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Abstract 

The heat conduction in half-plane with an insulated crack subjected to moving point heat source is investigated. 

The analytical solution and the numerical mean are combined to analyze the transient temperature distribution of a 

cracked half-plane under moving point heat source. The transient temperature distribution of the half plane structure 

under moving point heat source is obtained by the moving coordinate method firstly, then the heat conduction 

equation with thermal boundary of an insulated crack face is changed to singular integral equation by applying Fourier 

transforms and solved by the numerical method. The numerical examples of the temperature distribution on the cracked 

half-plane structure under moving point heat source are presented and discussed in detail. 

 

Keywords: heat conduction, moving point heat source, insulated crack, the moving  coordinate method, singular 
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1. Introduction 

There are many cases on thermal shock process study when a hot body is placed in contact with a cold one. Welding 

technique has been widely used in the modern industry and engineering fields such as the aut omobile and the computer 

components fabrication [1-2]. The mathematical model of the welding process could be simplified as a heat conduction process 

of a moving point heat source applied on a medium. Rosenthal [3] has derived analytical solution equations of a quasi-stationary 

thermal state for welding heat conduction. Christensen [4] also used an analytical-empirical approach and derived the 

dimensionless equations for heat flow during welding. The conventional analytical methods to solve heat conduction of welding 

are often complex and inapplicable in some cases. The interest about the numeric simulation problems of welding was gradually 

arousing, and the modeling of the heat transfer and fluid flow in the arc plasma for welding process has been well documented. 

Oreper [5] presented a mathematical formulation for the transient fluid-flow and the temperature field in the welding liquid pool. 

Choo [6] developed a mathematical formulation to describe the temperature profiles in gas tungsten arc welding (GTAW). Lowke 

[7] developed unified theory of arcs and electrodes  that are used to make predictions of arc temperatures and voltages in argon. 

Recently, numerical analysis methods and computer programs for heat conduction and thermoelastic analysis have been 

commonly developed. Kou [8] used the numerical method for convection simulation. Kim [9] studied the heat and mass flow in 

moving arc welding pools by the numerical method. Fan [10] developed a two-dimensional axisymmetric numerical model to 

describe the heat transfer and fluid flow in the gas tungsten welding. Joshi [11] studied a three-dimensional computation to 

explain the rotational flow in aluminum welding pools. Tanaka [12] developed a numerical model to analyze the balances of mass, 

energy and force in the welding phenomena. Wei [13] proposed a three-dimensional finite element model to evaluate the dynamic 

thermal stress and strain contributed to the formation of solidification cracking. Hu [14] has developed a unified comprehensive 

model to simulate the transport phenomena during the gas metal arc welding process. Yaghi [15] has conducted finite element 
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simulation of welding thermal and residual stresses in the specific heat of material. Das [16]
 
developed a model of the heat transfer 

during welding by Element Free Galerkin(EFG) method, which demonstrated the effectiveness and utilities of the EFG method for 

modeling and understanding of the heat transfer processes in arc welding. Sheikhi [17] investigated the underlying mechanism 

of solidification crack in pulsed laser welding of 2024 aluminum alloy experimentally and numerically. The subjects of 

thermoelastic analysis in welding by the analytical solutions and numerical techniques mainly focus on the non -crack 

homogeneous or nonhomogeneous plane structure.  

There are many available literatures and referenced results about heat conduction analysis for a cracked homogeneous or 

nonhomogeneous plane structure under thermal boundary conditions. Sih [18] conducted mathematical analysis of the heat flux 

and temperature in the neighborhood of a line of discontinuity in the infinite region by a uniform steady heat flow. Tzou [19]
 

investigated the singular behavior of the temperature gradient and thermal behavior in the vicinity of discontinuities. Noda and 

Jin [20] solved the crack problems in nonhomogeneous thermoelastic solids of the Functionally Gradient Material under steady 

thermal loadings. Zhou et al [21] calculated and analyzed thermal response of an orthotropic functionally graded 

coating-substrate structure with a partially insulated interface crack under a steady-state heat flux supply. Jin and Noda [22] 

modeled a semi-infinite plate of a functionally gradient material with a crack under transient thermal loading conditions. Manson 

and Rosakis [23] investigated thermal stresses around a crack in thermo-elastic materials, and measured the temperature 

distribution at the tip of a dynamically propagating crack experimentally . Chang and Ma [24] computed transient thermal 

conduction of a rectangular plate with multiple ins ulated cracks by the alternating method. Zamani et al [25] investigated the 

effect of second sound of Lord–Shulman theory on a cracked layer under thermal shock. Wang and Han [26] introduced 

Non-Fourier heat conduction into thermoelastic fracture mechanics , and investigated the problem of a finite crack in a material 

layer subjected to a transient heat flow. Hu and Chen [27]
 
analyzed the transient temperature and thermal stresses around a crack 

in  thermoelastic materials using the hyperbolic heat conduction theory. Hu and Chen [28]
 
also investigated the transient 

temperature field around a crack in half-plane under temperature impacts using the DPL heat conduction model.  

The thermal distribution in the inherent finite-length crack subjected to the moving point heat source has not yet been 

reported in the above literatures. In recent years, the research of numerical solution in heat conduction has been further 

developed and applied in heat conduction fields [29-30]. In this paper, the thermal analysis of a cracked half-plane is studied 

under a moving point heat source by analytical solution and the numerical means. The moving coordinate method is adopted to 

change the heat conduction under transient moving point heat source into steady one, and obtain the ana lytical solution of the 

non-crack half plane structure. The heat conduction equation with thermal boundary of crack face is changed to be singular 

integral equation by applying Fourier transforms and solved by a numerical method . The temperature distribution of a cracked 

half-plane under moving point heat source are computed and analyzed by the analytical solution and the numerical means.  

2. Basic Equation 

 
Fig. 1 Geometry and coordinates for a cracked semi-infinite plate under moving point heat source 

y 

x 

l 

a a 

v

( ) ( )q x vt y l    
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A semi-infinite thermoelastic plate structure containing a through crack is shown in Fig. 1. The crack is parallel to the 

boundary of the structure with length of 2a. The Cartesian coordinate system is denoted by (x, y) with the origin at the middle 

point of the crack face along with the x direction. A heat intensity q of the point heat source is moving at the speed of v in 

x-direction with the parallel distance of l to the crack face in y-direction. The position of the heat intensity q is (vt, -l). The 

Fourier’s law of heat conduction is  

2 . ( ). ( )
T

k T c q x vt y l
t

  


     


 (1) 

where q is the heat intensity of the heat source, T is the temperature, k  is the thermal conductivity of the material, ρ and c are the 

mass density and the specific heat capacity,   is the spatial gradient operator, t is the physical time, and v is moving velocity of 

heat source in x-direction. 

The effect of the moving point heat source on the plate can be the initial condition of the thermal conduction [25]. Therefore, 

the boundary and initial conditions are expressed as 

( ). ( ) 0,  ( )  ( )x y x vt and y l       (2) 

0,  ( 0)T t   (3) 

2 20,  as  T x y    (4) 

( ,0 ) ( ,0 )
0,  ( )

T x T x
x a

y y

  
  

 
 (5) 

( ,0 ) ( ,0 ),  ( )T x T x x a    (6) 

( ,0 ) ( ,0 )
,  ( )

T x T x
x a

y y

  
 

 
 (7) 

3. Solution of the Temperature Field 

The temperature field T(x, y, t) can be expressed as 

1 2( , , ) ( , , ) ( , , )T x y t T x y t T x y t   (8) 

where T
(1)

(x, y, t) satisfies the following equation and boundary conditions, 

(1)
2 (1) . ( ). ( )

T
k T c q x vt y l

t
  


     


 (9) 

( ). ( ) 0,  ( )  ( )x y x vt and y l       (10) 

(1) 0,  ( 0)T t   (11) 

(1) 2 20,  as  T x y    (12) 

Whereas T
(2)

(x, y, t) is subject to the relations, 

(2)
2 (2) 0

T
k T c

t



  


 (13) 

(2) 0,  ( 0)T t   (14) 

(2) 2 20,  as  T x y    (15) 
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(2) (1)

 
( ,0) ( ,0)

, ( )
T x T x

x a
y y

 
  

 
 (16) 

(2) (2)( ,0 ) ( ,0 ) ( )T x T x x a    (17) 

(2) (2)( ,0 ) ( ,0 )
,  ( )

T x T x
x a

y y

  
  

 
 (18) 

3.1.   Solution of T
(1) 

(x, y, t) 

Solution of T
(1)

(x, y, t) is adopted by the moving coordinate method [31-32]. The moving coordinate system
1o  is formed 

by setting the heat source to be the origin of coordinate
1o , the 

1o  is coincidence with the original coordinate system at t=0 , any 

point (x, y) in the moving coordinate system is  

,  x vt y     (19) 

It is obvious that the point heat source is fixed in the moving coordinate system. The temperature field (1) (1)' ' ( , , )T T t   

in the moving coordinate system is  

   1 (1) (1) (1), , ' ( , , ) ' ( , , )T T x y t T vt t T t        (20) 

Considering =dx vdt  =dy d , and 
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=

T T

x 

 

 
·

(1) (1)'
=

T T

y 

 
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·

2 (1) 2 (1)

2 2

'
=

T T

x 

 

 
·

2 (1) 2 (1)

2 2

'
=

T T

y 

 
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(21) 

(1) (1) (1) (1) (1)' '
=

T T T dx T T
v

t t x dt t 

    
   
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 (22) 

(1) (1) (1)' 'T T T
v

t t 

  
 
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 (23) 

Eq. (9) can be expressed in the moving coordinate system as following 

(1) (1)
2 (1)

1

' '
' ( ) . ( ). ( )

T T
k T v c q l

t
    



 
     

 
 (24) 

where  

2 (1) 2 (1)
2

1 2 2 2 2

' 'T T

 

 
  

 
 (25) 

The position of the heat source in the moving coordinate system is fixed, (1)'T  has nothing to do with the time t. The partial 

derivative of the formula (1)'T  to t does not exist. Let /vpc k  , the heat conduction equation in the moving coordinate system 

can be simplified by 

2 (1)

1( ) ' ( , ) . ( ). ( )
q

T l
k

      



    


 (26) 

Eq. (26) is a steady expression. Therefore, the boundary and initial conditions in the moving coordinate system are changed 

into Eqs. (10)-(12) that are expressed by  
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( ). ( ) 0,  ( 0)  ( )and l          (27) 

(1)' 0,  ( 0)T t   (28) 

(1) 2 2' 0,  as  T      (29) 

According to the literature [32-33], the solution of the Eq. (26) under the boundary conditions Eqs. (27)- (29) can be written as 

(1)' ( , )   [ ( )]
4 2

q v
T exp r

kr k
  


    (30) 

where 2 2 2r     

The temperature in original Cartesian coordinate system can be obtained by coordinate transform of Eq. (19). 

(1)' ( , , ) exp[ (( ) )]
4 2

q v
T x y t x vt r

kr k
     (31) 

where 2 2 2( )r x vt y    

3.2.   Solution of T
(2)

 (x, y, t) 

According to heat conduction Eq. (13) and the boundary condition of Eqs. (14)-(18), Fourier or Laplace transform is  

employed to reduce the heat conduction problem to be a singular integral equation that is solved numerically.∫ 

Application of Laplace transform to Eq. (13) and Eq. (31) leads to the expressions as 

(2) (2)

0
( , , ) ( , , )  ( )T x y p T x y t exp pt dt


    (32) 

(1) (1)

0
( , , ) ( , , )  ( )T x y p T x y t exp pt dt


    (33) 

where the superscript “*” denotes the quantities in the Laplace domain and Br  represents the Bromwich path of integration. 

Application of Laplace transforms to Eq. (13) and Eqs. (14)- (18) leads to the expressions as 

2 (2) (2)( , , ) ( , , )k T x y p cpT x y p    (34) 

(2) 0,  ( 0)T t    (35) 
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Applying the Fourier transform to Eq. (34), the T
*(2)

(x, y, p) satisfying the boundary condition Eqs. (35)-(39) can be expressed 

as 

(2) ( , , ) ( )  ( )  ( )   0T x y p E w exp gy exp ixw dw y





     (40) 

(2) ( )
( , , ) [ ( ) (2 )] ( )   0

1 exp(2 )
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

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  (41) 

where E(w) are unknown functions to be determined. 
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2g w p   (42) 

/pc k   (43) 

The density function is introduced as 

( ,0 ) ( ,0 )
( )

T x T x
x

x x


    
 

 
 (44) 

where (1) (2)( , , ) ( , , ) ( , , )T x y p T x y p T x y p    . 

It is clear from the boundary condition Eq. (37) that the expression can be obtained as 

( ) 0

( ) 0 ( )

a

a
x dx

x x a







 

  

  (45) 

Substituting Eqs. (40)- (41) into Eq. (45), the unknown function E(w) can be expressed as 

1

1

[1 (2 )]
( ) ( ) ( )

4  (2 )

i exp gl
E w t exp itw dt

w exp gl


 


   (46) 

Substituting Eq. (40), Eq. (41) and Eq. (33) into Eq. (37), the singular integral equation for  can be obtained by applying Eq. (46) as 

following 

(1)
1

1

1 ( ,0)
( )[ '( , )] 2

T X
t k x t dt

t x y
 






  

   (47) 

where the kernel function '( , )k x t  is expressed as following 

0
'( , ) {1 [1 ( 2 ]}sin[ ( )]

g
k x t exp gl w x t dw

w



      (48) 

The integral Eq. (47) under the singled-value condition in Eq. (45) has the following form of solution [27-28]: 

2

( )
( ) ,  

1

x
x x a

x


  


 (49) 

where ( )x  is bounded and continuous on the interval [-a, a]. Function ( )x  can be solved numerically, which has been 

addressed in Chen and Hu [27-28]. ( )E w is calculated by the Chebyshev quadrature for integration as  

1

1 ( 2 )
( ) ( )sin( )

4

n

m m i

m

exp gl
E w w

w
   

 

 
   (50) 

2 1
cos( )

2
i

m

n
 


 . 1,2......m n  (51) 

=m
n


   (52) 

The substitution of Eq. (50) into Eqs. (40)-(41) can give the T
*(2)

(x, y, p) in p-plane, the T
*(2)

(x, y, t) in time domain can be given 

by applying the Laplace inverse transform, then the T(x, y, t) in time domain can be given by Eq. (31) and Eq. (8). 

4. Numerical results and discussions 

The parameters used in the numerical computation are the heat intensity p=1 and l= -1. The distribution of temperature field 

of the body without crack is shown in Fig. 2. The distributions of temperature field of the cracked body are shown in Figs. 3-5.  
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Fig. 2 displays the temperature of the body without crack subjected to the moving point source for the cases of v=1.0, l=-1 

and t=0.5, v=1.0, l=-1 and t=1, v=1.0, l=-1 and t=1.5, v=2.0, l=-1 and t=0.5 respectively. The temperature decreases as the distance 

increases from the point heat source, there is no thermal disturbance in the body. In Fig. 2(b) and Fig. 2(c), under the unchanged 

condition of the moving speed v, it is clear that the highest temperature of the Fig. 2(b) is kept in constant with that of the Fig. 2(c) 

with the same isotherms range. In Figs. 2(a), (b), and 2(d), under the increasing condition of the moving speed v of the point heat 

source, the highest temperatures decrease as well as the isotherms range. The temperature distribution o f the body without crack 

subjected to the transient point source in Fig. 2 is consistent with the ones of the existing literatures of the Ref. [1] and Ref. [13]. 

The disturbance of the thermally insulated crack on the temperature field can be observed from the temperature contours 

lines in Figs. 3-4, and there is a temperature jump across the crack faces. In Figs. 3-5, it can be seen that the temperature 

distribution in the cracked layers varies as the speed and the times of the moving point heat source. The interference of the 

insulated crack also results in different temperature distribution to that of Fig. 2. 

The temperature distribution in the cracked body varies  as the moving speed v of the point heat source changes, which is 

shown in Fig. 3. Under the unchanged condition of the positions of the point heat source, the highest temperatures and the 

isotherms range decrease in the increasing condition of the moving speed v of the point heat source . 

At the same moving speed v of the point heat source, the temperature distribution in the cracked body varies  as the time 

changes, which is shown in Fig. 4. Under the unchanged condition of the moving speed v of the point heat source, the highest 

temperatures and the isotherms range being closer to crack face are both higher than that of the further one because of the 

interference of the insulated crack. 
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(c) Temperature distribution (v=1.0, l= -1, t=1.5) (d) Temperature distribution (v=2.0, l= -1, t=0.5) 

Fig. 2 The distribution of temperature field in the body without crack 
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(a) Temperature distribution in cracked plate (v=0.5, l= -1,  t=2.0) 
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Fig. 3 Temperature distribution in cracked layers  at different speeds 
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(b) Temperature distribution in cracked layers 

(v=1.0, l= -1, t=1.0) 

(c) Temperature distribution in cracked layers  

(v=1.0, l= -1, t=1.5) 

Fig. 4 Temperature distribution in cracked layers  at different positions of the point source 
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(a) Temperature distribution in cracked plate (v=2.0, l= -1, t=0.25) 
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(b) Temperature distribution in cracked layers  

(v=1.0, l= -1, t=1.0) 

(c) Temperature distribution in cracked layers  

(v=0.5, l= -1 and t=2.5) 

Fig. 5 Temperature distribution in cracked layers at different speeds and times 

The temperature distribution in the cracked body varies as the moving speed v of the point heat source and time change, 

which is shown in Fig. 5. It is interesting that the highest temperatures and the isotherms range of the case of the higher moving 

speed v are both higher than that of the lower moving speed v due to the interference of the insulated crack. The interference of 

the insulated crack results in different temperature distribution to that of Fig. 2. 

The temperature distribution on the crack faces  interrupted by the insulated crack is much more attracted. For the cases of 

v=0.5, l=-1 and t=2.0, v=1.0, l=-1 and t=1.0, v=2.0, l=-1 and t=0.5, the temperature on the crack faces and extension line are 

displayed in Fig. 6. For the cases of v=1.0, l=-1 and t=0.5, v=1.0, l=-1 and t=1.0, v=1.0, l=-1 and t=1.5, the temperature on the crack 

faces and extension line are displayed in Fig. 7. The temperature distribution is disturbed by the insulated crack. There is a 

temperature jump across crack face, the temperature on the crack extension line is continuous. The temperatures on crack face 

and the extended line both vary as the time and the location of the point source change . 
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Fig. 6 Temperature distribution on crack faces and extended lines  

(v=0.5, l= -1, t=2.0, v=1.0, l= -1, t=1.0, v=2.0, l= -1, t=0.5) 
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Fig. 7 Temperature distribution on crack faces and extended lines (v=1.0, l= -1, t=0.5, t=1.0, t=1.5) 

5. Conclusions 

The temperature distribution of a cracked half-plane under moving point heat source has been computed and analyzed by 

the analytical solution and the numerical means . The numerical examples of the temperature distribution under moving point heat 

source are investigated and discussed. Numerical studies show that the interference of the insulated crack results in different 

temperature distribution to that of non-crack plate structure. The temperature distribution in the cracked layers varies as the 

speed and the effect time of the moving point heat source. 

For cases of the temperature distribution of the body without crack, the temperature decreases as the distance increases  

from the point heat source, there is no thermal disturbance in the body. Under an increasing of the moving speed of the point heat 

source, the highest temperatures decrease as  well as the isotherms range. For cases of the disturbance of the thermally insulated 

crack to the temperature field, there is a temperature jump across the crack faces. The temperature distribution in the cracked 

layers varies as the speed and the effect time of the moving point heat source. Under the unchanged condition of the moving 

speed of the point heat source, the highest temperature and isotherm range of the case being closer to crack face are higher than 

that of the further one. The highest temperature and the isotherm range of the case of the higher moving speed are greater than 

that of the lower moving speed due to the interference of the insulated crack.  
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