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Abstract 

Due to uncertainties exist in the applications of the a permanent magnet linear synchronous motor (PMLSM) 

servo drive which seriously influence the control performance, thus, an integral backstepping control system using 

adaptive recurrent neural network uncertainty observer (RNNUO) is proposed to increase the robustness of the 

PMLSM drive. First, the field-oriented mechanism is applied to formulate the dynamic equation of the PMLSM 

servo drive. Then, an integral backstepping approach is proposed to control the motion of PMLSM drive system. 

With proposed integral backstepping control system, the mover position of the PMLSM drive possesses the 

advantages of good transient control performance and robustness to uncertainties for the tracking of periodic 

reference trajectories. Moreover, to further increase the robustness of the PMLSM drive, an adaptive RNN 

uncertainty observer is proposed to estimate the required lumped uncertainty. The effectiveness of the proposed 

control scheme is verified by experimental results. 
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1. Introduction 

The direct drive design of mechanical applications, which is based on PMLSM, has many advantages over its indirect 

counterpart: such as no backlash and less friction, high speed and high precision in long distance location, simple mechanical 

construction, high thrust force [1]. Therefore, the PMLSM is suitable for high-performance servo applications and has been 

used widely for the industrial robots, semiconductor manufacturing systems, and machine tools, etc. [1-3].  

The backstepping design provides a systematic framework for the design of tracking and regulation strategies suitable 

for a large class of state feedback linearizable nonlinear systems. The approach can be extended to handle systems with 

unknown parameters via adaptive backstepping [4-10]. The idea of backstepping design is to select recursively some 

appropriate functions of state variables as pseudo-control inputs for lower dimension subsystems of the overall system. Each 

backstepping stage results in a new pseudo-control design, express in terms of the pseudo control designs from preceding 

design stages. When the procedure terminates, a feedback design for the true control input results achieves the original design 

objective by virtue of a final Lyapunov function, which is formed by summing up the Lyapunov functions associated with each 

individual design stage [4-10]. In addition, owing to the robust control performance of adaptive backstepping control and 

sliding mode control, numerous combined adaptive backstepping and sliding-mode control schemes have appeared for both 
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linear and nonlinear systems [7-10]. 

The NNs can be mainly classified as feedforward neural networks (FNNs) and recurrent neural networks (RNNs) 

according to the structures [11-18]. It is well known that an FNN is capable of approximating any continuous functions closely. 

However, the FNN is a static mapping; it is unable to represent a dynamic mapping without the aid of tapped delays. The RNNs 

[11-18] are a general case of artificial neural networks where the connections are not feed-forward ones only. In RNNs, 

connections between units form directed cycles, providing an implicit internal memory. Those RNNs are adapted to problems 

dealing with signals evolving through time. Their internal memory gives them the ability to naturally take time into account. 

Valuable approximation results have been obtained for dynamical systems. The RNNs which comprise both feedforward and 

feedback connections, have superior capabilities than FNNs, such as dynamic behavior and the ability to store information. 

Since recurrent neuron has an internal feedback loop, it captures the dynamic response of a system without external feedback 

through delays. Thus, RNNs are dynamic mapping and demonstrate good control performance in the presence of unmodelled 

dynamics, parameter variations and external disturbances [11-18]. Lin et al. [17] incorporated recurrent neural network and an 

adaptive backstepping controller to control linear induction motor drive for periodic reference trajectory tracking. Lin et al. [18] 

developed adaptive backstepping controller and RNN uncertainty observer to control the periodic reference trajectory tracking 

issue for a synchronous reluctance motor drive. For the purpose of real-time control, a RNN with simple network structure is 

proposed in this study. 

Due to uncertainties exist in the applications of the PMLSM servo drive which seriously influence the control 

performance, thus, integral backstepping controller and adaptive RNNUO is proposed to control the rotor of the PMLSM to 

track periodic references. In the proposed control scheme, an integral backstepping approach is proposed to control motion of 

PMLSM drive system. Moreover, to further increase the robustness of the PMLSM drive, an adaptive RNNUO is proposed to 

estimate the required lumped uncertainty in integral backstepping control system. Thus, an integral backstepping control 

system using adaptive RNNUO is proposed to control the mover of the PMLSM to track periodic references. The effectiveness 

of the proposed control scheme is verified by experimental results. 

2. Configuration of PMLSM Drive 

The machine model of a PMLSM can be described in synchronous rotating reference frame as follows [1-3]: 

deqqsq iRv λωλ ++=   (1) 

qeddsd iRv λωλ −+=   (2) 

where 

qqq iL=λ  (3) 

PMddd iL λλ +=  (4) 
re Pωω =  (5) 

and qd vv  ,   are the d and q axis voltages;   are the d and q axis currents;  sR is the phase winding resistance; qd LL  ,   are the 

d and q axis inductances; rω  is the angular velocity of the mover; eω  is the electrical angular velocity; PMλ  is the 

permanent magnet flux linkage; P  is the number of pole pairs. Moreover, 

τπω /rr v=  (6) 

ere fP τνν 2==  (7) 

where rν is the linear velocity;τ is the pole pitch; eν is the electric linear velocity; ef is the electric frequency. The developed 
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electromagnetic power is given by [2] 

( ) 2/][3 eqdqdqdeee iiLLiPFP ωλν −+==  (8) 

Thus, the electromagnetic force is 

( ) τλπ 2/] [3 qdqdqde iiLLiPF −+=  (9) 

and the mover dynamic equation is 

Lrre FDvvMF ++=   (10) 

Where eF  is the electromagnetic force; M  is the total mass of the moving element system; D  is the viscous friction and 

iron-loss coefficient; LF  is the external disturbance term. 

The basic control approach of a PMLSM servo drive is based on field orientation [2]. The flux position in the d-q 

coordinates can be determined by the Hall sensors. In (4), (8) and (9), if 0=di , the d-axis flux linkage dλ  is fixed since 

PMλ  is constant for a PMLSM, and the electromagnetic force eF  is then proportional to 
*
qi  which is determined by 

closed-loop control. The rotor flux is produced in the d-axis only, while the current vector is generated in the q-axis for the 

field-oriented control. Since the generated motor force is linearly proportional to the q-axis current as the d-axis rotor flux is 

constant in (4), the maximum force per ampere can be achieved. The resulted force equation is 

τπλ 2/3 qPMe iF =     (11) 

The optimal electromagnetic performance for the actuator is therefore realized by controlling the primary current distributions 

to lie in the q-axis, i.e., 0=di

The configuration of a field-oriented PMLSM servo drive system is shown in Fig. 1, which consists of a PMLSM, a 

ramp comparison current-controlled PWM VSI, a field-orientation mechanism, a coordinate translator, a speed control loop, a 

position control loop, a linear scale and Hall sensors. The flux position of the PM is detected by the output signals of the Hall 

sensors denoted U, V and W. Different sizes of iron disks can be mounted on the mover of PMLSM to change the mass of the 

moving element and viscous friction. The field-oriented mechanism drive system was implemented by TMS320C32 DSP 

control system. A host PC downloads the program running on the DSP. With the implementation of field-oriented control [1-3], 

the PMLSM drive can be simplified to a control system with block diagram shown in Fig. 2, in which 

 and this will yield a linear force per amp characteristic for the actuator. 

*
qfe iKF =  (12) 

τλπ 2/3 PMf PK =  (13) 

DMs
sH p +
=

1)(  (14) 

where fK  is the thrust coefficient; 
*
qi  is the command of thrust current; s is the a Laplace's operator. The PMLSM used in this 

study is 220V 3.5A 1kW 213N type. For the convenience of the controller design, the position and speed signals in the control 

loop are set at 1V=0.075m and 1V=0.075m/sec. The parameters of the system are: 

N/V 942.6sec/kg 56.92
Nsec/V 2025.02.7kg 

   N/A, 8.60

==
==

=

D
M
K f

 (15) 

The ""−  symbol represents the system parameter in the nominal condition. 
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Fig. 1 Configuration of DSP field-oriented control PMLSM drive system 
 

 

Fig. 2 Simplified control system block diagram 

3. Integral Backstepping Control System Using Adaptive RNN Uncertainty Observer 

Consider a drive system with parameter variations, external load disturbance, and friction force for the actual PMLSM 

servo drive system, then (10) can be rewritten as 

prr Xvd ==  (16) 

LaAaapap FCU)BB(X)AA(X +∆++∆+=  (17) 

rdY =  (18) 

where rd  is the mover position of the PMLSM; pX is the mover velocity of the 

PMLSM; MDAa −= ; 0MKB fa >= ; M1Ca −= A∆; and B∆ denote the uncertainties introduced by system 

parameters M  and D ; AU  is the control input to the PMLSM drive system. Reformulate (17), then 

HUBXAX Aapap ++=  (19) 

where H  is named the lumped uncertainty and defined by 

LAp CFBUAXH +∆+∆≡  (20) 

The lumped uncertainty H  will be observed by an adaptive uncertainty observer and assumed to be a constant during the 

observation. The above assumption is valid in practical digital processing of the observer since the sampling period of the 

observer is short enough to compare with the variation of H . 

The control objective is to design an Integral backstepping control system for the output Y  of the system shown in (18) 

to track the reference trajectory )(tYd , which is md , asymptotically. The proposed the Integral backstepping control system is 

designed to achieve the position-tracking objective and described step by step as follows. 
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Step 1: 

For the position-tracking objective, define the tracking error as 

YYddz drm1 −=−=  (21) 

and its derivative is 

pdd1 XYYYz −=−=   (22) 

Define the following stabilizing function: 

χα 2d111 cYzc ++=   (23) 

where 1c and 2c  are positive constants; ∫= ττχ dz1 )(  is the integral action. We can ensure that tracking error converge to 

zero by using integral action. Then, first Lyapunov function is chosen as 

2zV 2
11 /=  (24) 

Define 1p2 Xz α−=
1V, then  the derivative of is 

χα 12
2

112112d1pd11 zczczzzYzXYzV −−−=−−=−= )()(   (25) 

Step 2: 

The derivative of 2z  is now expressed as 

1p2 Xz α −= χ2d11Aapa cYzcHUBXA −−−++=   

( ) χα 2d11Aa12a cYzcHUBzA −−−+++=   
(26) 

To design the integral backstepping control system, the lumped uncertainty H  is assumed to be bounded, i.e., HH ≤ , and 

define the following Lyapunov function: 

2c2zVV 2
2

2
212 // χ++=  (27) 

Using (25) and (26), the derivative of 2V  can be derived as follows: 

( ) ][

)(

χαχχχ

χχ

2d11Aa12a2212
2
1121

2221212

cYzcHUBzAzczczczz
czzVz,zV

−−−+++++−−−=

++=


  

[ ] ][)( χα 2d112Aa12a12
2

11 cYzczHUBzAzzzc ++−++++−+−=   
(28) 

According to (28), an integral backstepping control law AU  is designed as follows: 

])()([ χα 2d11212a221
1

aA cYzczsgnHzAzczBU +++−+−−= −   (29) 

where 1c  and c2

)()( HHzzczcHzHzzczcz,zV 2
2

22
2

1122
2

22
2

11212 −−−−≤−+−−=

 are positive constants. Substitute (29) into (28), the following equation can be obtained: 

 
2

22
2

11 zczc −−≤  
(30) 

Define the following term: 
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)()( 212
2

22
2

11 z,zVzczct −≤+=Θ  (31) 

Then 

∫ −≤Θt tztzVzzVd0 212212 ))(,)(((0)),(0)()( ττ  (32) 

Since (0)),(0)( 212 zzV  is bounded, and ))(,)(( 212 tztzV  is non-increasing and bounded, then ∫ ∞<Θ
∞→

t

t
d0 )(lim ττ

( )tΘ

. Moreover, 

 is bounded, then and ( )tΘ is uniformly continuous [19]. By using Barbalat’s lemma [19], it can be shown 

that 0)(lim =Θ
∞→

t
t 1z. That is  and 2z will converge to zero as ∞→t . Moreover, dt

YtY =
∞→

)(lim and dpt
YXlim =

∞→

 

. Therefore, the 

integral backstepping control system is asymptotically stable. The stability of the proposed the integral backstepping control 

system, which is shown in Fig. 3, can be guaranteed. 

Fig. 3 The block diagram of integral backstepping control system 

Step 3: 

Since the lumped uncertainty H  is unknown in practical application, the upper bound H  is difficult to determine. 

Therefore, a RNN uncertainty observer is proposed to adapt the value of the lumped uncertainty Ĥ . A three-layer RNN, 

which comprises an input (the i layer), a hidden (the j layer) and an output layer (the k layer), is adopted to implement the 

proposed control system. The signal propagation and the activation function in each layer is introduced as follows: 
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e1

1NnetfNyNxNnet
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1
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i
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1
i 1

i
,,, =

+
===

−
 (33) 

where 1
ix  represents the ith input to the node of input layer; N denotes the number of iterations; 1

if  is the activation function, 

which is a sigmoidal function. The inputs of the RNN are the tracking error me , which is the difference between the output of 

the reference model md  and the mover position rd , and its derivative. 

Layer 2: Hidden Layer 

( ) ( ) ( ),∑+−=
i
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i

2
ij
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j

2
j

2
j Nxw1NywNnet ( ) ( )( ) ( ) l21j

e1
1NnetfNy

Nnet
2
j

2
j

2
j 2

j
...,,,, =

+
==

−
 (34) 

where 2
jw  are the recurrent weight for the units in the hidden layer; 2

ijw  are the connective weights between the input layer and 

the hidden layer; l is the number of neurons in the hidden layer; 2
jf  is the activation function, which is also a sigmoidal 

function; )()( NxNy 2
i

1
i =  represents the jth input to the node of hidden layer. 
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Layer 3: Output Layer 

( ) ( ) ( ) ( )( ) 1knetNnetfNyNxwNnet 3
k

3
k

3
k

3
k

j

3
j

3
jk

3
k ===∑= ,,  (35) 

where 3
jkw  are the connective weights between the hidden layer and the output layer; 3

kf  is the activation function, which is 

set to be unit; )()( NxNy 3
j

2
j =  represents the kth input to the node of output layer. The output of the RNN )(NyU 3

kR =  is 

rewritten as follows: 

ΓΟΟ T
R HU == )(ˆ  (36) 

where [ ]T3
1l

3
21

3
11 www =Ο is the collections of the adjustable parameters of RNN. [ ]Tlxxx 33

2
3
1 =Γ , in which 

3
jx  is 

determined by the selected sigmoidal function and 10 3 ≤≤ jx . 

To develop the adaptation laws of the RNN uncertainty observer, the minimum reconstructed error E  is defined as 

follows: 

)( *ΟHHE −=  (37) 

where *Ο  is an optimal weight vector that achieves the minimum reconstructed error, and the absolute value of E  is assumed 

to be less than a small positive constant, E  (i.e., EE ≤ ). Then, a Lyapunov candidate is chosen as 

)()(
2
1)ˆ(

2
1 **2

23 ΟΟΟΟ −−+−+= TEEVV
ηρ

 (38) 

where ρ  andη are positive constants; Ê  is the estimated value of the minimum reconstructed error E . The estimation of 

the reconstructed error E  is to compensate the observed error which is induced by the RNN uncertainty observer and to 

further guarantee the stable characteristic of the whole control system. Take the derivative of the Lyapunov function from Eq. 

(38) 

[ ]HUBzAzzzc

1EEE1VV

Aa12a12
2

11

T
23

++++−+−=

−+−+=

)(

)(ˆ)ˆ( *

α

ηρ
ΟΟΟ   

ΟΟΟ  T
2d112

1EEE1cYzcz )(ˆ)ˆ(][ *−+−+++−
ηρ

χ  

(39) 

According to (39), an integral backstepping control with adaptive law AA UU ˆ=  is proposed as follows: 

)](ˆˆ)([ˆ χα 2d1112a221
1

aAA cYzcHEzAzczBUU +++−−+−−== −   (40) 

Substituting (40) into (39), the following equation can be obtained 

ΟΟΟ  T
222

2
22

2
113

1EEE1EzHzHzzczcV )(ˆ)ˆ(ˆˆ *−+−+−−+−−=
ηρ

 

ΟΟΟΟΟΟ  T
222

2
22

2
11

1EEE1HHzHHzEzzczc )(ˆ)ˆ())(ˆ)(ˆ())(ˆ(ˆ *** −+−+−+−+−−−=
ηρ

 

ΟΟΟΓΟΟ  TT
22

2
22

2
11

1EEE1zEEzzczc )(ˆ)ˆ()()ˆ( ** −+−+−−−−−−=
ηρ

 

(41) 

The adaptation laws for Ο  and E̂  are designed as follows: 

ΓΟ 2zη=  (42) 
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2
ˆ zE ρ=
  (43) 

Thus, (32) can be rewritten as follows: 

0tzczcV 2
22

2
113 ≤Θ=−−= )(  (44) 

By using Barbalat’s lemma [19], it can be shown that 0)( →Θ t  as ∞→t , that is, 1z  and 2z will converge to zero as ∞→t . 

As a result, the stability of the proposed  integral backstepping control system by using an adaptive RNNUO, which is shown 

in Fig. 4, can be guaranteed. On the other hand, the guaranteed convergence of tracking error to be zero does not imply 

convergence of the estimated value of the lumped uncertainty to it real values. The persistent excitation condition [19] should 

be satisfied for the estimated value to converge to its theoretic value. 

In order to train the RNN effectively, an on-line parameter training methodology can be derived by using adaptation 

laws Ο of above the Lyapunov stability theorem. Then adaptation laws of the parameters in the RNN, )www( 2
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2
ij
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jk ,,Ο
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, 

can be computed by using the gradient descent method and the backpropagation algorithm as follows: 

 (45) 

The above Jacobian term of controlled system can be rewritten as 2R3 zUV −=∂∂ . The error term can be calculated as 

23
k

R
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3
k z
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∂

δ  (46) 

The recurrent weight of hidden layer 2
jw  can be updated as 
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where 2
j

2
jj wyP ∂∂≡ can be calculated from (34). The weight between hidden layer and input layer can be updated as 
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where 2
ji

2
jji wyQ ∂∂≡ can be calculated from (34). 

 

Fig. 4 The block diagram of integral backstepping control system using adaptive RNNUO 
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4. Experimental Results 

A block diagram of the DSP control system for a PMLSM drive is depicted in Fig. 1. A host PC downloads the program 

running on the DSP. The proposed controllers are implemented by DSP control system. The current-controlled PWM VSI is 

implemented by the IGBT power modules with a switching frequency of 15kHz. A DSP control board includes multi-channels 

of D/A and encoder interface circuits. The coordinate transformation in the field-oriented mechanism is implemented by DSP 

control system. 

The parameters of the proposed adaptive integral backstepping control system by using RNNUO are given in the 

following: 

2c1 = , 1c2 = , 20.=ρ  (49) 
 

(a) mover position at nominal case (b) control effort at nominal case 

(c) mover position at parameter variation case (d) control effort at parameter variation case 

Fig. 5 Experimental results of the integral backstepping control system due to periodic step command. 

All the gains in the integral backstepping control system without adaptive RNNUO and with adaptive RNN uncertainty 

observer are chosen to achieve the best transient control performance in experimentation considering the requirement of 

stability. The learning rate of adaptation laws of the parameters in the adaptive RNN uncertainty observer is set to 10.=η . 

The node numbers of adaptive RNNUO have three, thirty and one neurons at the input, hidden and output layers, respectively. 

Usually, some heuristics can be used to roughly initialize the parameters of the adaptive RNNUO for practical applications in 

the experimental results. The control objective is to control the mover to move 8mm periodically. Then, when the command is 

a sinusoidal reference trajectory, the reference model is set to be unit gain. The sampling interval of the control processing in 

the experimentation is set at 1msec. Some experimental results are provided to demonstrate the control performance of the 

proposed control systems. Two test conditions are provided in the experimentation, which are the nominal case and the 

parameter variation case. The parameter variation case is the addition of one iron disk with 8.1kg weight to the mass of the 

mover, i.e., the total mass is 3 times the nominal mass. First, the experimental results of the integral backstepping control 

system for a periodic step and sinusoidal command at the nominal condition and the parameter variation condition are depicted 

in Figs. 5 and 6. The position responses of the mover due to a periodic step command at the nominal condition and parameter 

variation condition are depicted in Fig. 5(a) and 5(c); the associated control efforts are depicted in Fig. 5(b) and 5(d). The 

tracking responses due to a periodic sinusoidal command at the nominal case and the parameter variation case are shown in Fig. 
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6. The position responses of the mover at the nominal case and the parameter variation case are shown in Figs. 6(a), and 6(c); 

the associated control efforts are shown in Figs. 6(b) and 6(d). Though favorable tracking responses can be obtained by the 

integral backstepping control system, the chattering phenomena in the control efforts are serious due to large control gain. 

Moreover, the chattering control efforts will wear the bearing mechanism and might excite unstable system dynamics. 

(a) mover position at nominal case (b) control effort at nominal case 

(c) mover position at parameter variation case (d) control effort at parameter variation case 

Fig. 6 Experimental results of the integral backstepping control system due to periodic sinusoidal command. 

(a) mover position at nominal case (b) control effort at nominal case 

(c) mover position at parameter variation case (d) control effort at parameter variation case 

Fig. 7 Experimental results of the integral backstepping control system using an adaptive RNNUO due to periodic 
step command. 

The experimental results of the integral backstepping control system by using an adaptive RNN uncertainty observer for a 

periodic step and sinusoidal command at the nominal condition and the parameter variation condition are depicted in Figs. 7 

and 8. The position responses of the mover due to a periodic step command at the nominal condition and parameter variation 

condition are depicted in Fig. 7(a) and 7(c); the associated control efforts are depicted in Fig. 7(b) and 7(d). The tracking 

responses due to a periodic sinusoidal command at the nominal case and the parameter variation case are shown in Fig. 8. The 

position responses of the mover at the nominal case and the parameter variation case are shown in Figs. 8(a), and 8(c); the 

associated control efforts are shown in Figs. 8(b), and 8(d). From variation responses of the mover positions for a PMLSM due 
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to periodic sinusoidal command at the nominal condition and parameter variation condition shown in Figs. 6(a), 6(c), 8(a), and 

8(c) are relatively smoother due to periodic step command at the nominal condition and parameter variation condition shown 

in Figs. 5(a), 5(c), 7(a), and 7(c), thus, the amplitude of the associated control efforts of the mover for a PMLSM due to 

periodic sinusoidal command at the nominal condition and parameter variation condition shown in Figs. 6(b), 6(d), 8(b), and 

8(d) are more relaxed due to periodic step command at the nominal condition and parameter variation condition shown in Figs. 

5(b), 5(d), 7(b), and 7(d). Another friction forces and mass variation responses due to periodic sinusoidal command at the 

nominal condition and parameter variation condition are more relaxed due to periodic step command at the nominal condition 

and parameter variation condition. Since all the parameters of the RNN are initialized by using the pre-trained data, accurate 

tracking control performance of the PMLSM servo drive can be obtained in the first cycle. Moreover, the chattering is much 

reduced in the control efforts of the integral backstepping control system by using an adaptive RNN uncertainty observer as 

shown in Figs. 7(b), 7(d), 8(b) and 8(d). However, the robust control performance of the proposed integral backstepping 

control system using an adaptive RNN uncertainty observer under the occurrence of parameter variations at different 

trajectories are obvious owing to the on-line adaptive adjustment of the RNN uncertainty observer. From the experimental 

results, the control performance of the proposed integral backstepping control system by using an adaptive RNNUO is better 

than the integral backstepping control system for the tracking of periodic commands. 

(a) mover position at nominal case (b) control effort at nominal case 

(c) mover position at parameter variation case (d) control effort at parameter variation case 

Fig. 8 Experimental results of the integral backstepping control system by using an adaptive RNNUO due to periodic 
sinusoidal command. 

5. Conclusions 

An integral backstepping control system using adaptive recurrent neural network uncertainty observer (RNNUO) is 

proposed to control PMLSM drive for the tracking of periodic reference inputs. First, the field-oriented mechanism is applied 

to formulate the dynamic equation of the PMLSM servo drive. Then, an integral backstepping control system using adaptive 

RNNUO is developed to control PMLSM drive under the occurrence of parameter variations. With the proposed integral 

backstepping control system, the mover position of the PMLSM drive possesses the advantages of good transient control 

performance and robustness to uncertainties for the tracking of periodic reference trajectories. Moreover, to further increase 

the robustness of the PMLSM drive, an adaptive RNN uncertainty observer is proposed to estimate the required lumped 

uncertainty. The effectiveness of the proposed control scheme is verified by the experimental results. 
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