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Abstract 

This paper introduces the use of Genetic Programming (GP), Genetic Fold ing  and symbolic circuit analysis in 

Matlab for the evolution of passive filter circuits. Instead of combining MATLAB and PSPICE in electronic circuit 

simulation, in this work, only MATLAB is used. It helps to reduce elapsed time fo r transferring the simulat ion 

between the two software packages. The circu it evolved from GP using the Matlab program and is automatically 

converted into a symbolic netlist also by using a Matlab code. The netlist is fed into symbolic circuit analysis in 

Matlab (SCAM);  the SCAM is used to generate matrices that are used for simulation. In this case, it  is used to 

analyse frequency response of passive low-pass, high-pass and band-pass filter circuits. The algorithm is tested with 

four different examples and the results presented have proved that the algorithm is efficient concerning the design 

wise. The work has provided an alternative way of using GP for the evolution of passive filter circuits.  

Keywords: genetic folding, genetic programming, netlist, passive filter circuits, symbolic circuit analysis in Matlab 

 

1. Introduction 

The physical interpretation of the world is analogue in nature which makes analogue circuits very important in circuit 

design. Although the amount of digital circuit design is more than that of analogue design, mos t digital designs require 

analogue modules for interfacing to the external world. Instead of combining Matlab and PSpice in electronic circu it 

simulation, in this work, only Matlab is used which helps to reduce elapsed time fo r transferring the simulat ion between the 

two software packages. The circuit evolved from genetic programming (GP) by using Matlab program and is converted into a 

symbolic netlist automatically  by using genetic folding (GF) coded in Mat lab. The netlist is then fed into symbolic circu it  

analysis in Matlab (SCAM); the SCAM is used to generate symbolic matrices that are used for the simulat ion. In this case, it is 

used to analyse frequency response of passive filter.  

In this paper, GP is used to evolve electronic circu its based on the initial specification set by the user; examples are given 

for the design of passive filters where the cut-off frequency and the attenuation sharpness are used as the objectives for 

designing the filter. 

Evolvable hardware (EHW) is a field in the evolutionary algorithm used in electronic circu it design without manual 

engineering design. It combines fault tolerance, autonomous system, artificial intelligence and reconfigurable hardware. Some  

of EHW  applicat ions in electronic circuit  design are discussed by different researchers in  [1-6] and related filter design is 

presented in [7, 8]. In addition, some automatic syntheses of analogue circuits are described in [9-11]. 

GP has been used widely in a number of applications: GP is used to optimise non -functional properties of programs such 

as speed, power consumption, throughput, bandwidth and size by constructing the Pareto program surface [12]. Also, GP 

application in automated software repair has been shown by Forrest et al. and Weimer et al. [13, 14] and showing its usage to 
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automatically finding patches [15]. In  addition, Jason and Silvano have used evolutionary search technique for circuit design 

automation. The main limitation in the presentation is the inherent restriction on circuit topologies [16].  

The concept of GP was introduced by Koza in 1992 for automat ic analogue circuit evolution which solve complex circu its 

compared to GA. A lso, Koza illustrated 76 examples of results using GP to be competit ive with human-produced methods 

[17-20]. Besides, a basic introduction to genetic programming is documented in  [21]. Also, the use of current – flow analysis 

and GP for the invention of CMOS amplifier is introduced in [22]; the paper explains how current-flow analysis corrects and 

screens circuits using topology-independent design rules. The technique is  designed to handle connections between transistors. 

Furthermore, a genetic programming toolbox fo r MATLAB and GP algorithm is presented in [23, 24]. In addit ion, Hou et al. 

[25] presented GP based on the tree representation for passive filter synthesis and the results presented show that the method 

can generate both economical and compliant passive filter circuits. The paper also specifies how the authors intended to add 

more design objectives such as component value sensitivity and group delay variation to be considered in their future work. 

Chang et al. [26] used the same approach as Hou et al. , but claim that h is method is better regarding efficiency compared to 

traditional method and faster than previous work. Also, similar tree representation approach in circuit design is illustrated  by 

Senn et al. the authors combined GP and two-port theory for analogue circuit synthesis. The model of a circu it as the two-port 

network makes it straight forward fo r evaluation and encoding of their circuit’s structure and is used for passive and active  

(transistor) linear circuits [27]. An alternative approach for data modelling using genetic folding as an evolutionary algorithm 

for support vector regression is in [28]. Hou et al. presented GP based on the tree representation for passive filter synthesis [25], 

the approach in this paper use GP, GF and SCAM that make all the simulations possible in Matlab software.   

2. Methodology 

 

Fig. 1 The GP algorithm 
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The flowchart is shown in Fig. 1 summarises the method used in this work. The randomly generated population is 

evaluated to ascertain how well each indiv idually evolved circuit performed regarding the objective function. If the evolved 

circuit satisfies the objective with zero error, the program ends otherwise generation starts. The evolved circuit from the 

generation is ext racted and converted to a symbolic  netlist by application of genetic fold ing coded in  Matlab. The netlist is then 

fed into the SCAM program that generates the matrices used for the formulation of a fitness function. The processes continue 

until zero error is obtained or the objective function is satisfied. The detailed procedure involved is explained below the 

flowchart. 

2.1.   Genetic Programming 

Genetic Programming (GP) is one of the concepts in the research area of Evolutionary Computation (EC). It  orig inated 

from the genetic algorithm (GA) created by John Koza. The major difference between the GA and GP is that: GA is 

represented by a fixed length of numerical strings, whereas GP is represented by variable length structures containing whatever 

elements are needed to solve the problem. The Tree Structure (TS) in GP population is used to create neural networks, 

determine designs for analogue electric circuits and parallelise computer programmes. The TS is great because it can produce 

solutions of complexity and arbitrary size, as opposed to GA with fixed -length. Genetic Programming (GP) not the same as 

Geometric Programming (GP) which is the type of mathemat ical optimisation characterised by constrained and objective 

function that have a special form [29]. It has been used successfully in a d ifferent number of applications: bio logy and 

bio-information, arts and entertainment, medicine, control, t ime series prediction, image and signal processing, modelling and 

regression. In GP, a population is randomly created and each indiv idual in the population is evaluated to ascertain its fitne ss 

that serves selection criteria. The best individual is picked and reproduced, crossover or mutated with other individuals to 

produce new individuals for the next generation. The GP algorithm; according to Koza [20], is based on the three steps: 

1. Generate a random population composed of the original function and termination criteria for the problem. 

2. Perform the following sub-steps iteratively until the termination criteria are reached: 

(a) Each program in the population is executed such that a fitness measure that specifies how well th e problem is solved 

is clearly formulated. 

(b) New population is created by selecting individual(s) with  probability based on fitness and then these operations are 

applied: 

(i) Reproduction: Copy existing individual to the new population. 

(ii) Crossover: Two individuals are created for the new population by randomly recombining chosen parts of two 

existing individuals. 

3. The single best individual in the population produced during the run is taken as the result.  

The GP algorithm discussed above is applied to evolve the low pass passive filter circuits with the combination of 

automatically generated netlist, SCAM and GF. 

2.1.1.   Initialisation of parameters 

The following parameters are initialised: Length of parameters (total number of parameters in tree structure) = 8191 , 

population size = 100, crossover rate = 0.90, mutation rate = 0.10, length of chromosome = Length of parameters by bit group 

(8191 2 = 16382. These are the initial values that give the best results. After initialisation of parameters, the population is 

randomly generated of size equal to population size multiplied by the length of the chromosome. 

2.1.2.   Decoding 

The string is coded into a circuit. In this case, the chromosome is divided into a bit group of two, and each is converted to 

its equivalent decimal. The decimal equivalent is interpreted as: 
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‘0’ represents capacitor (X) , ‘1’ represents inductor (Y),  ‘2’ represents series part (+) and ‘3’ represents parallel part (|) 

The input voltage, input and output resistances are fixed since their values are not changed whereas the evolutionary process 

is carried out. 

2.1.3.   Creation 

A tree is randomly generated using the operands (terminals, in this case C and L) and operators (operators, in this case + 

and |) defined in section 2.1.2 above. It is better to begin with many trees of different shapes and sizes. Trees are generated 

using the grow or the full technique: 

 Grow – path lengths in the tree will vary up to the maximum length. 

 Full – all branches in the tree must reach the maximum depth. 

 Ramp half – and - half technique – trees of varying depths from the minimum to the maximum depth. Half of the trees are 

initialised with full and the other with grow. The ramp half - and – half is used. 

2.1.4.   Mutation 

Pick a mutation point in one parent and swap its subtree with a randomly generated tree. In this work, the mutation rate of 

0.1 is used. 

2.1.5.   Crossover 

Pick crossover points in both parents and exchange the subtrees. The offspring will be different even if the parents are 

same. The crossover rate of 0.9 is used. Tournament strategy is used to select two individuals from the present population, and 

the ten randomly selected subtrees of the parents are swapped to create two offspring. 

2.2.   Genetic Folding 

Genetic Folding (GF) is a class of evolutionary algorithm based on numbers of genes structurally organised in order of 

linear numbers separated by dots [30]. In this research, the GF was used to show how the chromosome is structurally linked 

from beginning to end so that the circuit can be extracted to generate the netlist. For better understanding of GF, Eq. (1) is used 

for illustration. Fig. 2 shows its GP representations whereas its GF representation is shown in Table1. 

y
2
 + y – 3 (1) 

 

Fig. 2 Tree representations 

The tree structure expression looks like (from top to down and from left to right). The GF equation is in Eq. (2). 

+×-yyy3 (2) 

The expression in Eq. (2) is read as follow: the plus operator is a two operands operator with two values (multip lication, 
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with values (y, 3). The expression is represented using GF in Table 1. Each element is given a position number in orde r as in the 
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Table 1 GF representation of Fig. 2 

1 2 3 4 5 6 7 

+ × - y y y 3 

2.3 4.5 6.7 0.4 0.5 0.6 0.7 

The GF starts with plus operator in position 1 and terminates with element ‘3’ in position 7.  The plus operator has the 

multip licat ion operator in position 2 and minus operator in position 3. The mult iplication operator has terminals (y, y). The  

minus operator has termina ls (y, 3). The terminals are represented using their indices position. GF is summarised with the 

following points: 

 The chromosome arrangement comprises of float string in the gene and the position of the gene.  

 The gene arrangement is left child (LC) side separated by dot and right child (RC) side. 

 The dot mean and. 

 The operator with two operands has LC and RC. 

 The operator with one operand has LC and 0 in the RC. 

 The terminals have 0 in LC and value in the RC. 

2.3.   Creation of Netlist 

To evaluate how well an individual (evolved circu it) has performed  in  the population regard ing the objective function, the 

circuits are extracted and represented in the form of a symbolic netlist. In itial variable representations in the Matlab code  are 

single variab le defined in  section 3.1.2 before they are encoded into individual component type. Furthermore, a part icular 

component type is encoded with different subscripts to differentiate them if they are more than one in  a circuit . A ll these 

encodings are done symbiotically. Using one component type for an illustration, all capacitors are represented by X. Assuming 

there are ten X (ten capacitors), they are being replaced by [‘a-j’] so that if an element is picked and is ‘a’ it is assigned as C1, if 

another element is p icked  and is ‘b’ it  is assigned as C2 and so on.    The evolved circuits are presented in the form of a tree 

structure. A branch is terminated with the operand (capacitor and inductor) whereas the tree continues with an operator (series 

or parallel part). It is read from the left to the right and from the top to the bottom. The branches after the operand branches are 

represented by ‘0’. Likewise, the branches after the ‘0’ b ranches are also represented by ‘0’ so that all the branches after the 

operands branches are represented by ‘0’ up to the maximum length. All the ‘0’ elements are then removed to leave only the 

evolved circuit. 

Separation evaluation using the stack is applied to arrange the circuit as it is connected. The series (‘+’) is numbered from 

0 to the highest number series part while the parallel part are all numbered  0 as all are connected to the ground. The 

components are also numbered  with subscript from 1 to  the last e. g. a  capacitor of 10 in  a circu it is numbered as  C1 C2 C3 C4 C5 

C6 C7 C8 C9 C10. The netlist is formed, thus, if a component is picked; it is between the first node and the second node. It is 

important to note that, a series path is always connected to the next number that is not zero. For instance, if the extract f rom 

evolved circuit is in Eq. (3): 

+V+RS+L1|C1+C2+RL (3) 

Substituting the values of series and parallel form Eq. (4) 

0V1RS2L10C13C24RL (4) 

The netlist is formed symbolically as follow: 

It begins with the element name, followed by node1, node2 and then the component value  as illustrated in Table 2. 

Table 2 Netlist formation interpretation with respect to Eq. (4) 

V 0 1 component value RS 1 2 component value RL 4 0 component value 

L1 2 3 component value C1 0 3 component value C2 3 4 component value 
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The tree interpretation (Fig. 3) whereas its equivalent circuit representation is in Fig. 4. 

 

Fig. 3 Equivalent tree representations  

The circuit representation is as: 

 
Fig. 4 Equivalent circuit representations  

The symbolically generated netlist is then fed into symbolic circuit analysis that helps to generate symbolic matrices. The 

matrix generated is then used to formulate the objective functions to compute the fitness of an individual.  

2.4.   Symbolic Circuit Analysis in Matlab 

According to Gielen and Sansen, symbolic simulation can aid in automatically  creating  a large part of analytical prototype 

of a circuit required to size that circuit in design system automation [30]. Symbolic circu it analysis in Matlab (SCAM) is a tool 

that makes use of a symbolic netlist formed above to generate matrices. These matrices can be used for optimizat ion or to 

analyse circuit parameters. The tool can handle passive and active components such as capacitors, resistors, inductors, 

transistors, and operational amplifier.  The transistors are transformed into small signal analysis, and operational amplifiers 

applied the small signal analysis that is easy to be implemented in  a programme as exp lained in [31, 32]. In  the research, the 

SCAM is employed to take in automatically generated a netlist from the simulation that is symbolic, app lies it to generate 

matrices that are also symbolic before substituting their real values to get frequency response and the n compares it to  the set 

frequency response. The process continues until the set frequency is achieved.   

2.5.   Specifications of the objective function 

Frequency response (voltage gain) is used to calculate the RLC circuit.  

(a) The frequency range between 1 Hz to 1 GHz is specified as follow: 1 Hz - 1 GHz is specified for example 1 circuit with a 

cut-off frequency of 1MHz1 whereas Hz - 1 MHz with a cut-off frequency of 1.5KHz1 is specified for example 2 and so 

on. The impedance of each operand node is calculated using three parameters: the component value, component type and 

the given frequency. 

(b) Each operand node returns impedance upward. The operator node performs the corresponding arithmetic (i.e ., series and 

parallel) to obtain its impedance after receiv ing impedance from its children and the process continues until the circuit 

impedance is computed. 
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(c) The source voltage is divided by the circuit impedance to obtain the current flowing in the tree. Start ing from the source, 

the current flowing in the series node is equal to the current flowing in from the source. While in the parallel node, the 

current flowing in is divided inversely proportional to the children’s impedance and continues till the node end.  

(d) The node voltage is obtained by multiply ing the impedance by the current, and the voltage gain is obtained by dividing the 

potential d ifference drop across the specified output node by source voltage. The process is illustrated mathemat ically 

below. 

Taking the circuit from Example 2 for illustration, the symbolic matrices A in Eq. (1) and B in Eq. (2), generated from 

SCAM can be used to formulate the fitness function as: 

111
[( );  0;  0;  0;  0;  0]

S
A V R   (5) 

where A is a column matrix with fist element having a voltage source (VS) divided by input resistance (R111).  

11 12
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43 44 45
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0 0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0 0

b b

b b b

b b b
B

b b b

b b b

b b



 
 
 
 
 
 
 
 
 

 (6) 

where B is a square matrix with individual elements defined as  

11 111 12 111 21 111 22 111 111

23 111 32 111 33 1 2 111 34 2 43 2

44 2 2 3 45 3 54

1 , 1 ,  1 ,  2 ,  ,  1 1 ,

1 , 1 ,  1 1 ,  1 ,  1 , 

1 1 , 1 , 

b R b R b R freq s j b R L s

b L s b L s b C s L s L s b L s b L s

b C s L s L s b L s b

                   

                       

            
3 55 3 3 4

56 4 65 4 66 4 4

1 , 1 1 ,  

1 , 1 , 1 1
L

L s b C s L s L s

b L s b L s b C s R s L s

          

               

 (7) 

where the variables in Eq. (7) are defining individual corresponding variables of the matrix in  Eq. (6)  

1
C B A


   (8) 

where C in Eq. (8) contains unknown voltages in all the nodes to be determined. C6 
  
is the voltage across the load resistor being 

analysed to get its frequency response within a certain range of frequency specified above. To substitute the values of varia bles 

in the automatically generated matrices (symbolic matrices A and B) the eval command in Matlab is used. The logspace 

command in Mat lab is used to specify a frequency range of 50. The specificat ion is done fo r both evolved circuits using GP an d 

the targeted circuit. The d ifference between the root mean square (rms) value of the targeted frequency response and the GP 

evolved circuit  frequency response is the error that controls the GP toward the desired  circuit  specifications. The relations hip is 

in Eq. (9), as follow: 

1 2
( )W rms f f   (9) 

where W is the error, f1 is the targeted or set frequency response, and f2 is the GP evolved circuit frequency response. 

3. Existing Mechanism 

Genetic programming has been in existence but it normally combines s oftware packages (for example MATLAB and 

PSPICE) fo r electronic circuit  evolution. In this work, only MATLAB is used in  the simulat ion with the introduction of SCAM, 

automatically generated netlist and genetic folding. It helps to reduce elapsed time for t ransferring the simulat ion between the 

two software packages. The circuit evolved from GP using the Matlab program and is automatically converted into a symbolic 

netlist also by using a Matlab code. The netlist is fed into symbolic circuit analysis in Matlab (SCAM); the SCAM is used to 

generate matrices that are used for simulation. The results are then compared to that simulated from PSpice. 
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4. Results and Discussion 

4.1.   Algorithm Benchmark Testing on Mathematical Functions 

To test for reliability, validation and efficiency of optimisation algorithm are often performed  using a benchmark. 

Benchmark function is very vital to validate and compare the working of optimisation algorithms, specifically for newly 

developed ones [33]. For the new GP algorithm developed, it  is vital to validate its performance by using existing set of test 

function. The requirements of a benchmark according to Feldt et al. [34] are: 

 Validity: mistakes that invalidate the required output would be avoided, 

 Comparability: findings should be contrasted to other studies’ findings. 

 Reproducibility: experiment and problem should be well documented to enable other researchers to reproduce the same 

solutions for a given problem.  

4.1.1.   Benchmark Testing Expression 

3 2 2 2
3 4 7Z X Y X Y Y X       (10) 

Benchmark testing expression in Eq. (10) was used to test the newly developed algorithm. Both X and Y is given a range 

of values from -50 to 50 with an interval of 1 and its three-dimensional plot that is the same as that of orig inal expression is 

represented in Figure. The GP algorithm evolved the expression with optimal solution in the 52
nd

 iteration with zero errors and 

the GP TS is in Fig. 10 and the plot of erro rs against generations is shown in Fig. 11. The error plot shows how the errors 

decreased from first iteration to the iteration that gives the required solution and further run for additional 20 iterations with a 

constant error. 

 
Fig. 5 Three-dimensional plots for expression in Eq. 10 fo r the 52nd iterat ion with zero error and the 

same as original expression 

 
Fig. 6 52nd iteration GP evolved TS for expression in Eq. 10 with zero error 
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Careful evaluation of the evolved TS of Fig. 6 gives the expression simplified as: 

2 2 2

3 2 2 2

( ) ( ) (3) ( ) ( ) 7 ( 4)

( ) 3 ( ) 7 4

3 4 7

Z X X Y X Y X X Y Y Y X

Z X X Y X XY Y X

Z X Y X Y Y X

           

    

    

 

From the analysis of the TS we can infer that the algorithm is efficient as it has successfully evolved the expression. 

 
Fig. 7 Plot of errors against generations for expression in Eq. 9 

Two different low-pass, one high-pass and one band-pass passive filter circuits are used to demonstrate the efficiency of 

the algorithm. The algorithm has proved to be efficient as it successfully evolves the four circu its with zero  error. The res ults 

are the same as the set frequency response specified in the objective function. To get different sets of circuit's components 

values for the same circuit, the PSO algorithm is used to optimise the component values. The component values are given a 

range of values while PSO picked value within a given range as illustrated in respective tables of the circuits . 

4.2.   Example 1:10th Order Low-Pass Passive Filter Circuit 

In example 1, the expected or desired circu it GP representation is shown in Fig . 8 whereas the equivalent  circuit 

representation is Fig. 9. It takes fifty-six minutes to evolve the circuit after twenty-eight (28) iterations. The SCAM frequency 

response of the evolved circuit simulation is shown with the blue colour (solid) whereas the equivalent circuit PSpice 

simulation is shown with the black co lour (dash) in  Fig. 10. The desired  circuit specifications are achieved as regard design and 

frequency response curve. The MSCAM and original circuit specifications are with cut-off frequencies at 1.07 MHz with zero 

error and a gain of 1. 

 

Fig. 8 Example 1 evolved circuit tree representations  
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Fig. 9 Example 1 evolved circuit 

 
Fig. 10 Example 1 frequency response curve for SCAM (blue) and PSpice (black) 

4.3.   Example 2: Low-Pass Passive Filter Circuit 

 

Fig. 11 Example 2 evolved circuit tree representations  

In example 2, the expected or desired circuit GP representation is shown in Fig . 11 whereas the equivalent circuit 

representation is in Fig. 12. It takes three hours and twenty-four minutes to evolve the circuit after one hundred and two (102) 

iterations. The SCAM frequency response of the evolved circuit simulation is shown with the blue colour (solid) whereas the 

equivalent circu it PSpice simulat ion is shown with the black co lour (dash) in Fig . 13. The desired circuit’s specifications are 

achieved. The MSCAM and original circuit specifications are with cut-off frequencies at 1.489 kHz with zero error and a gain 

of 1. 
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Fig. 12 Example 2 evolved circuit 

 
Fig. 13 Example 2 frequency response curve for SCAM (blue) and PSpice (black) 

4.4.   Example 3: High-Pass Passive Filter Circuit 

In example 3, the expected or desired circuit GP representation is shown in Fig . 14 whereas the equivalent circuit 

representation is in Fig. 15. It takes thirty-eight minutes to evolve the circuit after one hundred and two iterations. The SCAM 

frequency response of the evolved circuit simulat ion is shown with the red colour (dash) whereas the equivalent circuit PSpic e 

simulation is shown with the blue colour (dash) in Fig . 16. The desired circuit specificat ions are achieved regarding design 

wise and frequency response curve. The MSCAM, original circu it specificat ions, have the same cut -off frequencies at 8.35 

MHz with zero error and a gain of 0.0625. 

 

Fig. 14 High-pass evolved circuit tree representations 

 
Fig. 15 High-pass evolved circuit 
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Fig. 16 High-pass frequency response curve for SCAM (blue) and PSpice (Red) 

4.5.   Example 4: Band-Pass Passive Filter Circuit 

In example 4, the expected or desired circuit GP representation is shown in Fig. 17 whereas the equivalent circuit 

representation is in Fig. 18. It takes two hours to evolve the circuit after one hundred and two iterations. The SCAM frequency 

response of the evolved circuit simulat ion is shown with the red colour (dash) whereas the equivalent circuit PSpice simulation 

is shown with the blue colour (dash) in Fig. 19. The same algorithm has been used for all these circuits evolution with little  

modifications in the cut-off frequency, length of chromosome, bit groups, which  are values to play with, and it  eliminates 

mathematical computations involving human methods. The GP evolved MSCAM simulation and original circu it specifications 

are with the lower and upper cut-off frequencies at 8.242 kHz and 48.59 kHz respectively with zero error and a gain of 0.0625. 

 

Fig. 17 Band-pass evolved circuit tree representations  

 
Fig. 18 Band-pass evolved circuit tree representations  
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Fig. 19 Band-pass frequency response curve for SCAM (red) and PSpice (black) 

5. Conclusions 

This paper introduced the use of GP, GF and SCAM for the first time use for the evolution of passive filter circuits. The 

work has provided an alternative way of using GP in Matlab only  for the evolution of passive filter circu its compared the 

existing GP approach that combine two software packages (Matlab and PSpice). It also reduced the elapse time used while 

transferring simulation between the two software packages during simulations. Results presented show that the algorithm is 

efficient in terms of design wise. 
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