
International Journal of Engineering and Technology Innovation, vol. 7, no. 4, 2017, pp. 255 - 268

The Use of Genetic Programming to Evolve Passive Filter Circuits

Ogri J. Ushie1,*, Maysam F. Abbod2, and Julie C. Ogbulezie3

1,2
Department of Electronic and Computer Engineering, College of Engineering, Design and Physical Sciences, Brunel

University London, Uxbridge, UK.

1,3
Department of Physics, University of Calabar, Calabar, Nigeria.

Received 15 January 2016; received in revised form 20 March 2017; accepted 27 July 2017

Abstract

This paper introduces the use of Genetic Programming (GP), Genetic Fold ing and symbolic circuit analysis in

Matlab for the evolution of passive filter circuits. Instead of combining MATLAB and PSPICE in electronic circuit

simulation, in this work, only MATLAB is used. It helps to reduce elapsed time fo r transferring the simulat ion

between the two software packages. The circu it evolved from GP using the Matlab program and is automatically

converted into a symbolic netlist also by using a Matlab code. The netlist is fed into symbolic circuit analysis in

Matlab (SCAM); the SCAM is used to generate matrices that are used for simulation. In this case, it is used to

analyse frequency response of passive low-pass, high-pass and band-pass filter circuits. The algorithm is tested with

four different examples and the results presented have proved that the algorithm is efficient concerning the design

wise. The work has provided an alternative way of using GP for the evolution of passive filter circuits.

Keywords: genetic folding, genetic programming, netlist, passive filter circuits, symbolic circuit analysis in Matlab

1. Introduction

The physical interpretation of the world is analogue in nature which makes analogue circuits very important in circuit

design. Although the amount of digital circuit design is more than that of analogue design, mos t digital designs require

analogue modules for interfacing to the external world. Instead of combining Matlab and PSpice in electronic circu it

simulation, in this work, only Matlab is used which helps to reduce elapsed time fo r transferring the simulat ion between the

two software packages. The circuit evolved from genetic programming (GP) by using Matlab program and is converted into a

symbolic netlist automatically by using genetic folding (GF) coded in Mat lab. The netlist is then fed into symbolic circu it

analysis in Matlab (SCAM); the SCAM is used to generate symbolic matrices that are used for the simulat ion. In this case, it is

used to analyse frequency response of passive filter.

In this paper, GP is used to evolve electronic circu its based on the initial specification set by the user; examples are given

for the design of passive filters where the cut-off frequency and the attenuation sharpness are used as the objectives for

designing the filter.

Evolvable hardware (EHW) is a field in the evolutionary algorithm used in electronic circu it design without manual

engineering design. It combines fault tolerance, autonomous system, artificial intelligence and reconfigurable hardware. Some

of EHW applicat ions in electronic circuit design are discussed by different researchers in [1-6] and related filter design is

presented in [7, 8]. In addition, some automatic syntheses of analogue circuits are described in [9-11].

GP has been used widely in a number of applications: GP is used to optimise non -functional properties of programs such

as speed, power consumption, throughput, bandwidth and size by constructing the Pareto program surface [12]. Also, GP

application in automated software repair has been shown by Forrest et al. and Weimer et al. [13, 14] and showing its usage to

* Corresponding author. E-mail address: ogri.ushie@unical.edu.ng

International Journal of Engineering and Technology Innovation, vol. 7, no. 4, 2017, pp. 255 - 268

Copyright © TAETI

256

automatically finding patches [15]. In addition, Jason and Silvano have used evolutionary search technique for circuit design

automation. The main limitation in the presentation is the inherent restriction on circuit topologies [16].

The concept of GP was introduced by Koza in 1992 for automat ic analogue circuit evolution which solve complex circu its

compared to GA. A lso, Koza illustrated 76 examples of results using GP to be competit ive with human-produced methods

[17-20]. Besides, a basic introduction to genetic programming is documented in [21]. Also, the use of current – flow analysis

and GP for the invention of CMOS amplifier is introduced in [22]; the paper explains how current-flow analysis corrects and

screens circuits using topology-independent design rules. The technique is designed to handle connections between transistors.

Furthermore, a genetic programming toolbox fo r MATLAB and GP algorithm is presented in [23, 24]. In addit ion, Hou et al.

[25] presented GP based on the tree representation for passive filter synthesis and the results presented show that the method

can generate both economical and compliant passive filter circuits. The paper also specifies how the authors intended to add

more design objectives such as component value sensitivity and group delay variation to be considered in their future work.

Chang et al. [26] used the same approach as Hou et al. , but claim that h is method is better regarding efficiency compared to

traditional method and faster than previous work. Also, similar tree representation approach in circuit design is illustrated by

Senn et al. the authors combined GP and two-port theory for analogue circuit synthesis. The model of a circu it as the two-port

network makes it straight forward fo r evaluation and encoding of their circuit’s structure and is used for passive and active

(transistor) linear circuits [27]. An alternative approach for data modelling using genetic folding as an evolutionary algorithm

for support vector regression is in [28]. Hou et al. presented GP based on the tree representation for passive filter synthesis [25],

the approach in this paper use GP, GF and SCAM that make all the simulations possible in Matlab software.

2. Methodology

Fig. 1 The GP algorithm

Generation of random population

Start generation

Extract evolved expression
and generation of tree

Decode tree

Creation Netlist

MSCAM

Evaluate fitness function

PSO

Start

Stop

Objective

function

satisfied?

International Journal of Engineering and Technology Innovation, vol. 7, no. 4, 2017, pp. 255 - 268

Copyright © TAETI

257

The flowchart is shown in Fig. 1 summarises the method used in this work. The randomly generated population is

evaluated to ascertain how well each indiv idually evolved circuit performed regarding the objective function. If the evolved

circuit satisfies the objective with zero error, the program ends otherwise generation starts. The evolved circuit from the

generation is ext racted and converted to a symbolic netlist by application of genetic fold ing coded in Matlab. The netlist is then

fed into the SCAM program that generates the matrices used for the formulation of a fitness function. The processes continue

until zero error is obtained or the objective function is satisfied. The detailed procedure involved is explained below the

flowchart.

2.1. Genetic Programming

Genetic Programming (GP) is one of the concepts in the research area of Evolutionary Computation (EC). It orig inated

from the genetic algorithm (GA) created by John Koza. The major difference between the GA and GP is that: GA is

represented by a fixed length of numerical strings, whereas GP is represented by variable length structures containing whatever

elements are needed to solve the problem. The Tree Structure (TS) in GP population is used to create neural networks,

determine designs for analogue electric circuits and parallelise computer programmes. The TS is great because it can produce

solutions of complexity and arbitrary size, as opposed to GA with fixed -length. Genetic Programming (GP) not the same as

Geometric Programming (GP) which is the type of mathemat ical optimisation characterised by constrained and objective

function that have a special form [29]. It has been used successfully in a d ifferent number of applications: bio logy and

bio-information, arts and entertainment, medicine, control, t ime series prediction, image and signal processing, modelling and

regression. In GP, a population is randomly created and each indiv idual in the population is evaluated to ascertain its fitne ss

that serves selection criteria. The best individual is picked and reproduced, crossover or mutated with other individuals to

produce new individuals for the next generation. The GP algorithm; according to Koza [20], is based on the three steps:

1. Generate a random population composed of the original function and termination criteria for the problem.

2. Perform the following sub-steps iteratively until the termination criteria are reached:

(a) Each program in the population is executed such that a fitness measure that specifies how well th e problem is solved

is clearly formulated.

(b) New population is created by selecting individual(s) with probability based on fitness and then these operations are

applied:

(i) Reproduction: Copy existing individual to the new population.

(ii) Crossover: Two individuals are created for the new population by randomly recombining chosen parts of two

existing individuals.

3. The single best individual in the population produced during the run is taken as the result.

The GP algorithm discussed above is applied to evolve the low pass passive filter circuits with the combination of

automatically generated netlist, SCAM and GF.

2.1.1. Initialisation of parameters

The following parameters are initialised: Length of parameters (total number of parameters in tree structure) = 8191 ,

population size = 100, crossover rate = 0.90, mutation rate = 0.10, length of chromosome = Length of parameters by bit group

(8191 2 = 16382. These are the initial values that give the best results. After initialisation of parameters, the population is

randomly generated of size equal to population size multiplied by the length of the chromosome.

2.1.2. Decoding

The string is coded into a circuit. In this case, the chromosome is divided into a bit group of two, and each is converted to

its equivalent decimal. The decimal equivalent is interpreted as:

International Journal of Engineering and Technology Innovation, vol. 7, no. 4, 2017, pp. 255 - 268

Copyright © TAETI

258

‘0’ represents capacitor (X) , ‘1’ represents inductor (Y), ‘2’ represents series part (+) and ‘3’ represents parallel part (|)

The input voltage, input and output resistances are fixed since their values are not changed whereas the evolutionary process

is carried out.

2.1.3. Creation

A tree is randomly generated using the operands (terminals, in this case C and L) and operators (operators, in this case +

and |) defined in section 2.1.2 above. It is better to begin with many trees of different shapes and sizes. Trees are generated

using the grow or the full technique:

 Grow – path lengths in the tree will vary up to the maximum length.

 Full – all branches in the tree must reach the maximum depth.

 Ramp half – and - half technique – trees of varying depths from the minimum to the maximum depth. Half of the trees are

initialised with full and the other with grow. The ramp half - and – half is used.

2.1.4. Mutation

Pick a mutation point in one parent and swap its subtree with a randomly generated tree. In this work, the mutation rate of

0.1 is used.

2.1.5. Crossover

Pick crossover points in both parents and exchange the subtrees. The offspring will be different even if the parents are

same. The crossover rate of 0.9 is used. Tournament strategy is used to select two individuals from the present population, and

the ten randomly selected subtrees of the parents are swapped to create two offspring.

2.2. Genetic Folding

Genetic Folding (GF) is a class of evolutionary algorithm based on numbers of genes structurally organised in order of

linear numbers separated by dots [30]. In this research, the GF was used to show how the chromosome is structurally linked

from beginning to end so that the circuit can be extracted to generate the netlist. For better understanding of GF, Eq. (1) is used

for illustration. Fig. 2 shows its GP representations whereas its GF representation is shown in Table1.

y
2
 + y – 3 (1)

Fig. 2 Tree representations

The tree structure expression looks like (from top to down and from left to right). The GF equation is in Eq. (2).

+×-yyy3 (2)

The expression in Eq. (2) is read as follow: the plus operator is a two operands operator with two values (multip lication,

minus). The mult iplication operator is a two operands operator with values (y, y), the minus operator is a two operand operat or

with values (y, 3). The expression is represented using GF in Table 1. Each element is given a position number in orde r as in the

first row, the elements are in the second row and the elements are folded over their complementary position genes in the third row.

3
y

y y

+

- ×

1

2

4 5 6 7

3

International Journal of Engineering and Technology Innovation, vol. 7, no. 4, 2017, pp. 255 - 268

Copyright © TAETI

259

Table 1 GF representation of Fig. 2

1 2 3 4 5 6 7

+ × - y y y 3

2.3 4.5 6.7 0.4 0.5 0.6 0.7

The GF starts with plus operator in position 1 and terminates with element ‘3’ in position 7. The plus operator has the

multip licat ion operator in position 2 and minus operator in position 3. The mult iplication operator has terminals (y, y). The

minus operator has termina ls (y, 3). The terminals are represented using their indices position. GF is summarised with the

following points:

 The chromosome arrangement comprises of float string in the gene and the position of the gene.

 The gene arrangement is left child (LC) side separated by dot and right child (RC) side.

 The dot mean and.

 The operator with two operands has LC and RC.

 The operator with one operand has LC and 0 in the RC.

 The terminals have 0 in LC and value in the RC.

2.3. Creation of Netlist

To evaluate how well an individual (evolved circu it) has performed in the population regard ing the objective function, the

circuits are extracted and represented in the form of a symbolic netlist. In itial variable representations in the Matlab code are

single variab le defined in section 3.1.2 before they are encoded into individual component type. Furthermore, a part icular

component type is encoded with different subscripts to differentiate them if they are more than one in a circuit . A ll these

encodings are done symbiotically. Using one component type for an illustration, all capacitors are represented by X. Assuming

there are ten X (ten capacitors), they are being replaced by [‘a-j’] so that if an element is picked and is ‘a’ it is assigned as C1, if

another element is p icked and is ‘b’ it is assigned as C2 and so on. The evolved circuits are presented in the form of a tree

structure. A branch is terminated with the operand (capacitor and inductor) whereas the tree continues with an operator (series

or parallel part). It is read from the left to the right and from the top to the bottom. The branches after the operand branches are

represented by ‘0’. Likewise, the branches after the ‘0’ b ranches are also represented by ‘0’ so that all the branches after the

operands branches are represented by ‘0’ up to the maximum length. All the ‘0’ elements are then removed to leave only the

evolved circuit.

Separation evaluation using the stack is applied to arrange the circuit as it is connected. The series (‘+’) is numbered from

0 to the highest number series part while the parallel part are all numbered 0 as all are connected to the ground. The

components are also numbered with subscript from 1 to the last e. g. a capacitor of 10 in a circu it is numbered as C1 C2 C3 C4 C5

C6 C7 C8 C9 C10. The netlist is formed, thus, if a component is picked; it is between the first node and the second node. It is

important to note that, a series path is always connected to the next number that is not zero. For instance, if the extract f rom

evolved circuit is in Eq. (3):

+V+RS+L1|C1+C2+RL (3)

Substituting the values of series and parallel form Eq. (4)

0V1RS2L10C13C24RL (4)

The netlist is formed symbolically as follow:

It begins with the element name, followed by node1, node2 and then the component value as illustrated in Table 2.

Table 2 Netlist formation interpretation with respect to Eq. (4)

V 0 1 component value RS 1 2 component value RL 4 0 component value

L1 2 3 component value C1 0 3 component value C2 3 4 component value

International Journal of Engineering and Technology Innovation, vol. 7, no. 4, 2017, pp. 255 - 268

Copyright © TAETI

260

The tree interpretation (Fig. 3) whereas its equivalent circuit representation is in Fig. 4.

Fig. 3 Equivalent tree representations

The circuit representation is as:

Fig. 4 Equivalent circuit representations

The symbolically generated netlist is then fed into symbolic circuit analysis that helps to generate symbolic matrices. The

matrix generated is then used to formulate the objective functions to compute the fitness of an individual.

2.4. Symbolic Circuit Analysis in Matlab

According to Gielen and Sansen, symbolic simulation can aid in automatically creating a large part of analytical prototype

of a circuit required to size that circuit in design system automation [30]. Symbolic circu it analysis in Matlab (SCAM) is a tool

that makes use of a symbolic netlist formed above to generate matrices. These matrices can be used for optimizat ion or to

analyse circuit parameters. The tool can handle passive and active components such as capacitors, resistors, inductors,

transistors, and operational amplifier. The transistors are transformed into small signal analysis, and operational amplifiers

applied the small signal analysis that is easy to be implemented in a programme as exp lained in [31, 32]. In the research, the

SCAM is employed to take in automatically generated a netlist from the simulation that is symbolic, app lies it to generate

matrices that are also symbolic before substituting their real values to get frequency response and the n compares it to the set

frequency response. The process continues until the set frequency is achieved.

2.5. Specifications of the objective function

Frequency response (voltage gain) is used to calculate the RLC circuit.

(a) The frequency range between 1 Hz to 1 GHz is specified as follow: 1 Hz - 1 GHz is specified for example 1 circuit with a

cut-off frequency of 1MHz1 whereas Hz - 1 MHz with a cut-off frequency of 1.5KHz1 is specified for example 2 and so

on. The impedance of each operand node is calculated using three parameters: the component value, component type and

the given frequency.

(b) Each operand node returns impedance upward. The operator node performs the corresponding arithmetic (i.e ., series and

parallel) to obtain its impedance after receiv ing impedance from its children and the process continues until the circuit

impedance is computed.

V1
1Vac

0Vdc

R111

1k

RL

1k

L111

10uH

C1

1n

C2

1n

0

3 4

1

2

2

R

S

1

V

0

C1

3

4

C2

L1

RL

International Journal of Engineering and Technology Innovation, vol. 7, no. 4, 2017, pp. 255 - 268

Copyright © TAETI

261

(c) The source voltage is divided by the circuit impedance to obtain the current flowing in the tree. Start ing from the source,

the current flowing in the series node is equal to the current flowing in from the source. While in the parallel node, the

current flowing in is divided inversely proportional to the children’s impedance and continues till the node end.

(d) The node voltage is obtained by multiply ing the impedance by the current, and the voltage gain is obtained by dividing the

potential d ifference drop across the specified output node by source voltage. The process is illustrated mathemat ically

below.

Taking the circuit from Example 2 for illustration, the symbolic matrices A in Eq. (1) and B in Eq. (2), generated from

SCAM can be used to formulate the fitness function as:

111
[(); 0; 0; 0; 0; 0]

S
A V R (5)

where A is a column matrix with fist element having a voltage source (VS) divided by input resistance (R111).

11 12

21 22 23

32 33 34

43 44 45

54 55 56

65 66

0 0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0 0

b b

b b b

b b b
B

b b b

b b b

b b

 (6)

where B is a square matrix with individual elements defined as

11 111 12 111 21 111 22 111 111

23 111 32 111 33 1 2 111 34 2 43 2

44 2 2 3 45 3 54

1 , 1 , 1 , 2 , , 1 1 ,

1 , 1 , 1 1 , 1 , 1 ,

1 1 , 1 ,

b R b R b R freq s j b R L s

b L s b L s b C s L s L s b L s b L s

b C s L s L s b L s b

3 55 3 3 4

56 4 65 4 66 4 4

1 , 1 1 ,

1 , 1 , 1 1
L

L s b C s L s L s

b L s b L s b C s R s L s

 (7)

where the variables in Eq. (7) are defining individual corresponding variables of the matrix in Eq. (6)

1
C B A

 (8)

where C in Eq. (8) contains unknown voltages in all the nodes to be determined. C6

is the voltage across the load resistor being

analysed to get its frequency response within a certain range of frequency specified above. To substitute the values of varia bles

in the automatically generated matrices (symbolic matrices A and B) the eval command in Matlab is used. The logspace

command in Mat lab is used to specify a frequency range of 50. The specificat ion is done fo r both evolved circuits using GP an d

the targeted circuit. The d ifference between the root mean square (rms) value of the targeted frequency response and the GP

evolved circuit frequency response is the error that controls the GP toward the desired circuit specifications. The relations hip is

in Eq. (9), as follow:

1 2
()W rms f f (9)

where W is the error, f1 is the targeted or set frequency response, and f2 is the GP evolved circuit frequency response.

3. Existing Mechanism

Genetic programming has been in existence but it normally combines s oftware packages (for example MATLAB and

PSPICE) fo r electronic circuit evolution. In this work, only MATLAB is used in the simulat ion with the introduction of SCAM,

automatically generated netlist and genetic folding. It helps to reduce elapsed time for t ransferring the simulat ion between the

two software packages. The circuit evolved from GP using the Matlab program and is automatically converted into a symbolic

netlist also by using a Matlab code. The netlist is fed into symbolic circuit analysis in Matlab (SCAM); the SCAM is used to

generate matrices that are used for simulation. The results are then compared to that simulated from PSpice.

International Journal of Engineering and Technology Innovation, vol. 7, no. 4, 2017, pp. 255 - 268

Copyright © TAETI

262

4. Results and Discussion

4.1. Algorithm Benchmark Testing on Mathematical Functions

To test for reliability, validation and efficiency of optimisation algorithm are often performed using a benchmark.

Benchmark function is very vital to validate and compare the working of optimisation algorithms, specifically for newly

developed ones [33]. For the new GP algorithm developed, it is vital to validate its performance by using existing set of test

function. The requirements of a benchmark according to Feldt et al. [34] are:

 Validity: mistakes that invalidate the required output would be avoided,

 Comparability: findings should be contrasted to other studies’ findings.

 Reproducibility: experiment and problem should be well documented to enable other researchers to reproduce the same

solutions for a given problem.

4.1.1. Benchmark Testing Expression

3 2 2 2
3 4 7Z X Y X Y Y X (10)

Benchmark testing expression in Eq. (10) was used to test the newly developed algorithm. Both X and Y is given a range

of values from -50 to 50 with an interval of 1 and its three-dimensional plot that is the same as that of orig inal expression is

represented in Figure. The GP algorithm evolved the expression with optimal solution in the 52
nd

 iteration with zero errors and

the GP TS is in Fig. 10 and the plot of erro rs against generations is shown in Fig. 11. The error plot shows how the errors

decreased from first iteration to the iteration that gives the required solution and further run for additional 20 iterations with a

constant error.

Fig. 5 Three-dimensional plots for expression in Eq. 10 fo r the 52nd iterat ion with zero error and the

same as original expression

Fig. 6 52nd iteration GP evolved TS for expression in Eq. 10 with zero error

0
20

40
60

80
100

120

0

50

100

150
-4

-2

0

2

4
x 10

8

X-Axis

3D Plot of X, Y and Z

Y-Axis

Z-
A
xi

s

International Journal of Engineering and Technology Innovation, vol. 7, no. 4, 2017, pp. 255 - 268

Copyright © TAETI

263

Careful evaluation of the evolved TS of Fig. 6 gives the expression simplified as:

2 2 2

3 2 2 2

() () (3) () () 7 (4)

() 3 () 7 4

3 4 7

Z X X Y X Y X X Y Y Y X

Z X X Y X XY Y X

Z X Y X Y Y X

From the analysis of the TS we can infer that the algorithm is efficient as it has successfully evolved the expression.

Fig. 7 Plot of errors against generations for expression in Eq. 9

Two different low-pass, one high-pass and one band-pass passive filter circuits are used to demonstrate the efficiency of

the algorithm. The algorithm has proved to be efficient as it successfully evolves the four circu its with zero error. The res ults

are the same as the set frequency response specified in the objective function. To get different sets of circuit's components

values for the same circuit, the PSO algorithm is used to optimise the component values. The component values are given a

range of values while PSO picked value within a given range as illustrated in respective tables of the circuits .

4.2. Example 1:10th Order Low-Pass Passive Filter Circuit

In example 1, the expected or desired circu it GP representation is shown in Fig . 8 whereas the equivalent circuit

representation is Fig. 9. It takes fifty-six minutes to evolve the circuit after twenty-eight (28) iterations. The SCAM frequency

response of the evolved circuit simulation is shown with the blue colour (solid) whereas the equivalent circuit PSpice

simulation is shown with the black co lour (dash) in Fig. 10. The desired circuit specifications are achieved as regard design and

frequency response curve. The MSCAM and original circuit specifications are with cut-off frequencies at 1.07 MHz with zero

error and a gain of 1.

Fig. 8 Example 1 evolved circuit tree representations

+

R111

+

V

|

C1

|

+

|

+

|

+

|

+

+

L1

C3

C4

C5

C2

L2

L3

L4

L5 RL

International Journal of Engineering and Technology Innovation, vol. 7, no. 4, 2017, pp. 255 - 268

Copyright © TAETI

264

Fig. 9 Example 1 evolved circuit

Fig. 10 Example 1 frequency response curve for SCAM (blue) and PSpice (black)

4.3. Example 2: Low-Pass Passive Filter Circuit

Fig. 11 Example 2 evolved circuit tree representations

In example 2, the expected or desired circuit GP representation is shown in Fig . 11 whereas the equivalent circuit

representation is in Fig. 12. It takes three hours and twenty-four minutes to evolve the circuit after one hundred and two (102)

iterations. The SCAM frequency response of the evolved circuit simulation is shown with the blue colour (solid) whereas the

equivalent circu it PSpice simulat ion is shown with the black co lour (dash) in Fig . 13. The desired circuit’s specifications are

achieved. The MSCAM and original circuit specifications are with cut-off frequencies at 1.489 kHz with zero error and a gain

of 1.

R111

50
RL

50C1

1.3n

C2

4.79n

C3

5.8n C4

5.8n

C5

5.8n

L1

8.05uH

L2

12.8uH

L3

13.8uH

L4

13.8uH

L5

10.9uH

V1
2Vac

0Vdc

1

0

2 43
Vout

6

0V

5 7

L111

+

R111

+

V

|

C1

+

|

+

|

+

|

+

|

+

|

+

|

+

L2

C3

C4

C5

C6

C7

C2

L3

L4

L5

L6

L7

RL

International Journal of Engineering and Technology Innovation, vol. 7, no. 4, 2017, pp. 255 - 268

Copyright © TAETI

265

Fig. 12 Example 2 evolved circuit

Fig. 13 Example 2 frequency response curve for SCAM (blue) and PSpice (black)

4.4. Example 3: High-Pass Passive Filter Circuit

In example 3, the expected or desired circuit GP representation is shown in Fig . 14 whereas the equivalent circuit

representation is in Fig. 15. It takes thirty-eight minutes to evolve the circuit after one hundred and two iterations. The SCAM

frequency response of the evolved circuit simulat ion is shown with the red colour (dash) whereas the equivalent circuit PSpic e

simulation is shown with the blue colour (dash) in Fig . 16. The desired circuit specificat ions are achieved regarding design

wise and frequency response curve. The MSCAM, original circu it specificat ions, have the same cut -off frequencies at 8.35

MHz with zero error and a gain of 0.0625.

Fig. 14 High-pass evolved circuit tree representations

Fig. 15 High-pass evolved circuit

R111

1k

RL

1k

C1

90n

C2

210n

C3

210n

C4

210n

C5

210n

C6

210n

C7

90n

L111

10uH

L2

178000uH

L3

210000uH

L4

190000uH

L5

190000uH

L6

190000uH

L7

178000uH

V1
2Vac

0Vdc

1

0

2 53 4
Vout

7 8

0V

6 9

R111

750

R2

50

C111

291.9p

C2

274.1p

C3

431p

C4

2.019n

L1

632n

L2

813.7n

L3

1.733u

V1
1Vac

0Vdc

0

1 5432
Vout

6

+

R111

+

V

+

C111
+

|

+

|

+

|

RL

L1

C3

C4

C2

L2

L3

L4

International Journal of Engineering and Technology Innovation, vol. 7, no. 4, 2017, pp. 255 - 268

Copyright © TAETI

266

Fig. 16 High-pass frequency response curve for SCAM (blue) and PSpice (Red)

4.5. Example 4: Band-Pass Passive Filter Circuit

In example 4, the expected or desired circuit GP representation is shown in Fig. 17 whereas the equivalent circuit

representation is in Fig. 18. It takes two hours to evolve the circuit after one hundred and two iterations. The SCAM frequency

response of the evolved circuit simulat ion is shown with the red colour (dash) whereas the equivalent circuit PSpice simulation

is shown with the blue colour (dash) in Fig. 19. The same algorithm has been used for all these circuits evolution with little

modifications in the cut-off frequency, length of chromosome, bit groups, which are values to play with, and it eliminates

mathematical computations involving human methods. The GP evolved MSCAM simulation and original circu it specifications

are with the lower and upper cut-off frequencies at 8.242 kHz and 48.59 kHz respectively with zero error and a gain of 0.0625.

Fig. 17 Band-pass evolved circuit tree representations

Fig. 18 Band-pass evolved circuit tree representations

R111

750

R2

50

L2

350.3u

L1

511.3u

L3

511.3u

C2

180.5n

C1

123.7n

C3

123.7n

V1
1Vac

0Vdc

1 3
Vout

42

0

L4

239.2u

C4

264.3n

5

L5

1.048mC5

60.35n

6

L6

51.53u

7
C6

1.227u

8

C1

+

R111

+

V

|

L1

|

+

+

|

|

+

+

|

|

+

+

L2

L3

C4

L5

C6

C2

C3

L4

C5

L6

International Journal of Engineering and Technology Innovation, vol. 7, no. 4, 2017, pp. 255 - 268

Copyright © TAETI

267

Fig. 19 Band-pass frequency response curve for SCAM (red) and PSpice (black)

5. Conclusions

This paper introduced the use of GP, GF and SCAM for the first time use for the evolution of passive filter circuits. The

work has provided an alternative way of using GP in Matlab only for the evolution of passive filter circu its compared the

existing GP approach that combine two software packages (Matlab and PSpice). It also reduced the elapse time used while

transferring simulation between the two software packages during simulations. Results presented show that the algorithm is

efficient in terms of design wise.

References

[1] K. K. Anumandla, R. Peesapati, S. L. Sabat, S. K. Udgata, and A. Abraham, “Field programmable gate arrays-based

differential evolution coprocessor: a case study of spectrum allocation in cognitive radio network,” IET Computers &

Digital Techniques, vol. 7, no. 5, pp. 221-234, August 2013.

[2] E. A. Coyle, L. P. Maguire, and T. M. McGinnity, “Design philosophy for self-repair of electronic systems using the

UML,” IEE Proceedings-Software, vol. 149, no. 6, pp. 179-186, December 2002.

[3] S. Maheshwari, “Analogue signal processing applications using a new circuit topology,” IET Circuits, Devices & Systems,

vol. 3, no. 3, pp. 106-115, June 2009.

[4] A. Tyrrell, R. Krohling, and Y. Zhou, “Evolutionary algorithm for the promotion of evolvable hardware,” IEE

Proceedings-Computers and Digital Techniques , vol. 151, no. 4, pp. 267-275, July 2004.

[5] S. Vakili, S. M. Fakhraie, and S. Mohammadi, “Evolvable multi-processor: a novel MPSoC architecture with evolvable

task decomposition and scheduling,” IET Computers & Digital Techniques, vol. 4, no. 2, pp. 143-156, March 2010.

[6] J. Wang, Q. S. Chen, and C. H. Lee, “Design and implementation of a virtual reconfigurable architecture for different

applications of intrinsic evolvable hardware,” IET Computers & Digital Techniques, vol. 2, no. 5, pp. 386-400, September

2008.

[7] B. Singh, V. Verma, A. Chandra, and K. Al-Haddad, “Hybrid filters for power quality improvement,” IEE

Proceedings-Generation, Transmission and Distribution, vol. 152, no. 3, pp. 365-378, May 2005.

[8] S. Maheshwari and B. Chaturvedi, “High-input low-output impedance all-pass filters using one active element,” IET

Circuits, Devices & Systems, vol. 6, no. 2, pp. 103-110, March 2012.

[9] G. Alpaydin, S. Balkir, and G. Dündar, “An evolutionary approach to automatic synthesis of high-performance analog

integrated circuits,” IEEE Transactions on Evolutionary Computation, vol. 7, no. 3, pp. 240-252, June 2003.

[10] E. Martens and G. Gielen, “Classification of analog synthesis tools based on their architecture selection mechanisms,”

Integration, the VLSI Journal, vol. 41, no. 2, pp. 238-252, February 2008.

[11] O. Mitea, M. Meissner, L. Hedrich, and P. Jores, “Automated constraint-driven topology synthesis for analog circuits,”

Design, Automation & Test in Europe Conference & Exhibition, IEEE press, May 2011, pp. 1-4.

[12] M. Harman, W. B. Langdon, Y. Jia, D. R. White, A. Arcuri, and J. A. Clark, “The GISMOE challenge: Constructing the

pareto program surface using genetic programming to find better programs (keynote paper),” Proc. IEEE/ACM

International Conf. Automated Software Engineering, IEEE press, April 2012, pp. 1-14.

[13] S. Forrest, T. Nguyen, W. Weimer, and C. Le Goues, “A genetic programming approach to automated software repair,”

Proc. Annual Conf. Genetic and Evolutionary Computation, ACM press, July 2009, pp. 947-954.

[14] W. Weimer, S. Forrest, C. Le Goues , and T. Nguyen, “Automatic program repair with evolutionary computation,”

Communications of the ACM, vol. 53, no. 5, pp. 109-116, May 2010.

International Journal of Engineering and Technology Innovation, vol. 7, no. 4, 2017, pp. 255 - 268

Copyright © TAETI

268

[15] W. Weimer, T. Nguyen, C. Le Goues , and S. Forrest, “Automatically finding patches using genetic programming,” Proc.

International Conf. Software Engineering, ACM press, May 2009, pp. 364-374.

[16] J. D. Lohn and S. P. Colombano, “A circu it representation technique for automated circuit design,” IEEE Transactions on

Evolutionary Computation, vol. 3, no. 3, pp. 205-219, September 1999.

[17] J. R. Koza, “Human-competitive results produced by genetic programming,” Genetic Programming and Evolvable

Machines, vol. 11, no. 3-4, pp. 251-284, May 2010.

[18] J. R. Koza, S. H. Al-Sakran, and L. W. Jones, “Cross-domain features of runs of genetic programming used to evolve

designs for analog circuits, optical lens systems, controllers, antennas, mechanical systems, and quantum computing

circuits,” Proc. 2005 NASA/DoD Conf. Evolvable Hardware, IEEE press, September 2005, pp. 205-212.

[19] J. R. Koza, F. H. Bennett III, D. Andre, M. A. Keane, and F. Dunlap, “Automated synthesis of analog electrical circuits by

means of genetic programming,” IEEE Transactions on Evolutionary Computation, vol. 1, no. 2, pp. 109-128, July 1997.

[20] J. R. Koza, “Genetic programming as a means for p rogramming computers by natural selection,” Statistics and Computing,

vol. 4, no. 2, pp. 87-112, June 1994.

[21] M. Walker, “Introduction to genetic programming,” Tech.Np: University of Montana, 2001.

[22] T. Sripramong and C. Toumazou, “The invention of CMOS amplifiers using genetic programming and current -flow

analysis,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 21, no. 11, pp.

1237-1252, November 2002.

[23] S. Silva and J. Almeida, “GPLAB-a genetic programming toolbox for MATLAB,” Proc. Nordic MATLAB Conference,

2005, pp. 273-278.

[24] K. Rodríguez and R. Mendoza, “A Matlab genetic programming approach to topographic mesh surface generation ,”

Engineering Education and Research Using MATLAB, pp.427-442, 2011.

[25] H. Hou, S. Chang, and Y. Su, “Economical passive filter synthesis using genetic programming based on tree

representation,” IEEE International Symp. Circuits and Systems, IEEE press, July 2005, p. 3003.

[26] S. Chang and Y. Su, “Automated passive filter synthesis using a novel tree representation and genetic programming,”

IEEE Transactions on Evolutionary Computation, vol. 10, no. 1, pp. 93-100, February 2006.

[27] A. Senn, A. Peter, and J. G. Korvink, “Analog circuit synthesis using two-port theory and genetic programming,”

AFRICON, IEEE press, November 2011, pp. 1-8.

[28] M. Mezher and M. F. Abbod, “A new genetic fold ing algorithm for regression problems,” UKSim 14th International Conf.

Computer Modelling and Simulation (UKSim), IEEE press, May 2012, pp. 46-51.

[29] S. Boyd, S. Kim, L. Vandenberghe, and A. Hassibi, “A tutorial on geometric programming,” Optimization and

Engineering, vol. 8, no. 1, pp. 67-127, March 2007.

[30] G. Gielen and W. Sansen, Symbolic analysis for automated design of analog integrated circuits, Springer Science &

Business Media, New York, 2012.

[31] O. J. Ushie, M. Abbod, and E. Ashigwuike, “Matlab symbolic circuit analysis and simulat ion tool us ing PSpice netlist for

circuits optimization,” International Journal of Engineering and Technology Innovation, vol. 5, no. 2, pp. 75-86, April

2015.

[32] E. Cheever, “Symbolic Circuit Analysis in MATLAB (SCAM),” Swarthmore College, http://www.swarthmore.edu/,

November, 2005.

[33] M. Jamil and X. Yang, “A literature survey of benchmark functions for global optimisation problems,” International

Journal of Mathematical Modelling and Numerical Optimisation, vol. 4, no. 2, pp. 150-194, 2013.

[34] R. Feldt, M. O’Neill, C. Rayn, P. Nordin, and W. B. Langdon, “GP-beagle: A benchmarking problem repository for the

genetic programming community,” Late Breaking Papers at GECCO, UCL Discovery press, June 2000, pp. 1-8.

