
International Journal of Engineering and Technology Innovation, vol. 9, no. 4, 2019, pp. 327-343 

 

Maximizing Power Loss Reduction in Radial Distribution Systems by  

Using Modified Gray Wolf Optimization 

Deepa Nataraj
1,*

, Rajaji Loganathan
2
, Moorthy Veerasamy

3
, Venkata Durga Ramarao Reddy

4
 

1
St. Peter’s Institute of Higher Education and Research, Deemed to be University, Chennai, India 

2
ARM College of Engineering and Technology, Chennai, India 

3
Swarnandhra College of Engineering and Technology, Narsapur Bhimavaram, India 

4
Vishni Institute of Technology, Bhimavaram, India 

Received 22 June 2018; received in revised form 27 December 2018; accepted 30 December 2018 

 
 

Abstract 

This paper presents an optimal Distribution Network Reconfiguration (DNR) framework and solution 

procedure that employ a novel modified Gray Wolf Optimization (mGWO) algorithm to maximize the power loss 

reduction in a Distribution System (DS). Distributed Generation (DG) is integrated optimally in the DS to maximize 

the power loss reduction. DNR is an optimization problem that involves a nonlinear and multimodal function 

optimized under practical constraints. The mGWO algorithm is employed for ascertaining the optimal switching 

position when reconfiguring the DS to facilitate the maximum power loss reduction. The position of the gray wolf is 

updated exponentially from a high value to zero in the search vicinity, providing the perfect balance between 

intensification and diversification to ascertain the fittest function and exhibiting rapid and steady convergence. The 

proposed method appears to be a promising optimization tool for electrical utility companies, thereby modifying 

their operating DS strategy under steady-state conditions. It provides a solution for integrating more DG optimally in 

the existing distribution network. In this study, IEEE 33-bus and 69-bus DSs are analyzed for maximizing the power 

loss reduction through reconfiguration, and the integration of DG is exercised in the 33-bus test system alone. The 

simulation results are examined and compared with those of several recent methods. The numerical results reveal 

that mGWO outperforms other contestant algorithms. 
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1. Introduction 

In an electrical utility system, a Distribution System (DS) is an extensive part that usually supplies the consumer demand 

for electricity at an acceptable voltage magnitude. Generally, a DS operates in a radial structure to facilitate efficient protection 

and coordination schemes that can be re-structured for optimizing the controllable parameter. Distribution Network 

Reconfiguration (DNR) is the procedure for changing the topology of distribution feeders by changing the open / closed status 

of sectionalizing and tie switches while satisfying system constraints to satisfy the operator’s objectives. This has been 

mathematically devised as an optimization problem subjected to various operational restrictions for ascertaining an optimal 

radial structure that reduces the power loss and load-balancing index [1-2] or maximizes the benefits under normal operation 
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conditions [3]. In this context, some metaheuristic algorithms for minimizing power loss and maximizing node voltage 

magnitude of the DS have been presented, such as the Genetic Algorithm (GA) [4], the ant colony search algorithm [5], 

evolutionary algorithms [6], the plant growth simulation algorithm [7], the bacterial foraging optimization algorithm [8], and 

the cuckoo search algorithm [9]. These algorithms competently reconfigure the DS for minimizing power loss, improving the 

voltage profile of the distribution network. The convergence characteristic of a metaheuristic algorithm is dependent on an 

appropriate balance between exploration and exploitation behaviors. Therefore, researchers are attempting to tune the control 

variable of metaheuristic algorithms toward a global optimum, whereas mathematical methods have failed to find a correct 

solution. For this purpose, either a stochastic technique is incorporated to modify the heuristic operator or a hybrid 

optimization technique is developed by combining two heuristic tools or knowledge elements, as well as more traditional 

approaches being employed. 

In line with this discussion, Swarnkar adopted graph theory with the conventional ant colony optimization algorithm, 

modifying the standard algorithm to perform Adaptive Ant Colony Optimization (AACO) [10]. This modified algorithm 

places feasible individuals in the space and overrides the mesh check. Likewise, in the Improved Adaptive Imperialist 

Competitive Algorithm (IAICA), a mapping strategy is incorporated, which adapts the imperialist competitive algorithm into a 

discrete nonlinear optimization problem [11]; the step size of the E. coli of the Modified Bacterial Foraging Optimization 

Algorithm (MBFOA) varies in each iteration [12]; and in Adaptive Weighted Improved Discrete Particle Swarm Optimization 

(AWIDPSO), the inertia weight is adaptively varied [13]. Conversely, in Mixed-Integer Hybrid Differential Evolution 

(MIHDE) [14], common mixed-integer nonlinear programming is embedded in a hybrid differential evolution algorithm. This 

algorithm performs migration and acceleration operations, which result in upgrades of the exploration tendency of the 

algorithm in the search space to improve fitness. 

An extensive literature survey has revealed that DNR is a complex and nonlinear optimization problem that aims to 

minimize power loss, load balancing among branches, load balancing among feeders, node voltage deviation, and the number 

of switching operations either alone or through multiple objectives. Namely, AACO, MBFOA, AWIDPSO, and MIHDE have 

been devised solely for minimizing power loss, whereas IAICA was devised to reduce power loss and node voltage deviation 

separately. Similarly, hybrid particle swarm optimization [15] and the runner-root algorithm [16] have been employed to 

ascertain the optimal distribution reconfiguration in a multiobjective environment, wherein the norm 2 and max-min methods 

are incorporated, respectively, to obtain a compromised membership function between the best and worst objective functions. 

Similarly, AWIDPSO has been used for determining the optimal distribution restructure in a multiobjective scenario wherein 

the compromised objective function is obtained through a fuzzy membership function [17]. Power loss reduction of the current 

DS through physical restructuring is known to be possible to a certain level. To reduce the power loss and improve the voltage 

profile, a capacitor bank can be placed in the existing DS. The capacitor size and location are optimized using the flower 

pollination algorithm of Abdelaziz [18] and improved harmony algorithm of Ali [19]. Subsequently, Distributed Generation 

(DG) in the DS is optimized using the ant lion optimization algorithm [20]. 

Placement of either a capacitor or DG device in the existing DS without reconfiguration is known to yield only a modest 

benefit. This paper aims to perform DNR using a prudent optimization tool for determining the best and worst fitness values of 

the objective function to ensure effective distribution planning and operation. Furthermore, DG in the existing DS is optimized. 

Identifying the best solution is known to be dependent on the perfect adjustment of the global and local searchability of a 

metaheuristic algorithm. Nevertheless, the optimization methods mentioned herein have obtained optimal results and 

outperformed each other. It can be stated that the solution obtained using these methods are not an optimal end solution. A 

novel and valuable optimization tool, the Gray Wolf Optimizer (GWO), has emerged in this field. GWO has been 

benchmarked using 29 standard test functions, and the results have been validated by comparing with other methods [21]. The 

convergence and performance of GWO have also been investigated for solving the unit commitment problem [22]. 
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GWO uses encircling, hunting, and attacking processes for discovering a superior solution when solving various standard 

test functions, performing sophisticated engineering, solving unit commitment problems, and dispatching economic loads. The 

acceleration set (a) of the coefficient vector (A) in the GWO position update equation decreases linearly from a higher value to 

zero. Equal opportunity is provided to both global and local optima because the trade-off between exploration and exploitation 

occurs linearly. In this paper, modified GWO (mGWO) is proposed, and this method increases the diversity of global optimum 

solution for a DNR problem. An exponential function is employed to obtain a trade-off between exploration and exploitation 

throughout the iterations. Increasing the degree of exploration in comparison to exploitation increases the convergence speed 

and avoids local minima trapping. When mGWO is used for solving a DNR problem for the first time, it provides practical 

solutions for IEEE 33 and 69 buses, and the global optimum solution is obtained quickly. 

The rest of this paper is organized as follows. Section 2 describes the DNR problem. The mGWO algorithm is proposed in 

Section 3. The implementation of mGWO is demonstrated in Section 4. The simulation results are presented in Section 5. 

Finally, the study is concluded in Section 6. 

2. Articulation Of The DNR Problem 

2.1.   Distribution network model for loss reduction 

The power flow in a DS can be computed from the simplified DS model illustrated in Fig. 1 by using a recursive 

procedure. Active power flows through branch k from bus p to bus q, which is expressed as Eq. (1) and can be conveniently 

abridged as in Eq. (2). 

 
Fig. 1 Simplified DS model 

, ,p q eff k lossP P P   (1) 

where 

, ,q eff p q LP P P   (2) 

The current flowing through branch k between buses p and q can be calculated using either Eq. (3) or Eq. (4): 

p p

k
p p

P jQ
I

V





 (3) 

p p q q

k
k k

V V
I

R jX

  



 (4) 

When computing the power loss in the DS, the voltage at bus q must be calculated. For this purpose, first, Eqs. (3) and (4) 

are compared. Second, the real and imaginary parts are separated. Third, the real and imaginary parts are squared and summed. 

Thus, the bus voltage is obtained as 
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The power loss in a line segment that connects buses p and q can be determined using Eq. (6). 
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2 2
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The aggregate power loss of the feeder can then be calculated by summing the losses of all line segments of the feeder, 

which is given as 
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The power loss of a line segment connecting buses p and q after network reconfiguration can be computed as 
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The aggregate power loss of the feeder can then be determined by summing the losses of all line segments of the feeder, 

which is given as 
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The net power loss reduction, in the system, is difference in power loss before, after reconfiguration, and is given as 
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2.2.   Power loss reduction due to DG 

If DG is optimally located in a week node of the DS using the loss sensitivity factor approach, technical, economic and 

environmental benefits are obtained.  The effect on power loss in the line segment between buses p and q is computed using 
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The net power loss reduction in a DS is the difference between the power loss that occurs in the system without and with 

DG and is calculated as 
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2.3.   Objective functions 

2.3.1.   Network reconfiguration 

The objective function is formulated by taking the difference in the power loss of all line sections of the feeder as well as 

the network reconfiguration. For this purpose, an appropriate candidate open-switch position, the power loss reduction of a 

branch segment, is computed and should be maximized; the objective function is defined mathematically as 

   LossObjective function f Maximize P   (13) 
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2.3.2.   DG integration 

The objective function for maximizing the net power loss reduction computed using Eq. (12) is expressed as 

   DG

LossObjective function f Maximize P   (14) 

2.4.   Constraints 

The node voltage should be between its lower and upper limits: 

min max ;q busV V V q N    (15) 

The branch current should be less than or equal to its maximum capacity, as specified by the manufacturer [1]: 

max ;k k brI I k N   (16) 

The total size of DG is always less than or equal to the total load and active power loss of the network. The minimum and 

maximum DG kW ratings are selected as 10 % and 80 % of the entire system’s real power demand, respectively. 

 ,

1

DG
N

g k Load Loss

k

P P P
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3. Modified Gray Wolf Optimization 

The basic GWO algorithm, developed by Seyedali Mirjalili, mimics the leadership hierarchy, and hunting mechanism of 

gray wolves in nature [21]. In their population, gray wolves are categorized as alpha (α), beta (β), delta (δ), or omega (ω); the 

alpha is most dominant, whereas deltas and omegas control the rest of the wolves. The critical behavior in GWO is encircling, 

hunting, and attacking the prey, analytically modeled as an optimization tool for obtaining the optimal solution for any problem. 

The hunting mechanism of gray wolves is described in the following. 

3.1.   Encircling 

This gray wolf behavior is modeled by 

   prey wolfD C X t X t    (18) 

   1wolf preyX t X t A D     (19) 

The vectors “A” and “C” play a crucial role in updating the position of a wolf according to that of the prey [21], 

considering a two-dimensional position vector and some of the possible neighbors. These coefficients are determined using 

Eqs. (20) and (21), where coefficient “a” is decreased linearly from 2 to 0 throughout the iterations. 

12A a r a    (20) 

22.C r  (21) 

3.2.   Hunting 

Generally, the alpha wolf, in association with beta and delta wolves, presides over the hunting. To mimic hunting 

behavior, three of the best candidate solutions are alpha, beta, and delta wolves, which are first considered during the iteration. 

The other search agents (omega wolves) update their positions according to those of the three best search agents. This can be 

mathematically modeled as [21] 

 
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where 

     1 2 31 2 3; ;aplha alpha beta beta delta deltaX X A D X X A D X X A D          (23) 

1 2 3; ;alpha alpha beta beta delta deltaD C X X D C X X D C X X          (24) 

3.3.   Attacking 

In this phase, the wolves move in to assault the prey. In the mathematical model indicating the approaching of the victim, 

coefficient vector “A” plays a vital role and its oscillation range decreases by vector “a.” Moreover, vector “A” has a random 

value in the interval [−𝑎, 𝑎], where “a” is decreased linearly from 2 to 0 throughout the iterations. At the point where random 

generations of vector “A” are in the range [−1, 1], the subsequent position of a candidate solution can be anywhere between its 

present location and the prey’s location. The candidate solution converges if the magnitude of vector “A” satisfies Eq. (25); 

alternatively, it diverges from the prey if the magnitude satisfies Eq. (26) and hopefully a fitter prey is found. 

1A   (25) 

1A   (26) 

3.4.   Adaptive acceleration coefficient 

The acceleration coefficient vector “a” balances the processes of exploration and exploitation. A larger exploration area in 

a search contour results in a lower likelihood of stagnation in a local optimum. To enhance the exploration rate, the linear 

function should be replaced by an exponential function [23], where the acceleration coefficient is varied adaptively throughout 

the iterations and is given as 

2

2
2 1

t
a

T

 
  

 
 (27) 

4. Computational Flow of mGWO Based DNR Problem 

Rapid convergence and accuracy of an optimization method depend on control variables setting and initialization of an 

algorithm parameter. The control variable is a discrete nature that represents the number of switches (branches) to be opened to 

maintain a feasible radial topology. The control variable of mGWO is equal to the open switch of the system. When structuring 

an individual loop, information about the fundamental loops and the switch number in each primary loop are required. The 

computational flow consists of two phases and is described as follows. 

4.1.   Identifying loop vector 

Step 1: Close all regularly open switches. 

Step 2: Determine the number of fundamental loops (NL) by Eq. (28). 

 L br bus ssN N N N    (28) 

Step 3: Decide loop vectors 

The distribution system has a regular pattern of tie switches (open switches) which are equal to fundamental loops. Each 

loop includes the possible number of branches (closed switches) forming a j
th

 loop without repeating common branches in 

between any two loops. Moreover, infeasible topologies emerge during the iterative process, which builds the computational 

burden. Therefore, a few rules are framed to create just possible radial topologies. 

Rule 1: The d
th

 member of the individual must belong to the loop vector Lj. 
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Rule 2: Only one member from a common branch vector can be selected to form an individual. 

Rule 3: All the common branch vectors of any prohibited group vector cannot participate simultaneously to form an 

individual. 

Rules 1 and 2 prevent islanding of exterior and interior nodes respectively, whereas Rule 3 prevents the islanding of 

principal interior nodes of the distribution network graph. Additionally, zeros can be added to make the loop vector matrix as a 

rectangular matrix, and the structure is represented by Eq. (29): 
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 (29) 

4.2.   Implementation of GWO algorithm 

The well-ordered triumph strategy of executing mGWO for DNR problem is depicted in this section: 

4.2.1.   Define input data 

Wherein, the initial network configuration, line impedance, possible number of fundamental loops, branches in each loop, 

number of tie switches in each loop, population size, algorithm parameters and the number of iterations are defined. 

4.2.2.   Initialize population 

As, the tie switches are considered a control variable, and it should be selected optimally from each loop to maintain a 

possible radial configuration. The control variables are integer numbers, and only one switch is chosen randomly from each 

loop using Eq. (30): 

  , 1, ;i j LX LSW j j N and i NP    (30) 

Further, the initial population concerning switch position and DG size is represented by Eq. (31); the corresponding 

switch from each fundamental loop and DG is selected for the further procedure. 
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 (31) 

4.2.3.   Calculate the objective value 

For each trial solution, the radial topology is checked through the following sequential procedures [9], and after, the 

distribution power flow is executed to compute the objective value. 

i. Initialize a connected matrix of the loop distribution network A (b, b) with b is the number of buses of the network system 

and a set of feeders S= [feeder1, feeder2,…feeder k]. Each entry in matrix A is defined as follows: 

 A (i, j) = 1 and A (j, i) = 1 if node i is connected to node j. 

 A (i, j) = 0 and A (j, i) = 0 if node i is not connected to node j. 

ii. Read the trial solution which is a set of tie-switches, and need to check and modify A (i, j) = 0 and A (j, i) = 0 if the switch 

on the branch from node i
 
to node j is a tie-switch. 
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iii. Evaluate all load nodes as follows:  If node n S and A(m, n) = 1, with m = 1, 2,. . . , length(S) and n = k + 1, k + 2,. . . ,b then 

the node n is moved to S, S = S + [node n] and A(m, n) = 0, A (n, m) = 0. 

iv. If matrix A is a zero matrix and length of array S is equal to the number of buses, then the trial solution is a radial network 

configuration. 

4.2.4.   Identifying sensitivity node 

The loss sensitivity factors (LSF) are computed from load flow using Eq. (32), and values are arranged in descending 

order for all buses to form a priority list. A bus with the highest priority is placed DG device. 

,

2
,

2* *Line Loss q effective k

q effective q

P P R

P V





 (32) 

4.2.5.   Evaluation of objective value and finding the best position 

The robustness value of all individuals of the present candidate solution matrix (X
o
) is computed using Eq. (33). The 

robustness of i
th

 individual represents the wolf’s distance from the prey. Based on the robustness the populations are sorted in 

ascending order, a solution with minimum fittest value is imitated the alpha wolf; second and third minimum fittest values are 

beta and delta wolves respectively. 

ifit objectivevalue  (33) 

4.2.6.   Modifying agent position for an optimal solution 

The position of an i
th

 wolf is updated using Eq. (22) if the mutant solution violates its limit which is fixed at that level. 

4.2.7.   Fitness re-estimation 

The power flow is executed with the updated position of the solution vector to ascertain objective value. Then, its 

robustness is estimated to distinguish the best global solution. 

4.2.8.   Stopping criterion 

If the maximum number of cycles is reached, terminate the iteration; otherwise, repeat steps from 3 to 8. 

5. Simulation Results and Discussion 

5.1.   Particulars of the test system 

A standard IEEE 33-bus (Test system-I) and 69-bus (Test system-II) radial distribution systems are considered for 

investigating the effectiveness of the mGWO. The base kV and MVA of both the systems are 12.66 kV and 10 MVA. There are 

32, 68 normally closed switches, 5 normally open switches specifically 33-37 and 69-73 in test systems-I and II respectively. 

The real and reactive power loads of the test systems are 3.72 MW and 3.802 MW, and 2.3 MVar and 3.69 MVar. The real 

power loss and the node’s minimum voltage at the initial state are found as 202.67 kW and 224.95 kW, and 0.9130 p.u. and 

0.9092 p.u. respectively. The remaining data’s are referred from [1]. 

5.2.   Simulation environment 

The mGWO algorithm is coded in the MATLAB, version 8.1 and is executed in an Intel ®  Core
TM

 i5-4210C CPU, 

1.70GHz, 4 GB RAM personal computer. Two case studies were conducted using mGWO algorithm; one is performing 

distribution reconfiguration to maximize power loss reduction of small and medium distribution systems and the second is 

maximizing power loss reduction in the presence of DG in the existing DS. In the first case, thirty independent trials are 

attempted to find the best, average and worst values. The simulated results of test systems are distinguished with the other 

techniques to validate the robustness of the mGWO. 
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5.3.   Case Study-I: Maximizing loss reduction through NR 

5.3.1.   Optimal reconfiguration 

The viability of the mGWO technique for tackling the DNR is investigated by maximizing the objective function through 

the optimal determination of a new open switch. Therefore, various optimal tie switches are selected using the mGWO 

algorithm. The power loss, node least voltage and computational times are exhibited in Table 1 and Table 2 for test system-I 

and test system-II respectively. 

Table 1 Possible optimal tie-switch position in 33-bus by mGWO 

Optimal Tie-switches Power Loss (k W) VMin (pu) Comp Time (s) 

7,   9, 14, 28, 32 132.9939 0.9447 6.61 

7,   9, 14, 32, 37 133.0082 0.9440 6.51 

7,   9, 14, 28, 36 133.0194 0.9438 6.52 

7, 14, 10, 32, 37 133.9202 0.9414 6.57 

7, 14,   9, 36, 37 134.0765 0.9399 6.58 

Table 2 Possible optimal tie-switch position in 69-bus by mGWO 

Optimal Tie-switches Power Loss (k W) VMin (pu) Comp Time (s) 

69,70,14,55,61 97.9889 0.9596 17.62 

69,70,13,58,61 98.0451 0.9542 17.62 

69,18,14,57,61 98.1970 0.9522 26.02 

69,19,13,56,62 98.3112 0.9511 26.24 

69,19,14,55,63 98.3181 0.9510 26.26 

It is identified that the power loss is reduced and node voltage is improved when the switches 7, 9, 14, 28, 32 are opened 

in test system-I whereas, the switches 69, 70, 14, 55, 61 are opened in test system-II. In this scenario, the corresponding optimal 

DNR is shown in Fig. 2 and 3 respectively that reveals the radial topology of the network. Furthermore, Fig. 4 shows the 

convergence characteristics of the mGWO algorithm; where the fitness value drastically dropped from a high value, and the 

mGWO can be attained optimal solution within the lesser iteration. 

 
Fig. 2 Optimal reconfiguration of 33-bus for minimum power loss by mGWO 

 

Fig. 3 Optimal reconfiguration of 69-bus for minimum power loss by mGWO 
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(a) 33-bus system (b) 69-bus system 

Fig. 4 Convergence characteristics of mGWO 

5.3.2.   Comparison of a viable solution 

In an attempt to expose the predominance of mGWO algorithm in tackling DNR problem, the viable solution is obtained 

using CSA, IAICA, MBFOA, AWIDPSO, and RRA, and techniques including mGWO are contrasted in Tables 3 and 4 for test 

systems-I and II respectively. The improvement in power loss reduction of CSA, IAICA, MBFOA, AWIDPSO, and RRA, and 

mGWO from primary pattern is  63.84, 63.20, 68.19, 63.16, 69.72 and 68.95 kW respectively for test system-I. Similarly, CSA, 

IAICA, MBFOA, AWIDPSO, and mGWO are reduced the power loss from the initial configuration as 126.8685, 126.8658, 

126.8765, 127.2395, and 127.4476 kW respectively for test system-II. Further, the algorithms’ potentiality of power loss 

reduction is illustrated in Fig. 5 for two test systems. It is experienced that the mGWO augmented the power loss diminishment 

massively in contrasted with the other competing methods in both test cases. Certainly, mGWO maximized the power loss 

reduction of 34.39 %, 56.53 % of test system-I and test system-II respectively. The mGWO method offered the least power 

losses, and similarly, regulated the node voltage by 5.85 %, 4.21 % of test system-I and test system-II respectively. 

 
Fig. 5 Comparisons of maximization of power loss reduction 

Table 3 Comparison of minimum power loss for 33 bus systems 

Methods 
Optimal 

Tie-switches 

Power Loss 

(kW) 

% of Power loss 

reduction 

No. of Switches 

changed 

% of Voltage 

regulation at V
min

 

Initial 

condition 
33, 34, 35, 36, 37 202.7100 --- --- 8.70 

CSA 7,   9, 14, 32, 37 138.8700 31.49 4 6.63 

IAICA 7,   9, 14, 32, 37 139.5100 31.18 4 6.75 

MBFOA 7, 14, 28, 32, 36 134.5200 33.64 4 --- 

AWIDPSO 7, 14, 11, 32, 28 133.7281 34.03 5 6.24 

RRA 7, 14,   9, 32, 37 139.5500 31.16 4 6.63 

mGWO 7,   9, 14, 28, 32 132.9939 34.39 5 5.85 
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Table 4 Comparison of minimum power loss for 69 bus systems 

Methods 
Optimal 

Tie-switches 

Power Loss 

(kW) 

% of Power loss 

reduction 

No .of Switches 

changed 

% of Voltage 

regulation at V
min

 

Initial condition 69, 70, 71, 72, 73 225.4365 --- --- 9.17 

CS 14, 57, 61 ,69, 70 98.5680 56.28 3 5.32 

IAICA 14, 57, 61, 69, 70 98.5707 56.12 3 5.43 

MBFOA 18, 43, 56, 61, 69 98.5600 56.28 4 --- 

AWIDPSO 69, 18, 14, 57, 61 98.1970 56.44 4 5.02 

mGWO 69, 70, 14, 55, 61 97.9889 56.53 3 4.21 

5.3.3.   Solution quality improvement 

The performance of the mGWO algorithm while, performing stated objective is compared in Table 5 with well-known 

optimization techniques that are already proven their ability in solving the DNR problem. The power loss reduction rate is 

5.8761, 6.5161, 1.5261, 0.7342 and 6.5561 kW greater than CSA, IAICA, MBFOA, AWIDPSO, and RRA respectively, of test 

system-I. Likewise, the power loss reduction rate is 0.5791, 0.5818, 0.5711, and 0.2081 kW greater than CSA, IAICA, 

MBFOA, and AWIDPSO respectively, of test system-II. The nodal pu minimum voltage obtained using mGWO is 0.0024, 

0.0069, 0.0005 and 0.0069  higher than CSA, IAICA, AWIDPSO, and RRA respectively, of test system-I while in the case of 

test system-II the pu minimum nodal voltage is 0.010, 0.0096, and 0.0074 higher than CSA, IAICA, and AWIDPSO 

respectively. Fig. 6 shows the voltage profile of test systems-I and II, and the voltage profile is enhanced significantly after 

reconfiguration for the majority of the node. 

Table 5 Solution quality improvement by mGWO over the state-of-the-art methods 

Methods 
Power Loss (kW) Node’s minimum voltage (pu) 

33-bus 69-bus 33-bus 69-bus 

CSA 5.8761 0.5791 0.0024 0.0101 

IAICA 6.5161 0.5818 0.0069 0.0096 

MBFOA 1.5261 0.5711 --- --- 

AWIDPSO 0.7342 0.2081 0.0005 0.0074 

RRA 6.5561 --- 0.0069 --- 

  
(a) 33-bus system (b) 69-bus system 

Fig. 6 Voltage profile improvement by mGWO 

Power flow at a node and power loss in the branch are analyzed in Figs. 7 to 10 are for test systems I and II respectively to 

investigate the solution quality improvement while reconfiguring the distribution network. It observed that the power flow at 

all nodes in test system-I are reduced after reconfiguration. Conversely, the power flow at nodes 5-22, 41-45, 47, 48, 51-54, 57, 

61 are increased. The investigation shows that the existing DS operates without overloading the feeder conductors after 

reconfiguration and also capable of supply extendable load. Consequently, power loss also streamlined among the branches. 

The power loss decreased some of the branches and is increased the remaining branches. Ultimately, the net power loss is 

reduced in the optimally restructured distribution network. 
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Fig. 7 Power flow at various nodes of a 33 bus system 

 
Fig. 8 Power flow at various nodes of a 69 bus system 

 
Fig. 9 Power loss at various branches of a 33 bus system 

 
Fig. 10 Power loss at various branches of a 69 bus system 
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5.3.4.   Statistical comparison 

Any evolutionary and swarm intelligence algorithm can provide an optimal solution for engineering problems. In this 

scenario, a standard analytical procedure has been employed to know whether it is a global optimum, or not. Therefore, the best 

solutions of the objective function that was obtained over 50 trials by IAICA,  MBFOA, AWIDPSO, RRA, and mGWO 

algorithms for test system-I and Test system-II are statistically analyzed, and the best, average and the worst values among the 

final solutions are presented in Table 6 and Table 7 respectively. The mGWO algorithm found the best global fitness function 

and the average value of the fitness function smaller than the best value of other algorithms for both test systems. 

Moreover, the RRA algorithm is exercised on test system-I only, and the final fitness function seems to strike at the 

premature solution as the best, average and worst values which are stayed same. Finally, the mGWO algorithm is ranked first 

while reconfiguring distribution system since it has the lowest standard deviation. During the procedure, it observed that 46 

and 48 good quality fitness functions of test system-I, and test system-II out of 50 are relatively fallen between the best and 

average solution. The success rate is found to be 93.33 % and 86.67 % for test system-I and II, respectively while optimizing 

using the mGWO algorithm. 

Table 6 Statistical indices of the test results of a 33-bus system 

Methods 
Power Loss (kW) Std 

Dev. 
Rank 

Best Average Worst 

Initial State 202.7060 --- --- -- --- 

CSA 138.8700 --- --- --- --- 

IAIC 139.5100 140.5700 142.3800 1.44 3 

MBFOA 134.5200 150.5800 165.4000 15.44 4 

AWIDPSO 133.7281 134.5154 135.8254 1.05 2 

RRA 139.5500 139.5500 139.5500 0.00 --- 

mGWO 132.9939 133.6423 135.0000 1.00 1 

Table 7 Statistical indices of the test results of a 69-bus test system 

Methods 
Power Loss (kW) Std 

Dev. 
Rank 

Best Average Worst 

Initial State 225.4365 --- --- --- --- 

CSA 98.5680 --- --- --- --- 

IAICA 98.5707 100.1577 103.8273 2.6283 3 

MBFOA 98.5600 110.3033 155.58 28.51 4 

AWIDPSO 98.1970 98.5885 100.0045 0.9038 2 

mGWO 97.9889 98.1419 99.6200 0.8156 1 

5.4.   Case Study-II: Maximizing loss reduction in the presence of DG 

5.4.1.   Optimal location and size of DG 

This case study is conducted under three circumstances. First, the system of the initial configuration is considered and 

standard load flow is employed to identify sensitive nodes; the most sensitive node is identified for DG placement, and the 

optimal size of DG is determined using the proposed algorithm for minimizing power loss. Second, the two most sensitive 

nodes are identified, and the optimal DG size is established using the proposed algorithm, again for maximizing the loss 

reduction. Conversely, in the third scenario, the three most sensitive nodes are preferred as the optimal locations and sizing of 

DG, which are determined using mGWO. Table 8 shows the optimal tie switch, DG sizes, and locations for all three 

circumstances. 

Nodes 28, 23, and 3 are identified as the three most sensitive nodes; in the first scenario, the DG size is 2.619 MW and is 

optimally located at node 28; the power loss is reduced by 51.81 %, and the minimum node voltage is increased to 0.9589 p.u. In 

the second scenario, nodes 28 and 23 are identified as highly sensitive nodes. Therefore, the optimal DG sizes are 1.232 and 

1.470 MW; as a result, power loss is decreased by 60.48 %, and voltage profile is improved by 0.9781 p.u. In the third scenario, 

DG sizes of 0.858, 1.033, and 1.268 MW are integrated optimally by the proposed algorithm at nodes 28, 23, and 3, respectively. 

Hence, the power loss is decreased by 64.64 %, and the node minimum voltage magnitude is enhanced by 0.9852 p.u. 
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Table 8 Feasible solutions obtained using mGWO for a 33-bus system 

Particulars Without DG 
With DG 

Single Two Three 

Power Loss (KW) 202.7069 97.6793 80.1161 71.68 

% Loss Reduction --- 51.81 60.48 64.64 

Min Voltage (p.u) 0.9131 0.9589 0.9781 0.9852 

Location of DG --- 28 28, 23 28,23,3 

DG’s Size (MW) --- 2.6190 
1.232(28) 

1.470(23) 

0.858 (28) 

1.033(23) 

1.268(3) 

5.4.2.   Feasible solution 

In Table 9, the feasible solution obtained using mGWO for the three circumstances at the maximum loss reduction is 

compared with those obtained using other methods. The proposed method achieves 51.81 % loss reduction from the initial state 

when integrating a single DG device, which is higher than that obtained using other methods; that is, 5.21%, 7.40%, 30.32%, 

28.57 %, 25.68 %, 24.59 %, 23.19 %, 31.38 %, and 17.31 % for ALOA, GA, EVPSO, PSOPC, ADPSO, DAPSO, 

ANALYTICAL, and BSOA, respectively. Regarding the placement of two DG device, mGWO results in a loss reduction of 

60.48 % from the fundamental configuration, which is superior to the values obtained using other algorithms: 3.01%, 3.12%, 

25.85%, 28.11%, 24.69%, 24.59%, 16.48%, and 10.32% for ALOA, GA, EVPSO, PSOPC, AEPSO, ADPSO, DAPSO, and 

BSOA, respectively. For three DG devices, mGWO results in a loss reduction of 71.68% with regards to the initial 

configuration, higher than that obtained using other contestant algorithms: 10.37 %, 1.43%, and 3.33 % for BSOA, PSO, and 

ANALYTICAL, respectively. 

Table 9 Comparison of feasible solutions obtained using various methods for the 33-bus system 

C
as

es
 

Methods 

Power Loss without DG=202.7069kW 

Power 

Loss 
(KW) 

% Loss 

Reduction 

Min 

Voltage
(p.u) 

Location of 

DG 

Total DG Size 

(MW) 

S
in

g
le

 D
G

 

mGWO 97.679 51.81 0.9589 28 2.619 

ALOA[20] 103.053 49.16 0.9503 6 2.450 

GA[20] 105.481 47.96 --- 6 2.580 

EVPSO[20] 140.190 30.84 0.9284 11 0.763 

PSOPC[20] 136.750 32.54 0.9318 15 1.000 

AEPSO[20] 131.430 35.16 0.9347 14 1.200 

ADPSO[20] 129.530 36.10 0.9348 13 1.210 

DAPSO[20] 127.170 37.26 0.9349 8 1.212 

Analytical[20] 142.340 29.78 0.9331 18 1.000 

BSOA[20] 118.120 41.73 0.9441 8 1.858 

 

T
w

o
 D

G
 

mGWO 80.116 60.48 0.9781 28, 23 2.702 

ALOA[20] 82.600 59.25 0.9732 13, 30 2.041 

GA[20] 82.700 59.20 0.9685 13, 29 2.050 

EVPSO[20] 108.050 46.70 0.9457 14, 31 1.109 

PSOPC[20] 111.450 45.02 0.9418 8, 12 1.683 

AEPSO[20] 106.380 47.52 0.9447 14, 29 1.200 

ADPSO[20] 106.240 47.59 0.9467 15, 30 1.171 

DAPSO[20] 95.930 52.68 0.9651 13, 32 1.965 

BSOA[20] 89.340 55.93 0.9665 13, 31 1.804 

  

T
h

re
e 

D
G

 mGWO 71.68 64.64 0.9852 28, 23, 3 3.159 

BSOA[20] 79.97 61.50 --- 3,13,29 2.943 

PSO[20] 72.72 64.13 --- 24,30,14 2.916 

Analytical[20] 74.15 64.30 --- 13,30,24 2.700 

Voltage profile improvement is another useful index and is analyzed through the percentage voltage regulation at the node 

at which the voltage is lowest. The proposed method outperforms other contestant algorithms because it achieves the least 

percentage of voltage regulation-4.29 %, 2.24%, and 1.50 %-for placement of one, two, and three DG devices, respectively, in 
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the existing DS. The effect of DG on voltage profile improvement is analyzed in Fig. 11, which compares the node voltage 

improvements without and with DG for all three scenarios. The voltage magnitude at all nodes is favorably altered. 

 
Fig. 11 Power loss at various branches of a 33 bus system 

6. Conclusions 

In this paper, a powerful metaheuristic algorithm, mGWO, is successfully employed to maximize power loss reduction in 

a DS through two methods. In the first method, the network reconfiguration is optimized, whereas in the second method, the 

penetration of DG in the existing DS and the selection of the required DG size are performed optimally, which results in 

voltage profile improvement. This is a complicated combinatorial, nondifferentiable, constrained optimization problem. In the 

first approach, the difference in a power loss of all branch sections of the feeder, as well as the network reconfiguration is 

deemed an objective function. In the second approach, the difference between the power loss that occurs in the system without 

and with DG is considered the objective function. To identify a weak node, the loss sensitivity factor approach is incorporated 

in the forward/backward-sweep distribution load flow algorithm. 

The mGWO algorithm is used to solve this problem; this algorithm emulates the inherent behavior of gray wolves, which 

encircle, hunt, and attack their prey. The strategic ratio between the global and local searches of the algorithm varies linearly 

from a high value to zero in the basic GWO. This may decrease the diversity of global optima. When obtaining the best fitness 

value from local optima, the strategic balance between global and local search is varied exponentially from a high value to zero 

in the mGWO method. Simulation is performed on 33- and 69-bus DSs for network reconfiguration and a 33-bus system for 

DG implementation. The simulation results are compared with those of previous studies; the optimal determination of a tie 

switch is unique, and the acquired configuration is autonomous of the initial state of the DS. Moreover, this paper provides a 

solution to reduce massive power loss in radial DSs, and the improvement brought about by this solution is analyzed in detail. 

Hence, the proposed mGWO is a robust and viable algorithm for discovering the global optimum DS reconfiguration, and 

ultimately, the numerical outcomes are helpful for power distribution companies wishing to inject real power into a DS through 

PV-type DG. The penetration of a different type of DG, placement of DG after reconfiguration, and performing network 

reconfiguration in the presence of DG are topics for future research. 
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Nomenclature 

kI  k
th

 branch current   t Current iteration 

max

kI  k
th

 branch maximum current  A  , C  Coefficient vectors 

,k kR X  Resistance and reactance of the line section 

between buses p and q 
 a  Acceleration vector  

kP , 
kQ  Real and reactive power is flowing out of 

bus p 
 1r  Random vectors in [0 1] 

qP , 
qQ  Real and reactive power is flowing out of 

bus q 
 T Maximum iteration 

,q LP , 
,q LQ  Real and reactive power load at bus q   NL Number of fundamental loops 

p pV   Voltage magnitude and the angle at bus p   Lj j
th

 loop vector 

q qV   Voltage magnitude and the angle at bus q  ,j dSW  d
th

 branch or closed switch in the j
th

 loop  

,k lossP  Real power loss in the branch segment k   NP Population size 

, ,,q eff q effP Q
 

Effective active and reactive power 

supplied beyond the bus q 
 LSW 

Total number of the closed switch in the j
th

 loop at 

loop vector matrix 

ssN  Number of substations  1 3..i NP

g gP P  Size of distributed generation 

' '

, ,,q eff q effP Q  
Effective active and reactive power 

supplied beyond the bus q after 

reconfiguration 

 ij  
Pseudorandom integer values are drawn from the 

discrete uniform distribution between any two 

intervals. 

, ,?bus br

DG

N N

N
 Number of bus, branch and distributed 

generation 
 

List of abbreviations 

CSA Cuckoo search algorithm 

gP , 
gQ  Real and reactive power supplied by DG  GA Genetic Algorithm 

 D 
Distance from source to the DG location in 

km 
 

PSO Particle Swarm Optimization 

RRA Runner-root algorithm 

 L 
The total length of the feeder from source 

to bus k in km 
 EVPSO Escape Velocity PSO 

LossP  Net power loss after reconfiguration  PSOPC PSO with Passive Congregation 

DG

LossP  Net power loss after DG placed  AEPSO PSO with Area Extension 

D  
Position vector of each hunter from any 

other hunters 
 ADPSO Adaptive Dissipative PSO   

preyX  Position vector of the prey  DAPSO Dynamic Adaptation of PSO 

wolfX  Position vector of the gray wolf  BSOA Backtracking search optimization algorithm 

Appendix 

Algorithm parameter 
Population size (NP) : 30 

Maximum number of iteration : 100 

System voltage limits 
V-Min : 0.95pu 

V-Max : 1.05pu 
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