visualization tools and data collection tools. It hides network communication protocols from the simulation models and

simulation services above this database. The relationship between runtime object database and other modules is shown below.

Fig. 5 Runtime object database

Runtime object data model is defined by simulation objects and simulation interactions. Simulation objects which are

described by properties map to simulation entities, while interactions represented by parameters map to simulation events. All

of the data saved into this database must satisfy the runtime object data model. There are a layer between the simulation models

International Journal of Engineering and Technology Innovation, vol. 2, no. 4, 2012, pp. 265-272

Copyright © TAETI

272

and the database which translate the model data into runtime object data model, and a layer between the database and the

network communication service which translate the runtime object data model to data structures of the specific network

communication protocol.

7. Conclusion

This paper presents the architecture of a modeling and simulation environment, in which simulation components are

composed to construct the simulation application. This simulation environment provides common simulation services and

offers every chance to reuse exited resources to simplify development of complex simulation systems. By using of the runtime

object database and software adapters including HLA-DEVS and DEVS-DIS agents, this environment can be compatible to

many distributed interoperation protocols, such as HLA, DIS et cetera. By composing simulation services, this simulation

environment can be tailored and specified to meet the needs of certain simulation applications.

Acknowledgements

This research was supported by grant 61104057 and 61074144 from the Natural Science Foundation of China and

Pre-research project of PLA. The authors thank the reviewers for their comments.

References

[1] IEEE Criteria for Distributed Simulation Engineering and Execution Process, IEEE Standard 562, 1982.
[2] IEEE Criteria for Modeling and Simulation (M&S) High Level Architecture (HLA), IEEE Standard 1516, 1999.
[3] IEEE Criteria for Distributed Interaction Simulation, IEEE Standard 1278, 1995.
[4] U.S. Department of Defense, “The Test and Training Enabling Architecture Reference Document,” 12th IEEE/ACM

International Symposium on Distributed Simulation and Real-Time Applications, Nov 2002, pp.259-268.
[5] The Common Object Request Broker: Architecture and Specification, Victorian Electronic Records Strategy, 2nd ed., 2003.
[6] Bernard P. Zeigler, Herbert Praehofer, Tag Gon Kim, Theory of modeling and simulation, Academic Press, 2000.
[7] Brett Butler, “Simulation Composability for JSIMS,” Proc. Distributed Interactive Simulation and Real-Time Applications,

2nd International Workshop,1998 , pp. 4-14
[8] Robinson, S., “Choosing the Right Model: Conceptual Modeling for Simulation,” Proceedings of the Winter Simulation

Conference, 2011.
[9] Robinson, S., “Conceptual Modeling for Simulation Part I: Definition and Requirements,” Journal of the Operational

Research Society, vol. 3, pp. 278-290, Jan 2008.
[10] Robinson, S., “Conceptual modeling for simulation part II: a framework for conceptual modeling,” Journal of the Operational

Research Society, vol. 3, pp. 291-304, Oct 2008.
[11] Gabriel A. Wainer, Discrete-Event Modeling and Simulation: A Practitioner's Approach [M]. UK: Taylor and Francis Press,

2009.
[12] Qi Liu, Gabriel Wainer, Parallel Environment for DEVS and Cell-DEVS Models, SIMULATION, Vol. 83, Issue 6, June 2007,

449–471.
[13] Jeffrey S. Steinman, Craig N. Lammers, Maria E. Valinski, Maria E. Valinski. Simulating Parallel Overlapping Universes in

the Fifth Dimension with HyperWarpSpeed Implemented in the WarpIV Kernel, 08S-SIW-025, 2008.
[14] Craig Lammers, Jeffrey Steinman, Maria Valinski1, Karen Roth, Five-Dimensional Simulation for Advanced Decision

Making, SPIE – Enabling Technologies for Simulation Science XIII, Paper SPIE 7348-16, 2008.
[15] S.Y. Wang, C.L. Chou, C.C. Lin, “The design and implementation of the NCTUns network simulation engine,” Simulation

Modelling Practice and Theory, vol. 15, pp. 57-81, May 2007.
[16] Olivier Labarthe, Bernard Espinasse, Alain Ferrarini, Benoit Montreuil, “Toward a methodological framework for

agent-based modelling and simulation of supply chains in a mass customization context,” Simulation Modelling Practice and
Theory, vol. 15, pp. 113-136, May 2007.

