
International Journal of Engineering and Technology Innovation, vol. 7, no. 4, 2017, pp. 229 - 242 

Analyzing Mappings and Properties in Data Warehouse Integration 

Domenico Beneventano, Marius Octavian Olaru, Maurizio Vincini* 

Department of Engineering “E. Ferrari”, University of Modena and Reggio Emilia, Italy. 

Received 18 July 2016; received in revised form 16 April 2017; accepted 29 April 2017 

Abstract 

The information inside the Data Warehouse (DW) is used to take strategic decisions inside the organization that 

is why data quality plays a crucial role in guaranteeing the correctness of the decisions. Data quality also becomes a 

major issue when integrating informat ion from two or more heterogeneous DWs. In the present paper, we perform 

extensive analysis of a mapping-based DW integration methodology and of its properties. In  particular, we will 

prove that the proposed methodology guarantees coherency, meanwhile in  certain  cases it is ab le to maintain 

soundness and consistency. Moreover, intra-schema homogeneity is discussed and analysed as a necessary condition 

for summarizability and for optimization by materializing views of dependent queries. 
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1. Introduction 

Data Warehouse (DW) is intended as a method for obtaining strategic information from the operational data to be used by 

business people as an instrument for better understanding the organization's processes. Kimball defines it a s a subject-oriented, 

integrated, time-variant and non-volatile collection of data in support of manage ment's decision-making process [1]. Aside 

from other properties, we observe that a DW usually integrates data obtained from mult iple repositories, which goes through a 

series of operations (extract-transform-load, or ETL) before being loaded into the final DW. Data is also cleansed to augment 

its quality, to reflect the decision making process' relevance within the organization. A DW is po ssibly divided into one or 

more Data Marts (DM), which are multi-dimensional repositories of analysis of specific aspects of the organization's activit ies, 

like services, revenue, shipments, etc., and is usually confined within one single company. 

Subsequently, there has been the case where companies needed to combine informat ion obtained from d ifferent, 

heterogeneous DWs to fulfil managerial demands imposed by business decisions or simply by the economical context. For 

example, it is common nowadays for two or more companies to merge or to collaborate within dynamic business structures 

(like federat ion of enterprises, virtual organizations [2], etc.) where managers and business stakeholders need to share and 

access the common knowledge of the organizat ions' activity. For this purpose, distributed and independent DW architectures 

(e.g. [3]) and networks (e.g. [4]) have been proposed to allow common interest information sharing and integration among 

distinct stakeholders. 

In this paper, a mapping-based integration methodology that is able to generate semantic mappings between dimensions 

of different DWs is proposed, either between dimension categories or between members of such categories. The work is 

motivated by data-quality which is a crucial aspect when building an inter-organization DW; in fact, given the use of the DW, 

incorrect or low-quality data may not only make the DW  useless, but its use may also lead to wrong decisions with potential 

negative impact on the organization. For these reasons data-quality requirements for the generated mappings, such as 

coherency and consistency, are formally analyzed to ensure that the integrated informat ion can be correctly aggregated (or 
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disaggregated). This observation is relevant as the multid imensional data is usually exp lored along aggregation patterns, 

drilling-down or rolling-up from a starting analysis point. With respect to the previous works [5,6] where the mapping-based 

integration methodology was introduced, the present paper expands such methodology and performs extensive property 

analysis of the mapping discovery and integration techniques.  

The paper is structured as follows: Section 2 provides an overview of related work. Section 3 provides the preliminary 

discussion of dimension mappings, the properties that a mapping has to guarantee, and also a d iscussion on intra - and 

inter-schema heterogeneity; Section 4 describes the mapping and integration methodology to be analyzed, while Section 5 

provides the analytic discussion of the properties that are guaranteed and/or maintained while performing mapping discovery 

and dimension integration. Finally, Section 6 contains the conclusions of the current work. 

2. Related Work 

As stated in [7], the problem of data warehouse integration has received less attention than the general problem of 

databases integration, which has been extensively studied in  the literature  ([8-10]). As a consequence, few approaches that deal 

with the data warehouse integration problem systematically, and fewer still that attempt to provide a complete integration 

methodology, are available. 

To tackle the basic issue of matching heterogeneous dimensions, the work in [ 11] introduces the desirable p roperties of 

coherence, soundness and consistency that “good” matchings between dimensions should enjoy and, then, proposes two 

different approaches to the problem of integration that try to enforce matchings satisfying these properties ; the authors have 

also shown that such properties give the possibility to correlate, in a correct way, mult iple data marts by means of drill-across 

queries, which are basically jo ins, over common dimensions, of different data marts. In this present paper an integration 

methodology is proposed; the metodology is  based on the properties of coherence, soundness and consistency, which is 

substantially d ifferent from the one proposed in [11]. First, unlike  [11] where matchings are provided, i.e., matchings are an 

input of the problem; in the proposed methodology matchings that identify similar categories from the two dimensions are 

generated. Moreover, and more important, in  the proposed methodology each dimension is augmented with compatible 

categories and members from the other dimensions  and a formal discussion of how propert ies are preserved along this 

technique is provided. The preliminary idea to map and import categories and members of different dimensions to allow 

information integration between two or more compatible dimensions  was introduced in previous works [5, 6].  

In [12] the authors define the term “conformed dimensions" as either identical or strict mathemat ical subsets of the most 

granular and detailed dimensions. Conformed dimensions share dimension keys, column names, attribute definitions and 

attribute values. Conformed dimensions are, of course, coherent, and in some cases sound and consistent. However, rather than 

providing an integration methodology, the author defines the “Data Warehouse Bus Architecture", which  is a design 

methodology for incrementally building the enterprise Data Warehouse to facilitate the integration of autonomous Data Marts 

sharing the conformed dimensions. 

In [13], the authors provide a mapping technique for DW elements based on semantics and on earlier work in data 

integration ([8, 10, 14]); class similarity is used to find related elements (facts, dimension, and aggregation levels) that the 

authors use to generate mappings between two DW schemas ; the mapping derived for dimension categories is conceptually 

equivalent to the mapping proposed in [11]. The authors also discard mappings that are not coherent and study the stable 

marriage problem for selecting the best mapping from more than one candidate. The method proposed in this paper is different 

from the semantics-based method presented in [13] because it uses structural and cardinality-based properties to generate 

dimensional mapping, while semantics may be used as a validation  step. Moreover, rather than simply  discarding non-coherent 

mappings, the proposed methodology directly generates mappings that are coherent.  
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Properties of dimensions have also been defined as normal forms for mult idimensional databases [15]. Normal fo rms are 

necessary to ensure good design qualities for multid imensional data, guarantee summarizability and lack of re dundancies in the 

multid imensional database. Without stretching the analysis deeper, in the present paper the dimensional normal form [15] will 

be analysed when integrating heterogeneous dimensions. 

3. Preliminaries 

Many models and approaches have been propos ed for the conceptual design of a DW and for deriv ing multid imensional 

schemata from E/R or relational schemata, XML, ontologies, web and other structured/semi -structured or unstructured data 

stores, although most of them share the same basic ideas of data (facts) organized along dimensions of analysis, that are usually 

hierarchies of aggregation levels used to interpret the informat ion at various aggregated views. The facts are analyzed using 

numerical measures that express a property of interest. This mult idimensional v iew of data fits well the needs of analysts and 

designers, and it  constitutes an intuitive method for graphically representing concepts of interest both for developers and for 

business people. The dimensions are represented as hierarchies of aggregation levels, usually called categories or dimensional 

attributes that are populated by members or values. For example, in a temporal d imension like the one proposed in Fig. 1, yea r 

is a category, while {2010; 2011; 2012} are members of the category year. 

 
Fig. 1 A time dimension 

For the purpose of this paper, the formalization proposed in [16] is used, as it allows us to formally reason both on 

dimension schemas and instances. 

A dimension schema is a directed a cyclical graph (dag) H = (C; ↗), where C is a finite set of categories, having a 

distinguished category All ∈ C that is a  sink (it is a  vertex of the graph that is reachable from every  other node through an arc or 

a path). The partial order relation ↗ expresses the conceptual roll-up relat ions among categories. A bottom category is a 

category c bottom that is reachable from no other node of the dag through an arc or a path (i.e., there is no c ∈ C such that c ↗ 

c bottom). For the purpose of this paper, a single bottom category for d imension will be assumed. Note that various models that 

allow a dimension to have more than one bottom category (e.g. [17]) have been proposed in literature; however we believe that 

dimensions with only one bottom category allow a cleaner representation of multidimensional data. 

An example of dimension schema is presented in Fig. 1, where [month ↗ season] and [month ↗ year] (for brev ity, the 

category All has been omitted).  

A hierarchy domain is a dag h = (M; <), where M is the set of members of the hierarchy, with a distinguished member all 

∈ M that is a sink. The members are also organized in a graph structure (< is a partial order relation on the set M) to express  the 

roll-up relations among the categories they belong to. 

A dimension d over a schema (C; ↗) is a graph morphism d: (M;<) → (C;  ↗) such that: (a) d(all) = All, and (b) ∀x;  y; z 

such that x <* y, x <* z (<* is the transitive and reflexive closure of <) and y ≠ z, then d(y) ≠ d(z). Let m: C → P (M) be a  

function that assigns each category the set of members of that category; in other words m(c) = {m ∈ M | d(m) = c}, fo r every c 
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∈ C. Occasionally, m(c) will be called " members of c". The hierarchy domain may also be described by a family of ro ll-up 

functions [18] ρ^(c_1 →〖 c〗_2 ) : m(c1) → m(c2); the roll-up functions are defined for all c1 ↗ c2 as ρ^(c_1  →〖 c〗_2 ) (m1) = 

m2 for all m1 ∈ m(c1) and m2 ∈ m(c2) such that m1 < m2. 

3.1.   Dimension Mappings 

A dimension mapping (in its simplest form) is a function that maps categories of one dimension to categories in the other 

dimension [19]; in other words, given two dimensions d1: (M1; <1) → (C1; ↗1) and d2: (M2; < 2) → (C2; ↗ 2), a mapping is a 

function µ: C1→C2 that may be total o r part ial. The mapping identifies for some/all categories in d1 a category in d2 that 

expresses the same concept at the same level of detail. Like in  tradit ional data integration, the mappings may  be used to exp ress 

semantic similarit ies among different structures, and integration-wise may be used to rewrite queries over compatible schemas 

and instance [20] and to integrate the information obtained from different instances. 

3.2.   Dimension Mapping Properties 

The works in [11, 18] define three properties that matching among dimensions may have: coherency, soundness and 

consistency. 

Coherency is a property concerning the dimension schemas, in particu lar the partial o rder relation imposed on the 

category set. A matching µ : C1→C2 is coherent if ci ↗1* cj ⇔ µ  (ci) ↗ 2* µ (cj), where ↗ 1*  and ↗ 2* are the reflexive and 

transitive closures of ↗ 1 and ↗ 2, respectively. The coherency property states that the roll-up relations among attributes are 

maintained through the mapping between the dimensions. 

Soundness  is a property concerning the members of categories, in  particu lar a matching is sound if m (c) = m (µ(c)) fo r all 

c ∈ C1. The property guarantees that mapped categories contain the same members.  

Consistency ensures that the roll-up function between members is maintained, that is ∀ mi1, mj1 ∈ M1 such that mi1 <1* 

mj1 then ∃ mi2 ∈ m(µ(d(mi1))) and  mj2 ∈ m(µ(d(mj1))) such that mi2 <2* mi2, where <1*  and <2* are the transitive closures of <1 

and <2. Alternatively, ρ^ (c_1 →〖 c〗_2) = ρ^ (µ (c_1) →〖µ (c〗_2)) for every c1, c2 ∈ C1. 

In other words, if two members roll-up in one dimension, then the mapping should guarantee that there are two equivalent 

members in  the other dimension that maintain  the roll-up relat ion. Furthermore, a mapping that is coherent, sound and 

consistent is called a perfect matching. 

 
Fig. 2 A matching between two dimensions (dashed arrow) and possible instances of the dimensions  
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In Fig. 2, the example introduced in [11] is considered; the matching between the two d imensions d1 (on the left) and d2 

(on the right), represented by dashed arrow, is the following: 

µ(country) =  state 

µ(zone) =  area 

µ(city) =  town 

µ(store) =  shop 

This mapping is clearly coherent since, roughly speaking, there are no “cross mappings” i.e. no correspondence intersects 

another. The matching is consistent, since the roll-up functions are not contradictory, but it is not sound, since there are 

members in one dimension that do not appear in the other. 

3.3.   Homogeneous and Heterogeneous Dimensions 

Studying the DW integration problem, it is interesting to analyze the different kinds of heterogeneities that sources may 

contain and the way they are eliminated/introduced by applying the integration methodology.  

Heterogeneity is generally used to define systems that are in  some way d ifferent, with d istinct data/informat ion or 

different ways of representing the same information. As there is no general consensus as how to classify 

homogeneity/heterogeneity, we d istinguish two types that may  apply in DW integration: intra - and inter-schema heterogeneity. 

Intra-schema heterogeneity is used to define roll-up inconsistencies inside a single schema. In [16] a schema is defined 

homogeneous if and only if all the members in a category c1 roll up to a member of every  category c2 such that c1 ↗ c2. 

Furthermore, if a  schema is homogeneous and has only one bottom category (like the ones assumed throughout the current 

paper), then it is called strictly homogeneous. If a schema is not homogeneous, then it is called heterogeneous. This kind of 

homogeneity will be referred as intra-schema homogeneity (the opposite being intra-schema heterogeneity). Init ial 

multid imensional models were homogeneous, but the restriction has been later dropped to allow a more compact dimension 

design and a more efficient space allocation due to the lower number of categories [ 16]. On the other hand, homogeneity allows 

a clear representation of a h ierarchy  schema as it p rovides an intuitive representation of the aggregation levels inside one single 

dimension. In fact, for every two categories c1 and c2 ∈ C, a ro ll-up relation c1 ↗ c2 clearly states the completeness of the 

aggregation function, as every member of c1 is related (or aggregated) to a member of c2. 

Intra-schema homogeneity is also important when analyzing dependent GROUP BY queries. In [21], two queries Q1 and 

Q2 are dependent if the results of one can be computed from the results of the other. For example, when analyzing the sales of 

one company, if every sale is related to a city and every city belongs to a region, then the total revenue for the sales grouped by 

region (call it query Q1) may be obtained from the revenue grouped by city (query Q2) by adding the revenue for every city 

inside one single region. Th is observation is important when performing optimizat ion on the DW by materializ ing frequently 

accessed views [21] or by pre-computing aggregations when using the CUBE operator. 

Intra-schema homogeneity is also a necessary condition for summarizability, which has been defined in the field of 

statistical databases as the ability to correctly  compute data aggregated at a certain category (called classificat ion node, or 

C-node) from the same data aggregated at a lower category [22]. Furthermore, by using the closed-world assumption (part of 

the completeness hypothesis), a homogeneous dimension with only  one bottom category is in d imensional normal form (DNF), 

as defined in [15]. Checking homogeneity can thus assert important quality properties for the final schema and instance after 

applying the integration methodology. 

In this paper, intra-schema heterogeneity is formally analyzed and a discussion about how it is maintained when 

integrating two or more DW dimensions is presented. In general, homogeneity and heterogeneity are not preserved when 

integrating two distinct DWs. 
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With the integration methodology proposed in this paper it is possible to obtain a heterogeneous dimension from two 

homogeneous dimensions, or a homogeneous dimension from two heterogeneous dimensions (see Sect ion 5.3). 

Inter-schema heterogeneity is a concept derived from database theory and used to describe two or more d ifferent data 

sources that are in some way distinct by schema or by form (see [3] for a discussion about heterogeneities).  

Following the same approach, two or more different DWs may contain the same or similar informat ion, but differently 

structured or identified  by different instance values. For example, hierarch ies may contain similar information but structure d 

differently (h igher granularity, inconsistent roll-up functions, different category names); the same informat ion may be 

represented as a fact attribute in one schema or as a category in another; or the schemas may contain different and possibly 

inconsistent measures that are incompatible/inapplicable on all the DWs. Some researchers (for example , [13]) have attempted 

to classify the different kinds of heterogeneity that may occur between two DW instances. 

Finally, we point out that some approaches are used to eliminate inter-schema heterogeneities by integrating or unifying 

two or more different DW dimensions into one single dimension embedding the two initial heterogeneous dimensions.  

In the approach proposed in this paper, inter-schema heterogeneity is implicit ly reduced or eliminated by performing 

dimension integration. One particular case discussed in Section 5.3 allows the complete elimination of inter-schema 

heterogeneity, by rendering two dimensions identical after performing the integration methodology.  

4. Integrating Heterogeneous Dimensions 

Let's assume a scenario where mult idimensional data obtained from two or more DWs sharing common/similar 

dimensions must be integrated. The current section describes how the integration methodology introduced in [5,  6] can be used 

to map and import categories and members of different dimensions to allow in formation integration between two or more 

compatible DW dimensions. The methodology consists of the following steps: 

 Mapping categories : a mapping 𝜉 that identifies similar categories from the two dimensions is generated;  

 Importing categories and members : each dimension is augmented with compatib le categories and members from the 

other dimensions; new mapping 𝜉#  is derived from 𝜉. 

4.1.   Mapping Categories 

To map similar categories of different d imensions, standard approaches like semantics may be used [23]; however in 

accordance with other researchers [8] we believe that a systematic approach that considers all structures of the DWs may yield 

better results. In fact, despite numerous proposals, almost all design methodologies consider the facts of interest analyzed 

along dimensions composed of different aggregation levels (or categories), in graph -like structures. If the instance contains 

complete informat ion, the dimensions itself embed sufficient information to allow the automatic or semi-automatic mappings 

discovery. 

The main observation is that similar or identical information is usually structured in similar ways even by different 

working groups, in  accordance with the common view of the in formation  of interest. The simplest examples are time and spa ce 

dimensions. A time d imension will surely contain days grouped into months that are grouped into trimesters, semesters, years 

and sometimes even into decades; this aggregation hierarchy must be identical even in different DWs because this division 

reflects the way time is universally organized and understood. Similarly, addresses are associated to a city; cities are organized 

into communes, grouped into regions, countries, and so on. 

The concept may also be observed when representing other kind of information. Consider, as an example, two companies 

managing health data. The various health conditions will certainly be categorized in a similar manner, in accordance with the  
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common representation of the knowledge of interest (for example, the World Health Org anization provides an International 

Classification of Diseases - ICD). When integrating d ifferent data marts within the same organizat ion there will likely  be 

common dimensions that reflect the way the company is organized. 

For example, employees are organized in groups that belong to departments that have a manager, and so on. To map 

similar categories, we consider the directed graph representing the dimension schema and a property called card inality -ratio, 

which is the ratio of the total numbers of distinct members of two related categories. Formally, g iven a dimension d: (M; <) →  

(C; ↗), for every two categories ci and cj ∈ C, the cardinality-ratio 𝜏𝑐𝑖 → 𝑐𝑗
 among the two categories is defined as: 

 

For example, in  a time dimension, assuming there are two categories, month that rolls -up to year, then 12
month vear



 , as 

a member of the category year is an aggregation of 12 members of the category month, assuming the  instance contains all the 

months of every year. 

Consider two d imensions that must be mapped: d1: (M1; <1) →  (C1; ↗ 1) and d2: (M2; < 2) →  (C2; ↗ 2). The proposed 

mapping generating methodology considers the two dimension schemas and annotates each label with its cardinality ratio. Two 

new labeled graphs are derived, G1  = [(C1, ↗ 1*); f1] and G2 = [(C2, ↗ 2*);  f2], where ↗1* is the transitive and reflexive closure 

of ↗ 1 (similarly ↗ 2*). The function f1 is defined as follows (the function f2 is similarly defined): 

f1 : ↗1* → 


 

f1 [ci, cj] = 
i j

c c



 

The function f1 is transitive, meaning that f1 [ci, ck] = f1 [ci, cj] x f1 [cj, ck], fo r all ci,cj ,ck ϵ c1 such that ci ↗ 1* ck and ck ↗ 

1* cj. For example, in Fig. 3, f1 [i1, i3] = f1 [i1, i2] x f1 [i2, i3] (green arrow). Th is ensures that the cardinality-ratio applied to the 

transitive and reflexive closure of the roll-up relation ↗ 1 is correct. Graph theory is then used to derive a maximum rank graph 

G that is sub-graph isomorphic to both G1 and G2. 

 
Fig. 3 Mapping generation 

The maximum rank subgraph is a graph with the highest number of nodes. Note that the case where more than one 

maximum rank subgraphs may be derived is not considered. In such situations, analysts may decide to use independently one, 

more than one, or even all of the subgraphs, if the generated mappings do not conflict with each other. A graph T is sub -graph 

isomorphic to a graph U if there exists a subgraph of U that is isomorphic to T. 
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Based on the subgraph G, a mapping function ξ: C1 → C2, which may be total or partial, is derived to associate categories 

of the initial d imension schemas through the subgraph isomorphism (see Fig. 3, where for the sake of simplicity, the Figure 

does not depict the complete transitive and reflexive closure of the schemas). Of course, there may be the case where the 

dimensions are completely distinct or the instances are incomplete (for example, not all the months of every year are contain ed 

in the instance, so the cardinality-ratio is different among pairs of similar categories in the two dimensions) in such way to 

compromise the mapping generating step that is either incapable of generating mappings or generates incorrect ones. For this 

latter case, semantic validation to increase the accuracy of the mappings by discarding possibly incorrect ones  is added in [5]. 

4.2.   Importing categories and members 

The mappings generated in the previous step are useful for integrating information coming from the various instances and 

in some cases to write queries  and to reformulate them over the different instances. This capability is, however, limited by the 

differences over the DW dimensions. To overcome this shortcoming, the methodology presented here includes a category 

importation step intuitively depicted in Fig. 4 and defined as follows. 

 
Fig. 4 The category and member importation rule 

Let d1 and d2, be two d imensions, and ci, cj ∈ C1 such that ci ↗ 1 cj and ck ∈ C2. If ξ (ci) = ck and ξ (cj) ∉ C2, then d2 is 

augmented with the category cj and with the roll-up relations derived from the semantic mappings. Thus, a new dimension  𝑑2
⋕
 : 

(𝑀2
⋕
, <2

⋕
) → (𝐶2

⋕
, ↗2

⋕
) is derived, where 𝐶2

⋕
 =𝐶2 ⋃{𝑐𝑗

′} ,  ↗2
⋕
 is extended to include the relations between c j and the categories of 

C2, and 𝑀 =𝑀2 ⋃ {𝑚𝑐𝑗
} . The mapping ξ is extended to include the newly  imported category. A new mapping  𝜉# : 𝐶1 →  𝐶2

⋕  is 

generated as follows: 

𝜉# (𝑐) = {
𝜉(𝑐) ,   𝑖𝑓 𝑐 ≠ 𝑐𝑗

𝑐𝑗,       𝑖𝑓 𝑐 = 𝑐𝑗
  

 

Fig. 5 No sound → sound mapping 

The members of 𝑐𝑗
′ are imported using an approach based on the RELEVANT [24] clustering methodology and the 

relation <2 is extended (call <2
⋕

 its extension) to include the relat ions between the newly imported members and the initial 
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members of the categories in  d2. Formally, for every  ci, cj ∈ C1 and ck, 𝑐𝑗
′ ∈ 𝐶2

⋕
 such that ci ↗ 1 cj and ck, ↗2

⋕
 𝑐𝑗

′, for all mi  ∈ m(ci) 

and mj  ∈ m(cj) such that mi  <1 mj , and for all mk ∈ m(ck) such that mi = mk, then it must be that mj  ∈ 𝑀2
⋕
 and mk <2

⋕
 mj (see Fig. 

4). In other words, the newly imported category 𝑐𝑗
′ is populated with some/all of the members of c j and also the ro ll-up relations 

between the members of ci and cj are inherited into d2. 

This observation will be later used when proving the preservation of soundness and consistency of mappings generated by 

the presented methodology. Note that the member import rule may be used in a broader sense for categories already contained 

in the dimensions d1 and d2. By replacing the imported category 𝑐𝑗
′ with any other category cl ∈ C2 such that ck ↗ 2 cl and ξ  (cj) 

= cl, then the member import rule gives the capability of augmenting the domain of category c l, thus increasing the information 

contained in dimension d2. This particular case will be used to reason about the properties of the dimensions in Fig. 5. 

For the sake of simplicity, the above example does not highlight the advantages of using RELEVANT, which was chosen 

for its ability to combine in formation from more than one dimension and to discriminate between incorrect members by using 

clustering techniques rather than direct equality of the members. 

As an example, let  us consider the two dimensions and the matching of Fig. 2. If we apply the member importation ru le 

shown in Fig. 4, the category district of the dimension d1 is imported into the dimension d2: in this way, users of the DW with 

the dimension d2 can now compute aggregated informat ion grouped by district, for some shops (the ones also present in the 

dimension d1). The result is shown in Fig. 6, where the hierarchy fo r d imension d2 is drawn; the figure also contains an example 

of relationships among members:  in parentheses, the members related to the shop 1er are shown.  

 
Fig. 6 Example of importation rule application 

5. Property Analysis 

This section will analyze the properties that are guaranteed and preserved when performing mapping discovery and 

category and member importation using the methodology in Section 4. Most notably, the mapping generation step guarantees 

coherency, meanwhile the importation step preserves soundness and consistency and in some cases may render a mapping that 

is neither sound nor consistent into a mapping that is sound and/or consistent. In the remainder of the section, let  us assume that 

ξ is a mapping” generated by the first step of the methodology presented in Section 4. 
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5.1.   Coherency Check  

One important result of Section 4 is that coherency is unconditionally guaranteed. 

Theorem 1. The mapping ξ is coherent. 

The theorem may be proved by using the graph isomorphisms that in a directed graph preserve node links (and paths) and 

their order. 

Proof. Let  G = [(C, ↗);  f] be the graph that is subgraph-isomorphic to both G1 and G2. Then CT4∃C2⊆∃ 𝐶𝑇1
⊆ 𝐶2  such that 

𝐺1 |𝐶 𝑇1 =  [(↗1 | 𝑇1
),𝑓1 | 𝐶 𝑇1

]  and 𝐺2 |𝐶 𝑇2 =  [(↗2 | 𝑇2
), 𝑓2 | 𝐶 𝑇2

]   are isomorphic to G, where 𝐺1 |𝐶 𝑇1  and 𝐺2 |𝐶 𝑇2  are the 

restrictions of G1 and G2  to CT1 and CT2 respectively. It  fo llows that there are two  graph isomorphisms w1: 𝐺1 |𝐶 𝑇1  → G and 

w2 : 𝐺2 |𝐶 𝑇2  → G. Let 𝑤 =  𝑤2
−1  ∘  𝑤1; w is also a graph isomorphism from 𝐺1 |𝐶 𝑇1  to 𝐺2 |𝐶 𝑇2 . 

The graph isomorphis m ensures that for all c i and cj ∈ CT1 it stands that ci ↗ 1* cj ⇒ w ci) ↗ 2* w(cj). Let  𝜉| 𝐶𝑇1
 be the 

restriction of ξ to CT1. By construction, 𝜉| 𝐶𝑇1
≡ 𝑤 . It follows that ci ↗ 1* cj ⟹  𝜉| 𝐶𝑇1

(ci) ↗ 2* 𝜉| 𝐶𝑇1
(cj). 

Thus, 𝜉| 𝐶𝑇1
 is coherent. By extension,  ξ is also coherent. 

5.2.   Soundness and Consistency Check  

Although the first step of the integration methodology produces a coherent mapping, soundness and consistency are 

guaranteed only in certain cases. To verify whether soundness is verified, two steps must be performed. First, the initial 

mapping must be checked. Formally, for all categories c ∈ C1, it must be that m(c) = m ξ (c)). Th is is a simple inclusion test that 

will be analyzed no further. Secondly, the soundness and consistency property must be verified when performing the category 

and member importation. 

The following theorem provides a sufficient condition for guaranteeing soundness and consistency when importing 

categories and members. 

Theorem 2. If ξ is sound and consistent, then 𝜉 # is also sound and consistent. 

Proof. If ξ is sound, then m(ci) = m(ck). The member importation rule states that if c i ↗ 1* cj and ck, ↗2
⋕

 𝑐𝑗
′ and 𝜉# (ci) = ck, 

then for all mi ∈ m(ci), mj  ∈ m(cj) and mk ∈ m(ck) such that mi <1 mj  and mi = mk, then it  must be that: (a) mj ∈ m(𝑐𝑗
′); and (b) 

mk <2
⋕

 mj (see Fig. 3).  

If ξ is sound, from (a) follows that 𝜉# is also sound.  

If ξ is consistent, from (b) follows that 𝜉# is also consistent. 

Theorem 2 provides a sufficient, but not necessary condition for soundness and consistency. In fact, there may be cases 

when mapping two dimensions where the in itial mapping ξ is neither sound nor consistent, but the final mapping 𝜉# becomes 

sound and/or consistent after the second step of the integration methodology. For example, Fig. 5 provides two d imensions and 

a mapping ξ that is neither sound nor consistent, as m(cj) ≠ m(cl) (the member 𝛽 belongs to m(cj) but not to m(cl)) and 𝜌𝑐𝑖 → 𝑐𝑗 

≠ 𝜌𝑐𝑘 → 𝑐𝑙  (member rolls-up to member in dimension d1, but rolls-up to no member of cl in dimension d2). Note that dimension 

d2 is heterogeneous. Assuming the methodology generated the mapping ξ  (see Fig. 5), step 2 of the methodology renders the 

mapping sound and consistent. 

The reason soundness and consistency are considered together is that they are closely related . In  some cases (not all) 

soundness follows from consistency. 
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The following corollary states a relationship between consistency and soundness of a mapping relation.  

Corollary 1. If ξ maps only pairs of categories ci and cj such that ci ↗ cj and ξ is consistent, than ξ is also sound. 

Proof. Let ci, cj ∈ C1 such that ci ↗ 1 cj. By consistency, it must be that 𝜌𝑐𝑖 → 𝑐𝑗  ≡ 𝜌
𝜉𝑐𝑖

→𝜉𝑐𝑗, that requires that Dom(𝜌𝑐𝑖 → 𝑐𝑗) 

= Dom(𝜌
𝜉𝑐𝑖

→𝜉𝑐𝑗) and Codom(𝜌𝑐𝑖 → 𝑐𝑗) = Codom(𝜌
𝜉𝑐𝑖

→𝜉𝑐𝑗). The conditions are equivalent  to m (ci) = m (𝜉(ci)) and m (cj) = m 

(𝜉(cj)); thus soundness is proved.  

Corollary 2. If ξ is a perfect matching, then 𝜉#  is also a perfect matching. 

Proof. The proof follows from Theorems 1 and 2. 

5.3.   Checking Homogeneity 

Unfortunately, homogeneity is not preserved when integrating different DW dimensions. Not even the case when 

integrating two homogeneous dimensions can ensure that the derived dimension is homogeneous. For example, in  Fig. 5 the 

mapping 𝜉 establishes semantic equivalences among categories belonging to the homogeneous dimensions d 1 and d2. When 

importing members from dimension d1 to dimension d2, the newly derived dimension, 𝑑2
# is heterogeneous (the member 𝛾 has 

no equivalent member mj in the category 𝑐𝑗
′′ such that γ <2 mj and rolls-up directly to a member in category𝑐𝑘

′′). 

Interestingly, heterogeneity is also not preserved. There may be the case when a homogeneous dimen sion is obtained 

when integrating two heterogeneous dimensions. For example, in Fig. 7 when integrating members from dimension d1 to 

dimension d2 (both heterogeneous), the newly  derived d imension 𝑑2
# is homogeneous. In this later case, the instance of 

dimension d2 is completed with information  from d1. A situation like the one described in  Fig. 7 may be encountered in real life 

cases when analysts decide to model the same informat ion differently, or when informat ion is partially missing by choice or by 

error. For example, categories cj and 𝑐𝑗
′ may  represent the region of a city (categories c i and 𝑐𝑖

′), that was omitted for some cit ies 

in d1 (member) or for other members in d2 (member). The missing information is thus derived from the other dimension. 

 
Fig. 7 Homogeneous → Heterogeneous 

In some circumstances, homogeneity may be maintained when integrating two  different homogeneous dimensions. The 

following theorem provides a sufficient condition to guarantee the preservation of homogeneity. 

Theorem 3. If d1 and d2 are homogeneous and m (ck) ⊆ m (ci), then 𝑑2
⋕
 is also homogeneous. 

Proof. Consider the importation rule depicted in Fig. 4. From m (ck) ⊆ m (ci) it fo llows that for all mk ∈ m (ck), there is a 

member mi ∈ m (ci) such that mi = mk. Since d1 is homogeneous, there is also mj ∈ m (cj) such that mi <1 mj. By construction, 

the category and member importation steps build a new dimension 𝑑2
⋕
 such that cj ∈ C2 (cj in d2 will be named 𝑐𝑗

′, to avoid 

confusion), ck ↗2
⋕
 𝑐𝑗

′ and mj ∈ m(𝑐𝑗
′) such that mk <2

⋕
 mj . 
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Thus is proved that in the dimension 𝑑2
⋕
, for all mk ∈ m(ck) there is a member mj  ∈ m(𝑐𝑗

′) such that mk <2
⋕

 mj. Thus 

homogeneity is preserved. 

Corollary 3. If d1 and d2 are in dimensional normal form and m (ck) ⊆ m (ci), then 𝑑2
⋕
 is also in dimensional normal form. 

Proof. Assuming to be working under the closed-world assumption and assuming only one bottom category per 

dimension, the proof follows from Theorem 3. 

An interesting observation may be drawn from Theorem 3. It turns out that when integrating two homogeneous 

dimensions d1 and d2 with bottom categories cbottom1 and cbottom2, if m(cbottom1) = m(cbottom2), then by importing 

categories and members from one d imension to another, the newly obtained d imensions 𝑑1
⋕
 and 𝑑2

⋕
 are identical, a part  from 

the names of the categories. In other words, there will be a total matching  : 𝐶1
⋕
 → 𝐶2

⋕
 that is perfect. Furthermore, 𝜒 -1 is also 

a perfect matching. The newly derived dimensions 𝑑1
⋕
 and 𝑑2

⋕
 are identical to the one derived in [11] using the tightly coupled 

approach. 

Corollary 4. If m (mk) ⊈ m (ci) and cj ∉ C2, then 𝑑2
⋕
 is heterogeneous. 

Proof. If m (mk) ⊈ m (ci), then there is mk ∈ m (ck) such that mk = ∉ m (ci). Implicitly, there is no mj ∈ m (cj) such that mk 

<1 mj. It follows by construction that ∄ mj ∈ m (𝑐𝑗
′) such that mj <2

⋕
 mk. Thus, 𝑑2

⋕
 is heterogeneous. 

 
Fig. 8 Heterogeneous  → Homogeneous 

6. Conclusions 

Data Warehouse integration may be performed by using classical data integration-like approaches, by means of semantic 

mappings that are used to express similarities between different DW elements (dimension categories, facts, etc.) and to 

combine information from d istinct DWs either by direct ly integrating informat ion from different repositories or by executing 

drill-across queries. Even if in data-integration partial or not completely accurate results may be used, that is not the case when 

integrating information from two or more DWs. Given the high quality requirements when building and querying a DW, any 

mapping-based integration methodology must ensure the correctness and accuracy of the information it integrates.  

In the current paper, a formal analysis of a mapping based DW integration methodology and its properties have  been 

performed. The methodology presented here is able to generate mappings that are coherent, which in turn allow correct 

aggregation of information from the different DWs. Moreover, under specific constraints, after performing  the integration 

steps, the mapping may also be rendered sound and consistent. Coherency and consistency are properties related to roll-up 

relations, thus a mapping satisfying both properties ensures that the integrated information can be correct ly aggregated (or 

disaggregated). This observation is relevant as the multid imensional data is usually exp lored along aggregation patterns, 

drilling-down or rolling-up from a starting point analysis. 
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On the other hand, soundness states that the mapped dimension categories contain the same members, which in turn give 

analysts the possibility of executing meaningfu l drill-across queries that would otherwise be impossible if the related 

categories contained distinct members. 

Finally, although some researchers allow the design of intra-heterogeneous dimensions, on the other hand, we consider 

that homogeneity allows a clearer representation of mult idimensional data , both for designers and analysts as for business 

people that may have a simpler perception of the underlying DW model. The present paper analyzed intra-schema 

heterogeneity directly and provided a sufficient condition for maintaining homogeneity that is a necessary condition for 

summarizability and for materializing views as a mean of optimizing response time when executing dependent queries. 
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