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Abstract

The research of laminated magnetostrictive shell under thermal vibration was computed by using the
generalized differential quadrature (GDQ) method. In the thermoelastic stress-strain equations that contain the
terms linear temperature rise and the magnetostrictive material with velocity feedback control. The dynamic
equilibrium differential equations with displacements were normalized and discretized into the dynamic discretized
equations by the GDQ method. Two edges of laminated shell with clamped boundary conditions were considered.
The values of interlaminar thermal stresses and center displacement of shell with and without velocity feedback
control were calculated, respectively. The purpose of this research is to compute the time responses of
displacement and stresses in the laminated magnetostrictive shell subjected to thermal vibration with suitable
controlled gain values. The numerical GDQ results of displacement and stresses are also obtained and investigated.
With velocity feedback and suitable control gain values are found to reduce the amplitude of displacement and
stresses into a smaller value. The higher values of temperature get the higher amplitude of displacement and
stresses. The GDQ results of actuating magnetostrictive shells can be applied in the field of morphing aircraft

(adaptive structures and smart materials) to reduce and suppress the vibration when under aero-thermal flutter.
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1. Introduction

Magnetostrictive material can be applied to the fields of sensors and actuators to make the function of faster response. In
2016, Xue et al. [1] designed and modified the injector with magnetostrictive actuator for short responding time of the actuator
displacement. Both the numerical and experimental methods were used to compute, measure and validate for the displacement
response under the driving voltage. In 2016, Ma et al. [2] used the magnetostrictive metglas composites to establish an active
mode non-linear modulation system for magnetoelectric (ME) magnetic sensor. Both the linear and non-linear ME charge
coefficient of sensors were calcu lated and improved. In 2016, Yan et al. [3] applied the magnetostrictive material on the fiber
sensor to obtain a rapid and reversible response in wavelength shift. The sensor also had a good future application in the high
current field. In 2015, Yang et al. [4] used a feed forward controller in the giant magnetostrictive actuator to simulate a drive
servo valve (GMA-DDV). The tracking error in GMA-DDV was greatly decreased with the compound controller. One of the
new trends of material in the mechanical engineering is the functionally graded material (FGM). Some special controlled
purposes with particular embedded layers are used in the FGM materials, e.g. layers of piezoelectric, magnetostrictive,
electrostrictive and shape memory alloys. A commercially available magnetostrictive material Terfenol-D, is in the form of
particles embedded easily on the thin layer of main materials without affecting the integrity of structure. And there are some

numerical and computational methods used and studied in the fields of composite materials. In 2015, Sadowski et al. [5]
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presented the numerical solution for FGM structural elements under mechanical and thermal loads with the finite element (FE)
analysis written in the ABAQUS commercial software codes. Both the analytical and numerical methods were used to compute
and compare the displacement. In 2013, Sheng and Wang [6] studied the non-linear vibration of cylindrical FGM shells by
using analytical method. The possible applications in the future would be in the high-temperature nuclear reactor field. In 2007,
Sue et al. [7] presented the numerical results for magnetoelectroelastic bonded antiplane wedge. The singular behavior of the
magnetoelectroelastic material was found and in similarly with piezoelectric material. In 2006, Lee et al. [8] provided the
non-linear analyses in the laminated composite shells with actuating magnetostrictive layers by using the finite element
method (FEM). There were some parametric effects used in the study, e.g. shell type, ratio value of length in axis 1 over radius
in axis 2, laminated type, loading and boundary conditions. In 2003, Kumar et al. [9] investigated the FEM computation for the
active control of cylindrical shell with magnetostrictive layer. There were two parametric effects used in the study, e.g.
clamped-clamped boundary and actuating coils location. Some related inductions of similar experiments research are also
included. In 2015, Sharma et al. [10] demonstrated the fuzzy logic controller in the active vibration control for the piezoelectric
actuator PZT-5H operating under high temperature to reduce vibration, also found the moderate fluctuations could affect the
degraded performance. In 2013, Zhang et al. [11] presented the experimental vibration control tests by using a giant
magnetostrictive actuator (GMA) to analyze the non-linear properties for the simplified model, both the properties in
low-frequency, micro-level vibration and effectiveness were all improved. In 2008, Olabi and Grunwald [12] presented the
advanced applications of magnetostrictive materials for actuators, motors, transducers and sensors, there were a lot of

state-of-art designs have been produced in the better properties than conventional materials.

Author also have some investigations in the field of magnetostrictive materials. In 2016, Hong [13] presented the
generalized differential quadrature (GDQ) computational results of composite magnetostrictive shells under rapid
heating-induced vibration. In 2014, Hong [14] presented the rapid heating vibration analyses of magnetostrictive in circular
cylindrical FGM shells by using the GDQ method. In 2013, Hong [15] provided the numerical analyses of thermal vibration in
magnetostrictive FGM shells with the GDQ method. It is interesting to study the amplitudes of displacement and interlaminar
stresses with and without the effect of velocity feedback, respectively, in the laminated magnetostrictive circular cy lindrical

shell underthermal vibration by using the GDQ method.
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Fig. 1 Geometry of a multilayered shell with magnetostrictive layer

2. Formulation

2.1. Thermoelastic stress-strain relations with magnetostrictive effect
A thin generally orthotropic multilayered circular cylindrical shell is considered as shown in Fig. 1, the stress-strain
relationship of the k' layer including thermal strain and magnetostrictive coupling effect can be given in the following

equations by Lee et al. [8].
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where ay and ay are the coefficients of thermal expansion, aysis the coefficient of thermal shear, AT is the temperature
difference between the laminate and curing area, Q) is the transformed reduced stiffness, ¢, €4, expare strains in terms of
displacement components, respectively, can be expressed in the following equations.
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In which u, v and w are displacement components in the x, 6 and z direction, respectively. é;; is the transformed
magnetostrictive coupling module as follows.

€, =6, cos’ 6, +e,sin’ 6,

g, =e,sin’ 6, +e, cos’ . €)
e, =(e,—e,)sind, cosé,

where 6« is the angle between fiber direction and axial direction in the laminated layer. R is the mean radius. |3 is the

magnetic field intensity, expressed in the following equation. H_(x,y,t)=k I (x y,t) With velocity feedback control

1(x, y,t) =c(t)ow/ét, in which k. is the coil constant, T(x,y,t) is the coil current, c(t) is the control gain. t is time, thus the

value of kcc(t)would be varied and function of time.

2.2. Dynamic equilibriumdifferential equations
Fromthe Love’s theory for thin multilayered shell under the pulsating axial load N4, the thermally dynamic equilibrium

differential equations included the magnetostrictive loads for a stress field in the Kt layer can be expressed as follows by Hong

et al. [15].
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where t is the time.
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In which p is the density, h is the thickness, Njand M; are the force and mo ment resultants, respectively, can be expressed in the
following constitutive relations including thermal effect by Lee et al. [8].
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where the Ny, represents the number of layer of magnetostrictive material.
Firstly, the behaviors ofa multi-layered shell constructed of orthotropic layers are considered, the fo llowing terms Asg, Azg,
Dy, Dy are all zero. Substituting the Eq. (5) into Eq. (4), the equilibrium differential equations in terms of displacement

components u, v and w can be obtained and shown in Appendix 1.

2.3.  Dynamic discretized equations
The vibration case is considered for the condition of expansion strain distribution which is independent of x and 8and an

even function of z (M _=M,=M _,=0), using N, =Na X, AT=ToxA11/R? as the thermally initial expansion load which is
dependent of x, Ty is thermal load temperature and treating the following displacement components.
u=U(x)cos(nd + wt)
v =V (x)sin(n@ + wt) (10)
w =W (x)cos(né + wt)
where w (rad/sec) is the natural circu lar frequency and n is an integer for the circumferential wave number of the multi-layered
shell. Thus, the values of displacement components u, vandw would be varied and function of time.
The GDQ method was presented by Shu and Richards and can be restated that: the derivative of a smooth function ata
discrete point in a domain can be discretized by using an approximated weighting linear sumofthe function values at all the

discrete points in the direction by Shu and Du in 1997 [16], Bert et al. in 1989 [17]. One-dimensional GDQ method is applied

to discretize the equilibrium differential equation, the following non-dimensional parameters are introduced.
X=x/L U=UX/L V=V(X)/RW=W(X)/h, Z=2Z/h
where L is the length of shell.

The discretized equilibriumequation at the i" discrete point X= X; can be obtained. For two edges are clamped, sy mmetric
(Bij=0), orthotropic (A1 =A26 =0, D16= D2s= 0, axy= 0) of laminated shell under temperature loading, the following boundary

condition is applicable.
Atx=0andL:

u=v=w=0ow/ox=0 11
After the process of non-dimension and discretization for the boundary condition (11), the following equation is given.

AtX=0and 1:

N N
U1=UN =V1=VN =W1 =WN =ZA1(1|)W| =ZAr(u1,)|W| =0 (12
1=1 1=1
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Now considering and implementing the given eight boundary conditions (12) at both clamped ends of the multilayered
shell on the discretized equilibrium equation for the all interior grid points i=2,3,...,N-1, then the normalized and discretized
equations can be obtained and shown in Appendix 2. And the frequency parameter is defined as f* = ¢R /pt /' A, -Whenthe

displacements have been solved, then the thermal stresses in discretized equation of the k™ layer can be found and shown in

Appendix 3.

3. Computational Results

The following coordinate for the grid point is used in the GDQ computation.

1oL i=12...N (13)

i
X. = 0.5[1— cos
= O05[L—cos(—

The total three-layer (0""/90%0%) cross-ply laminated shell with the upper surface magnetostrictive layer, the inner layer
and outer layer of typical host materials are considered. The superscript of mdenotes magnetostrictive material. Each layer has
the same thickness. The material properties of the typical inner, outer of host material, magnetostrictive material are listed in

the Table 1. The magnetostrictive Terfenol-D coupling module is e3;=e3,=E™d ™and E™=26.5 GPa, d "=1.67*10° mA™.

Table 1 Properties of typical host and Terfenol-D
Typical host

Properties Inner outer Terfenol-D

El

— 25 40 1

EZ

G

12 05 0.6 %

E, 26.5

Vi, 0.15 0.27 0.0
p(lb/in?) 0.087 0.283 0.334179
a,(11°F) 6x10°° 6.5x10°° 12x10°°
a,@/°F) 6x10°° 6.5x107° 12x10°°

Table 2 GDQ convergence for (0°"/90°0°)

*

N f W(L/2)
23 0.0128564 0.944165
41 0.0128571 0.913904
49 0.0128564 0.914536
73 0.0128564 0.915959

Firstly, to investigate the dynamic convergence of the frequency parameter f “and center displacement W(L/2) with
R/h=500, L/R=10, circumferential wave number n=4, T,=100"F, #=1 radian, time t=1 sec and kc(t)=0 under clamped-clamped
boundary condition. Table 2 shows the f * and W(L/2) with respect to N for (0™/90%0°) laminated magnetostrictive shell. The
data accuracies of f ~ and W(L/2) are 0.0 and 0.001553, respectively. The N=73 grid point has the good convergence results
are found and can be used further in the GDQ computation of time responses for deflection and stress with suitable k.c(t) values

to reduce the amplitude of displacement.

The calculating data in this research have been contrasted with the reference test data. Table 3 re-listed the frequency
parameter f ~ with controlled values kcc(t)=0 for three-layer (0™/90%0°), (0790°™"/0°) and (0790°/0"") of thin laminated
magnetostrictive shells by using the GDQ method, compared with the available data of papers from Hong [13] in 2016. They

are considered in acceptable values.
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Table 3 Comparison of f~

. Lo Dym’s exact
- . GDQ computational solution in solution in Chung’s series solution in 1981
Thin isotropic 2015 1973
tube N f f Terms f
18 0.0150848 0.01508 500 0.01508
. . GDQ solution, N=73, superscript of m: Terfenol-D
Thin Iamln_atgd (O™79070) (0790™707) (079070™
magnetostrictive ; ; ;
hell
sne 0.0128564 00210714 00135714

Fig. 2 shows the dominant normal displacement W along X under AT=TyxA11/R?, To=100"F, #=1 radian, time t =1 sec,
N=73, for (0°"/90°/0°) laminated magnetostrictive shell by using the GDQ method. The amplitude of displacement W is large

when without velocity feedback kcc(t)=0. With velocity feedback and with suitable values k.c(t)=10° are found and can
reduce the amplitude of displacement to a smaller value. (from 0.928012 at kc(t)=0 to 0.045060 at k.c(t)=10°). By using the
higher gain value e.g. kcc(t)=10°%, the amplitude reducing ratio of W can be around to 21 for (0™/90°/0°).

Fig. 3 shows the dominant thermal stress &,=0,/E, onZ=-1/6 along X under AT=ToxA11/R?, To=100"F, 6=1 radian,
time t=1sec, N=73, for (0""/90°/0°) laminated magnetostrictive shell by using the GDQ method. The amplitude of thermal stress

o, is large when without velocity feedback kcc(t)=0. With velocity feedback and with suitable values kcc(t)=10° are found

and can also reduce the amplitude of thermal stress &, to a smaller value. (from 0.007680 at k. c(t)= 0 to 0.000552 at

kcc(t)=10° and the curves decline clockwise an angle with X=0 axis). By using the higher gain value e.g. kcc(t)=10°, the

amplitude reducing ratio of &, can be aroundto 14 for (0™/90%0).

Fig. 4 shows the dominant normal displacement W along X under AT=ToxA11/R?, To=100°F, #=1 radian, time t=1sec,
N=73, for (0°"/070°) laminated magnetostrictive shell by using the GDQ method. The amplitude of displacement W is large
when without velocity feedback kc(t)=0. With velocity feedback and with suitable values kc(t)=10° are found and can reduce
the amplitude of displacement to a smaller value. (from 0.776466 at k.c(t)=0 to 0.049256 at k.c(t)=10°). By using the higher
gain value e.g. kcc(t)=10°, the amplitude reducing ratio of W can be aroundto 16 for (0"/0°/0).

Fig. 5 shows the dominant thermal stress &, =¢, / E, on Z=-1/6 along X under AT=ToxA11/R?, T,=100"F, 6=1 radian,

time t=1sec, N=73, for (0"/0%/0°) laminated magnetostrictive shell by using the GDQ method. Without velocity feedback and
with suitable values kc(t)=10° are found and almost have the same amplitude of thermal stress o, attimet=1sec (0.000359

and the curves decline clockwise an angle with X=0 axis). The values of control gain do not affect the amplitude reducing

ratio of &, for (0™/0°/0).

Fig. 6 shows the dominant normal displacement W along X under AT=ToxA.1/R?, with respect to To=Ty=0"F, 250°F, 500
F, respectively, without velocity feedback k.c(t)=0, #=1 radian, time t=1sec, N=73, for (0""/90°/0°) laminated magnetostrictive
shell by using the GDQ method. The amp litude of displacement W is larger when To=500"F. The higher values of temperature
get the higher amplitude of displacement are found (from 4.658570 at T;=500"F to 2.331650 at To=250"F). Under the higher

temperature value e.g. To=500" F and 250° F, the amplitude raising ratio of W can be around to 2 for (0°"/90°/0").

Fig. 7 shows the dominant thermal stress &, on Z=-1/6 along X under AT=ToxA11/R?, with respect to To=0"F, 250°F,
500" F, respectively, without velocity feedback kcc(t)=0, #=1 radian, time t=1sec, N=73, for (0""/9070°) laminated

magnetostrictive shell by using the GDQ method. The amplitude of thermal stress &, is larger when To=500"F. The higher
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values of temperature get the higher amplitude of thermal stress &, are found (from 0.0386192 at Tp=500"F to 0.0193308 at

To=250"F). Under the higher temperature value e.g. To=500"F and 250°F, the amplitude raising ratio of &, can be around

to 2 for (0"/90°/0").

Fig. 8 shows the dominant normal displacement Walong X under AT=ToxA;1/R?, with respect to To=0"F, 250°F, 500°F,
respectively, without velocity feedback kcc(t)=0, #=1 radian, time t=1sec, N=73, for (0°"/90°/0") laminated magnetostrictive
shell by using the GDQ method. The amplitude of displacement W is larger when To=500"F. The higher values of temperature
get the higher amplitude of displacement are found (from 3.739460 at To=500"F to 1.868050 at To=250"F). Under the higher

temperature value e.g. To=500" F and 250° F, the amplitude raising ratio of W can be around to 2 for (0°"/90°/0").

Fig. 9 shows the dominant thermal stress &, on Z=-1/6 along X under AT=ToxA11/R?, with respect to To,=0"F, 250°F,
500° F, respectively, without velocity feedback k.c(t)=0, 6=1 radian, time t=1sec, N=73, for (0""/900") laminated
magnetostrictive shell by using the GDQ method. The amplitude of thermal stress &, is larger when Ty=500"F. The higher
values of temperature get the higher values, linearly of thermal stress &, are found (from 0.065532 at Tp=500"F to
0.0327377 at To=250"F). Under the higher temperature value e.g. To=500°F and 250°F, the amplitude raising ratio of &,

can be around to 2 for (0"/90°/0°).

Fig. 10 shows the time response of dominant normal displacement W at X=0.543578 with respect to time t =1, 100, 200,
300, 400, and 500 sec, respectively, under AT= ToxA;1/R?, To=100°F, #=1 radian, N=73, without velocity feedback k.c(t)=0 and
with suitable values k.c(t)=10°, for (0""/9070°) laminated magnetostrictive shell by using the GDQ method. With velocity
feedback and with suitable values k.c(t)=10° are found and can reduce the amplitude of displacement to a smaller value (from
0.928012 at k.c(t)=0 to 0.045060 at k.c(t)=10°). By using the higher gain value e.g. k.c(t)=10°, the amplitude reducing ratio
of W can be around to 21 for (0™"/9070°).

Fig. 11 shows the time response of dominant thermal stress &, at X=0.543578, Z=-1/6 with respect to time t =1, 100,
200, 300, 400, and 500 sec, respectively, under AT=ToxA11/R?, To=100" F, 6=1 radian, N=73, without velocity feedback
kcC(t)=0 and with suitable values k.c(t)=10°, for (0™/9070) laminated magnetostrictive shell by using the GDQ method. With
velocity feedback and with suitable values kcc(t)=10° are found and can reduce the amplitude of thermal stress c, toa

smaller value (from 0.101244 at k.c(t)=0 to 0.002496 at k.c(t)=10%). By using the higher gain value e.g. kcc(t)=10°, the

amplitude reducing ratio of &, canbe around to 40 for (0™/9070).

Fig. 12 shows the time response of dominant normal displacement W at X=0.768650, with respect to time t =1, 100, 200,
300, 400, and 500 sec, respectively, under AT= ToxAq1/R?, To=100°F, #=1 radian, N=73, without velocity feedback kcc(t)=0 and
with suitable values k.c(t)=10°, for (0™/9070°) laminated magnetostrictive shell by using the GDQ method. With velocity

feedback and with suitable values k.c(t)=10° are found and can reduce the amplitude of displacement to a smaller value (from
0.776466 at k.c(t)=0 to 0.169729 at k.c(t)=10%). By using the higher gain value e.g. k.c(t)=10°, the amplitude reducing ratio
of W can be around to 5 for (0"/90°%/0).

Fig. 13 shows the time response of dominant thermal stress &, at X=0.768650, Z=-1/6 with respect to time t =1, 100,
200, 300, 400, and 500 sec, respectively, under AT=ToxA;1/R?, To=100°"F, #=1 radian, N=73, without velocity feedback
kcc(t)=0 and with suitable values k.c(t)=10°, for (0™/9070) laminated magnetostrictive shell by using the GDQ method. With

velocity feedback and with suitable values k.c(t)=10° are found and can reduce the amplitude of thermal stress o, toa
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smaller value (from 0.001245 at kc(t)=0 to 0.000765 at kc(t)=10°). By using the higher gain value e.g. k.c(t)=10°, the

amplitude reducing ratio of &, canbe around to 2 for (0""/9070).
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4. Conclusions

The GDQ method can be successfully applied to compute the time responses of displacement and stresses in the

laminated magnetostrictive shell subjected to thermal vibration. With velocity feedback and with suitable values of k.c(t) are

found and can reduce the amplitude of displacement and stresses to a smaller value. The higher values of temperature get the

higher amplitude of displacement and stresses.
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Appendix 1.
The equilibrium differential equations in terms of displacement components u,v and W are shown as follows.
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Appendix 2.

The normalized and discretized equations are shown as follows.
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Appendix 3.

The thermal stresses in discretized equation of the k™ layer are shown as follows.
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