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Abstract
The generalized multiplicative operator of differentiation is introduced in this paper. It is shown that the
generalized multiplicative operator can be expressed as a product of two noncommutative but multiplicative
exponential operators, though the generalized multiplicative operator is not an exponential operator itself. The
generalized multiplicative operator is effectively exploited for the construction of solutions to nonlinear ordinary
differential equations through formal transformations of invariants and representations of initial conditions. The
concept of the generalized multiplicative operator provides the insight into the algebraic structure of solutions to

nonlinear ordinary differential equations which cannot be identified using conventional exponential operators.
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1. Introduction

The construction of analytic solutions to nonlinear ordinary differential equations (ODE) is an important research topic.
Numerous techniques have been developed for that purpose during the last decades. An explicit algorithm based on the Laurent
series for the construction of meromorphic solutions of autonomous nonlinear ODE is presented in [1]. The frequency domain
approach is used to prove the existence of a unique bounded, exponentially stable solution to some third order nonlinear
differential equations [2]. Existence and boundary behavior for singular nonlinear ODE is investigated in [3]. WTC-Kruskal
algorithm is developed in [4] in order to study the Painleve property of nonlinear ODE. Differential transform method has been
successfully exploited for solving nonlinear ODE and their systems [5, 6]. The Adomian decomposition method is used to
construct the solution in a form of an infinite series where the components are usually determined recurrently [7].
Semi-analytical Chebyshev collocation method is used to solve high-order nonlinear ODE in [8]. We list only a small fraction of

different techniques and semi-analytical algorithms for the construction of exact solutions to ODE.

The application of algebraic techniques for the construction of analytic solutions to ODE is a classical field of research [9,
10]. An overview on developments of algebraic theory approach to ODE is given in [11]. The application of algebraic theory to
the numerical treatment of ODE is studied in [12]. The differential operator is one of the key concepts in the algebraic theory of

differential equations [13]. The exponential differential operator is especially useful for these purposes [14, 15].
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It is well known that the concept of the invariant plays an important role in mathematics in general [16]. In particular,
special invariants of ODE have been recently formulated in the context of geometrical analysis of differential equations [17, 18].
The main objective of this paper is to introduce the concept of the generalized multiplicative operator of differentiation and to
demonstrate its applicability in solving practical problems. Moreover, we will demonstrate the relationship among the
generalized multiplicative operator of differentiation and invariants of differential equations what will help to develop special

techniques for the construction of analytic solutions to nonlinear ODE problems.

This paper is organized as follows. Symbols and notations are listed in section 2; the generalized multiplicative operator
is introduced in section 3; the expression of the solution in the operator form is derived in section 4; a number of examples are

given in section 5 and concluding remarks are given in the last section.

2. Symbols and notations

The following notations will be used throughout the manuscript (appropriate definitions will be given later):

n — the order of the explicit ordinary differential equation;

y — the dependent variable;

Sg»S1,---»Sp_q — Cauchy parameters (initial conditions);

& — the canonical variable (the center of the series expansion of the solution);
X — the free variable;

p(x,Sg, Sy, Sy1) — an R-valued function of xand Cauchy parameters;
f(x,x,59,S1,-.-,Sn_1) —an R-valued function of x, x and Cauchy parameters;

. —the set of functions p(x, Sy, Sy.-...Sy 1);

K,50:51 1+ + 1S

@ | —the set of functions f(x,x, Sy, S,..,5, 1)

X,K,S0 51 -+ Sn_s
s, t— Cauchy parameters for n=2 (i.e. si=5sy; t'=5;);
D

D, Ds,, ..., Ds  —ordinary differential operators in respect of variables x, x; sg, ..., S;_4;

x+ Mro Vs

D, — the generalized differential operator;

M , M, —multiplicative operators;
G - the generalized multiplicative operator;

V(x,S0,5y,..., 1) — the invariant associated with D, ;
3. The generalized multiplicative operator

3.1 Existing designs (or original designs)

Functions of two types are used in this paper. Functions of the first type p; = pj(/c, Sgye ey sn,l) describe the mapping
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— R ; where 1 1 I

Kidsy 1o

— R are variation intervals (or unions of intervals) of variables
1

Sp_ Sp

P; 1 ><ISD xeoox]
K,So---»S, 4 € R. These functions are differentiable any number times in respect of every variable. It can be noted that the

identification of variation intervals (or unions of intervals) is a straightforward task whenever the expression of

P;(x.So.--.Sy-1) is given explicitly. For example, the function

1

p(x, So)=m 1)

is defined and differentiable any number of times in respect of x and s, when « e (—o0;0)U(0;40) and s, € (— OO;%) (the

principal square root is considered in Eg. (1)). The analysis of functions of the first type is not the objective of this paper, but we

will consider only such functions p; = pj(/c, So,...Sy_1) that intervals LI ... I existand are not empty sets. The set of

functions of the first type is denoted as @, ¢ s -

Functions of the second type are constructed from functions of the first type using the following algorithm.

(i) Construct the power series:
+00 Xj

ij(zc,so,...,sn,l) @)
io J*

fO(XiKlsoy-..,Snil)z

(if) Extend the function fo(x, K, so,...,sn_l) to a wider domain (if it is possible) using classical extension techniques. The
extended function f(x,«,Sy,...,S, 1) is denoted as the second type function.

For example, the series

TR S BN P,
= KL+ y1-4s, S all+1-4s,

can be extended to a function

e a5,

wlL+ 145y )-x

f(X,K, SO)=

for sy € (—0;0) and K'(l+ J1-4s, )¢ X . From now on we will use the equality

S i) [y

L J1-4sy )] | wli+1-4s )-x

im0 I

assuming that the transformation into the extended function does not cause any misunderstandings and will not specify the
domain of x, xand s .

Other forms of the second type functions can be used. Typical cases (structures of f;) are listed below:

+00 (X—

J
fO(X,K,SO,...,Sn_1)=Z J|K> pj(K,SO,...,Sn_1);
—~ !

—
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+00 j
fO(K’SO""’Sn*l):Z% pJ(Kl SO:"-’Sn—l)'

j=0

It can be noted that it is not necessary to introduce the function norm (neither for the first type functions nor for the second

type functions) in the process of the construction of analytic solutions of nonlinear ordinary differential equations.

The set of extended functions is denoted as Dy 505 ((DK,SOMSH Dy sy, 504 ).

3.2 The generalized operator of differentiation

Let us consider an explicit ODE:

dny dy dnfly
=R, XYy, —,..., ;
ax" [ Vo gt 3)

with initial conditions

d*y(x, x, so,...,sn,l)|
dxX

=s.;k=01...,n-1; (4)

-

where y = y(x, Ky Sgr-ms sn,l) is the solution to the initial value problem (Eq. (3, 4)); n e N is the fixed order of the differential
equation; P, =P, (x,Sy,...,S,_1) is a function of the first type. Then, the generalized operator of differentiation D, associated

with Eq. (1) reads [19]:
Dy =D, +5D; +8,Dg +--++8,4D; | +Py(x,50,...,5,4)D; )

This paper is organized as follows. Symbols and notations are enlisted in section 2; the generalized multiplicative
operator is introduced in section 3; the expression of the solution in the operator form is derived in section 4; a number of

examples are given in section 5 and concluding remarks are given in the last section.

Conventional properties of differentiation hold for D, . Several properties are listed below:

(i) Dyl(c,fi+c,f,)=c,Dyf; +c,Dyf,; where ¢,c, eR; f), f,e®,

(i) Dy(fy- f2)=(Dy f)f, + f2(Dy T,).
f, (Dfy)f, - f,(Df,)
p. 1 _ L)l = L)
(iii) v, N
mm) _ m 0, j>m;
(iv) D;”(fl-f2)=Z[J(D;fl).(D;‘—Jfz);where[J: e Bm=0L2
=0 jm—j)

(v) Let f(z) be a function differentiable any number of times in respect of the variable z. If

F(X,%,Sg,-++ Sna )= F(fy(X,x,Sg,..., 501 )) then D,F =(D, f(2)) Dy, (X, &, Sg, ..., Spg )

2=, (X,K,80 - +Sn1)

We will prove Property (ii).
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Proof.

Without the loss of generality we will prove Property (ii) for n=2. Let us assume that the generalized operator of

differentiation reads D, =P(s,t)D; +Q(s,t)D; and functions P=P(s,t); Q=Q(s,t); f,="f(s,t); f,=",(s1t) are

differentiable in respect of variables s and t any number of times. Then,

D, (f;- f,)=(PDs +QD Y f, - f,)=P((Ds ,)f, + f,(Ds f,))+ QD f)f, + f,(D, f,))=
(P(D F,)F, +Q(D, 1))+ (,P(D, f,)+ ,Q(D, 1,))=(D, £, )f, + £,(D, ,)

End of proof.

Other properties can be proved analogously.

3.3 The multiplicative operator

D, can be exploited to construct the multiplicative operator M:

M = Zﬁ D, . (6)
The operator M satisfies following equalities [19, 20]:
(i) M(afy+a,f,)=a,Mfy +a,Mf,; aj,a, eR; i, f,ed,
(i) Mx™=(x+x)"; meZ,.
(i) Mfy(x,Sg,...,504)= F(x+ X Msg,...,Ms, ;).

f(x,Sg,e e Spq)  Tolic+ X% Msg,...,Ms, ;)
25,50, 1Sn1) ol + X Msg,...,Ms, ;)

(iv) M
Without the loss of generality we will prove the equality Mf;(s,t)= f,(Ms, Mt) when D, = P(s,t)D +Q(s,t)D;

Proof.

Let y; :=Ms=vy;(x,5,t); v, =Mt =y,(x,s,t); z:=Mf(s,t)=2(xs,t) and w:= f;(Ms,Mt)= f,(y;(x 5,1), y,(x5,1)).
Then,

-1

D,Mf;(s,t)= [Z—Djflst} 2(1—1 yz Dflst Dy Mfy(s,t)=

= PDgMfy (s, t)+ QD; Mfy (s, t).

The last equality yields the following differential equation with partial derivatives:

oz oz )
o ——Q—— )

where z(0,s,t)= f,(s,t). Analogously,
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M oM AN _q,. :
2 pl 2L =0; yv,(0,s,t)=5; 8
Se-P_r-Q—=0; y,(0s.1) (®)
and
oy, %, %,
—=-P—=—=-Q—==0; 0,s,t)=t. 9
x P Qg 70 val08) ©
Now, it can be observed that:
DXW:afl(y17y2):afl(u’v)| P%"'Q% +af1(U,V) P%‘FQ% _
ox au Iu:yl((x sl o ot o Juwesy (o os at
V=Y, (X,s,t v=Y,(X,s,t
=P 8f1(u,V) .%+—af1 U,V) % +
ou u:yl((x,s,t)) 0s ov u:ylgx,s,t)) 0s
V=Y, (X,s,t v=y,(X,s,t
4 q Huluv) o, ) Yo |_pw oW
ou U=y1%x,s,t% ot ov u:ylgx,s,t)) ot 0s ot
V=Y, (X,s,t V=Y, (X,s,t
The last relationship yields the equality:
ow ow ow
——-P—-Q—=0; w0,s,t)=f(y;10,s,1),y,(0,s,t))=f(s,t). 10
& P Qg =0 WOs )= f(1(05.8) v (05.t) = F(s.1) (10)
Therefore, finally:
2(x,s,t)=w(x,s,t).
End of proof.
Other equalities can be proved analogously.
It is worth noting that the multiplicative operator defined by Eq. (6) can be considered as the exponential operator:
M = exp(ny ) (11)
Now, let us introduce the operator:
400 (_ K)J DJ
M 0= Z(;TX . (]_2)
J=

Moreover,
Mo f (X, &,Sg,....Sn4q)= T (X—%,&,Sq,...,Sn1).

Thus, the operator M, is a multiplicative and an exponential operator at the same time.
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3.4 The generalized operator of differentiation

We introduce the generalized multiplicative operator:

+00 _ j .
G:=Z(X :‘) D] . (13)

=

—

The following properties hold true:

(i) Gx™=x"; meZ,.
(iii) Gfl(K, SO,...,Sn_1)= fl(X, GSO""*GSn—l)'

(iv) G fy(k.Sg, - Sna) _ fi(x.Gsg,... Gy q)

fo(k,Sg,... Sn1)  F2(X,Gsg,...,G8; 1)

(v) Let Ms, =gy (X, x,Sq,..-,S,1). Then Gs, =gy (X —«,&,S9,...,S01); k=01,...,n—1.
We will prove the third equality (other equalities can be proved analogously).

Proof.

The second property of the multiplicative operator yields:

=400 i —+00 i
Mfy (i, g, -+, Sn_1 )= fl{x+ K‘ZXT:(DJSO)""ZXT-:(DJSn—l)]'
=1 — jl

The replacement of the variable x by the expression x — & (what is possible) yields:

) (063150100 500)— fl[x_K+K,f§<x—f>j Biso).. S = (ois )|,

j! = j!
what concludes the proof.
End of proof.
Definitions and properties of operators M, M, and G (Eq. (11, 12, 13)) yield the following equality.
Corollary 1.
G=My-M.

Thus, the generalized multiplicative operator G is a product of two noncommutative but multiplicative and exponential
operators. But the operator G is not an exponential operator. It is worth noting that exponential operators are widely used in
geometric-operator calculus [17, 21, 22]. We will demonstrate that the generalized multiplicative operator G can be effectively

exploited for the construction of solutions to ODE problems.
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4. The expression of the solution to ODE in the operator form
Theorem 1.
The solution to the initial ODE problem Eq. (3, 4) can be expressed in the following form [19]:
y=Gsg.

Without the loss of generality we will prove that the solution to the differential equation

d? d dy(x, «, s, t
Kglsz[x, y’d_g; y=y(xxs1); y(x xst)=s; %X_K =t (14)
reads:
+00
xzcstzz (D, +tD + P, (x,s,t)D, )’s. (15)
j=0
Proof.

It is clear that D, =D, +tDg + PZ(K, s,t)Dt. The operator D, satisfies all properties of the generalized operator of

+00 J i
differentiation. Now, let z(x,x,s,t)= ZX_| DJs=Ms. Then,
)

9 %:5) _ b s~ D, Ms = MD, s = Mt
dx

Analogously,

d*2(x. x5t 1 \eZp,me =MD t = MP; (x,s,t)= P, (M, Ms, Mt) = P (x,x,5,1) dz(x..5.t)

oz = DxMt=D, Mt =MDt = MP;{x5,t)= P, (Mx, Ms, Mt)= Py x4, 2(x, 5, t) == == |.
Thus,

2
d?z(x - 1; K,5.t) _ Pz(x, (5 — K k5.0, dz(x - x, x, s,t)j.
dx dx
Therefore,
dy(x, x,s,t)
2(x—x,x,5,t)=Gs = y(x, &,5,t) and y(x,x,8,t)=s ™ =t.
X=K

End of proof.

Eq. (15) can be considered as the generalization of the Picard formula [23] describing the solution of an ordinary

differential equation in a power series form.

Corollary 2. The following equality holds:
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d*y(x x,Sg,..,Sn1)
dx

=Gs; . (16)
Proof.

It is clear that D‘y‘s0 =s, for k=01,...,n—1. Then,

dky(X,K',SO,...,Sn_]_):Dkf(X—K)j DJS _i(x—l()j_k DJS _f(x—l()j Dj+kSO=

ka =0 j! j=k (J _k) ymo j=0 j!

o (x-x)
_Z j!

=0

Jg, —
Dysy =Gsy.

—

End of Proof.

Properties of multiplicative operators M and G yield the fact that the solution to the ODE initial value problem (Eq. (3, 4))
does satisfy the equality:

Ay(X+K,K,Sg,...,Sq1)  OY(X+K,K,S0,...,501) S Ay(X + K, K,Sg,...,Sp_1) Ay(X + K, K,Sg,...,Sp_1)

1 PR — S 1 pa—
ox oK S, " Sy s

X+ K, K, S0+ Sp_
_Pn(KxSo,...,Snfl)ay( . 0 nl)
Sn—l

=0.

For example, the solution to the initial value ~problem %:y+x ; y(/c,zc,s):s takes the form
X

y(x x,8)=—1—x+ (s + & +1)exp(x — ). But the function y(x + x,x,s)=(s+ x +1)exp(x)— (x + x +1):= z(x, x, ) with the

initial condition z(0, x,s)=s satisfies the following differential equation:

=0.

oz(x,xs) oz(x,x,8) (5+5) az(x, x, )
X oK 0s

4.1 Invariants of the generalized operator of differentiation and their properties
Definition 1. A function v=v(X, x,Sy,...,5,1); V€@, ¢ ¢ isaninvariantof D, if
Dyv=0. 17)

The set of invariants is denoted as {V|Dyv = O}:z Ker D, . Properties of invariants of D, are listed below.

. V. .
(i) Letv,v,eKerDy and C;,C, €C. Then c;v; + czvz;vlvz;é € Ker D, . The proof follows from properties of D, .

(i) Let a=a(z,25,...2,) be a function of variables 2z;,7,,...,z, and Vy,Vy,...,V, Ker D,
Then, a(vy,V,,...,V, ) Ker D, .

Proof,
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End of proof.
(ili) LetveKerDyand fed,, .  .Then, D,(vf)=v(D,f); M(Vf)=v(Mf); G(vf )=v(GF).
Proof.
D, (vf ): (Dyv)- f+v-Dyf =V(Dy f ) Other equalities can be proved analogously.

End of proof.

(iv) Let fed,, . - Thentheoperator

D,); xpeR

yields the invariant GKO f eKerD,.

Proof.
0,6.1-0, 565 o, 1-Fo (L (o |-
3 y<K-;f°>'}<<- 0,1} <'<-;.<°”< < Dwa)]

End of proof.

(18)

Corollary 3. The replacement of a real complex number x;, in the expression of GKO by a symbol x yields the equality

G, =G;
moreover, Gf eKer D, for f e®, . o .

Proof.

~ B () ()] (k) -
G, -3 =) (-p,) = M(—Dy)Jz (x=x) DJ =G . Thus, G, f =Gf eKer D, for

End of proof.

Note that the variable x is regarded as a constant in respect of the operator D, .

Corollary 4.

Copyright © TAETI

(19)



International Journal of Engineering and Technology Innovation, vol. 5, no. 1, 2015, pp. 01-18 11

Eqg. (13), Eq. (18) and Eq. (19) yield the equality D,y =0 therefore

yeKerD,. (20)

Corollary 5. Let f, f, e® - Then Gf; =Gf, ifand only if f, = f,.

X,K,Sg 1+ - S,

Proof.

+00 . J
Now, let us assume that Gf, =Gf, . Then G(fl—fz):z<x :()

j (Dyj(fl—fz)):o what requires that
-0 :

—

DJ(f, - f,)=0 holds forall j=012,.... But DJ(f, — f,)= f, — f, what concludes the proof.

End of proof.

Corollary 6. Let f(x, K,Sgy--es sn,l)e Ker D, . The replacement of the symbol x by the symbol « produces a function

f(x,x,Sg, ..., Snq ) - Then, the following equality holds true:

Gf (K, K, So,...,sn_l): f(X, K, So,...,sn_l). (21)

Proof.

+00 J

The function f can be expressed in the form f(x,x,sg,...,S, 1) = E Vi X—l since f(x,x,Sg,...,S,1)eKer D, where
)i
j=0

~+00 j
v; € Ker D, . But then f (i, x, so,”_,sn_l)zzvj KJ—I what immediately yields Eq. (21).
i=0 )

End of proof.

Let y(xxst) be the solution to differential equation (14) and y(xo.x,5,t)=v, (x,5,t)=v ;

dy(x, x,s,t)

g =Uy, (K, s,t) '=u where x, €R is not a singular point of differential equation (14). Then,
X

X=Xq

Ker D, :{ D av!

k,lez,

a, € C} : (22)

It can be noted that Eq. (22) is not the only representation of Ker D, interms of uand v. In general, other representations

(in other terms) do exist.

4.2 The canonical parameter of the generalized operator of differentiation

Definition 2. A function y = y(x,Sg,....S,1); 7 € ®@,s,...s,, 1s the canonical parameter of D, if
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Dy;(=l. (23)

Corollary 7. The variable xis a canonical parameter of D, because D,x =1.Moreover, all other canonical parameters

of D, can be expressed in the form:

Z:K+V (24)

where veKer D, .
Corollary 8. Let y; and y, be two canonical parameters of D, . Then,

X~ x,€KerDy.

4.3 Structural expressions of the solution to ODE

We will consider several typical structural expressions of solutions. Let us assume that the function z = Z(K, Sg1--es sn_l)

can be expressed in the form:

z=p(K,Vy,... Vi) (25)

where ¢ e Dys,.s

+Sn

;Y =vj(z<, so,...,sn_l)e KerDy; j=12,...,m. Then, properties of the generalized operator of

differentiation yield:

Gz =@(X,Vy,...,Vpn ) (26)
+00 _ j >
Note that GV=V+ZM Dy’v:v. Various particular cases of Eq. (25) could be considered. Several typical
=

examples are listed below.
Theorem 2.
Let us assume that s, can be expressed in the form:

So = @K, Vy,... Vi) (27)

Then,

Y =(X,Vy,..., V). (28)

Proof.
The proof follows from Eq. (13) and Eq. (26).

End of proof.

Eq. (28) also represents the structural expression of the solution in Eq. (13).

It appears that if one is able to identify invariants and to construct the expression of s, (Eq. (27)) then there is no need to
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solve the initial problem defined by Eq. (3, 4) — the solution is automatically generated by Eq. (28). Since this result is of

fundamental importance, we denote the expression in Eq. (27) as the s, — representation.

The natural question arises what is easier —to find invariants or to solve the initial problem using conventional techniques.

A discussion on these questions is provided in section 5.

Corollary 9. A particular case of the s, — representation:

So :ka (), (29)
P

where v, =v, (k,Sq,...,5,4 )€ Ker D, for all k yields the solution to the ODE defined by Eq. (3, 4):

y:ZVk i (x). (30)
k=1

Eq. (30) represents another structural expression of the solution in Eq. (13).

Note that y = ka -x* if f,(x)=x* (what is a rather common situation).
k=1

Corollary 10.

Let us assume that the expression of the invariant v =v(, s, ) Ker D, isgiven. Then Gv = v(Gx, Gs, ) what yields the

algebraic equation:

v=v(X, y(X, &, Sq;---,Sn1))- (31)

Then the solution y could be expressed from Eq. (31). Thus it is possible (not always) to reduce the initial problem

defined by Eq. (3, 4) to the solution of the algebraic problem defined by equation Eq. (31).

It can be noted that other generalizations are also possible.

5. Examples

A number of examples are given in this Section. We start from the most primitive examples and continue with more

demanding nonlinear ODE problems.

Example 1. Let us consider a differential equation % =0; y=y(x «,s) with the initial condition y(x,x,s)=s. Then,
X

+00 j

. (x—x)’
D, =D, +0-D;; G=>» =
i=0

D/ . The invariant reads v(x,s):=s because Dys=s. Then, the s-representation reads:

akeR}

Copyright © TAETI
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2
Example 2. Let us consider a differential equation %:O; y = y(x,x,s,t) with initial conditions y(c;c,s,t)=s;
X

dy(x, x,s,t)
ax

=t . Then, D,=D,+tD,+0D, . The invariant reads: v(x,st)=s—xt because

X=K
(D, +tDgJs—&t)=—t+t=0. Then the s-representation reads: s=(s—&t)+xt . Now, Gs=(s—t)+Gxt (note that

C HmSYp Note that ot YXESY)
dx dx

X=K

Gut=(Gk)Gt)=xt ). Thus y=s—at+xt ; y(x,x,51t)=s =t and

Ker D, ={ > ay(s—xt+x,t)t!

k,\lez,

ak,,XoeR;XO:ﬁO}-

Example 3. Let us consider a differential equation %: P.(x); y=y(x,x,s) with the initial condition y(x,x,s)=s.
X

+00 _ j
The generalized operator of differentiation reads: D, =D, + P,(x)Ds; G= ) (x :() (D, +Pi(x)Dg). Now, let us define a
= J
j=0

K

primitive function P,(x) for P;(x): If’l(z():J.Pl(z)dZ' P.(17)=0 where 77 e R and P,(x) exists. Then, the invariant reads:

V(x,s)=s-P,(x) because (D, +P,( )(s—P1 K) —P(x)=0 . Then the s-representation reads:

s :( - Isl(l())-i- P(x) . Thus, Gs= (s - Pl(x))+ P(x) . Finally ~y(x x,s)= (s - Isl(x))+ P(x) ; y(xx,s)=s and

Ker D, ={Zak(8— R (x)+ '51(><o))k

kez,

Xo, 8y € R;llsl(xoj < +oo}-

Example 4. Let us consider a differential equation %: 1(x) .y =Yy(x, x,5) with the initial condition y(x,x,s)=s.
X

+00 _ j i . .
Then, D, =D, +;1L(’3 D,; G :Z(X J:() (DK + A(x) Dsj . Let P,(x) and Q,(x) be primitive functions for P;(x) and
1 - -

Q(s)

Q,(x). Then, the invariant reads: v(x,s)=Q,(s)— P;(x), because (DK + gll((’;; DSJ( 3(s)- |51(K))=—P1(1<)+ P,(x)=0. Now,

the s-representation can be expressed in the implicit form Ql(S)=(Ql(S)—ﬁl(K))+ P(x) . Therefore,

66,(5)=(G(5)- B () + BB (x) ; Qu(G(5)=(Bu(6) - Bulw))+ Bi(G(x)) 5 Oy(y(x,x,5)=Cy(s)~ (i) + Bi(x) . Finally

y(x, x,8)=Qr ( 1(s)- Py(x)+ Py(x )) The explicit solution exists if the inverse function Q;*(x) does exist.

Example 5. Let us consider a differential equation j—y =y2; y=y(x,«,s) with the initial condition y(x, x,s)=s. Then,
X
Dy =D, + s2D;. It can be observed that v=v(x,s)= because
l+sk
2 —
D,v=(D, +52D,)——=——5 452 Lrse)-sx

sk (1+ sk)? (1+sx)

Copyright © TAETI
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Thus, > =G S Gs = y(X’K S) . The algebraic equation for the identification of y takes the form
l1+sk  1+sk 1+(Gs)Gk) 1+xy(xx,s)
S y . S
= . Finally y(x,x,8)=—F——
l+sx 1+xy y y( )

s
g It can be noted that Dyy(x,zc,s)z(DK+32D)

sk 0 A
k
y(x,x,5)=s and Ker D, = Zak( J a,% R}
keZ0 K)

2
Example 6. Let us consider a linear ordinary differential equation d—3+ gy +by=0; y= y(x K, S, t) with initial
X

conditions  y(x,x,s,t)=s dy(x ,5,t)

dx

=t . Then, D, =D, +tD, —(at+bs)D
X=K
— A,8)exp(—= 4x) 5 vy (x,s,t)=(t -

and invariants
become v, (x, s, t) =t

u8)exp(— A,x) where 2, and A, are two different roots of the
algebraic equation A% +aA+b = 0. Note that Dyv; =Dyv, =0. Then, the s-representation reads

t—A1,s

T4, exp(— Ay )exp(Ayn) + ;2__/11;1 exp(— Apx)exp(Ay).

Thus, the solution reads:

t—4,8

45—t
y= i, exp(4(x —x))+ 3 exp(4, (x - x))

2

and

Ker D, = {z sl 2Rl (€ As)ew (- )

a, € R}

2
Example 7. Let us consider a linear ordinary differential equation %_ 240 :y +/1§y 0 y= y(x s, t) with initial
X
conditions (. krs,t)=s ; YxmSt)

1] - . = t
dx X=K

vy (r,8,1) = (5 = (t — Ao8)cexp(= Agx) ; v, (x,s,t)=(t -
form: s=((s—

Then, D, =D, +tD, +(210t —ASS)Dt and invariants read

A08)exp(= Agx); Dyv; =DV, =0. The s-representation takes the
(t = Zos))exp(= 2o ))exp(Zor) + ((t = Zos)exp(- Ao ))exp(Zorc).

Thus, the solution reads: Y = (S + (t - /105)(X - K))exp(/i0 (x - K')) and

dy| € R}

So far, the solution of trivial differential equations has been demonstrated in Examples 1 — 7. These examples were used

Ker Dy = Zam — Jo8)cexp(= Agr ) - ((t

k,1=0

~ os)exp(~ o)

to illustrate the specific features of the proposed solution technique. A more demanding problem is investigated in Example 8
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Example 8 (The Riccati type equation). Let us consider a differential equation L] :M; y= y(x, K, s)

dx (v - Y2 )X

with the initial condition y(x, x,s)=s; where y,,y, €C; y; #y,. Then,

_ _ +00 PAY _ _ J
D, =D, +w~ D;; G:Z(X _K) (DK + 5y, )s yZ)- Ds) . Two invariants are appropriate for the
(V1= y2 e =L (V1 =y e
s-representation: v;(x,s)=Y,; VZ(K,S):%K because Dy, =D,y, =0. Really,
N

D,v, = S Y2, (S—yils—yo)e (5= yl)—(Sz— y2) _57Y [1+ Y2~ ylJ:o . Then, the s-representation can be
S—Y (y1-Y2)e (s-v) S—Y Y1—Y2
expressed in the implicit form: s=vy, +m . S_—yl.
s—y; K

Therefore, Gs=vy, + L - and finally,

(S—y2)c Gs-Gy, Yk s) =y, + (s—ya)e ylxx5)-y
S—VY; Gk s-y; X

)= Yao(s—yix=yi(s -y, ) .

y(x x,s A S y(x, x,s)=5. The kernel reads:
“YiIX= S =Y K

k
KerD, = zak(ng_;/l;;(O_(ysl(S;;/Z)’(j X8, € R;X, =0} because xo=0 is the singular point of this
keZ, Y )X — ST Y )K

differential equation.

It can be noted that the same problem can be solved using different invariants (we will exploit a similar invariant to the one used

. A A 1 A Inx A 1
in Example 4): v(x,s)=Q,(s)- P,(x) where P,(x)=-———; P,(x)= ;RM)=0and Q,(y)=——;
(8)=Qile)-Px R (T N T 7 i) Sy -y - va)
Q,(y)= L opy=n Then, the implicit s-representation reads:
Yi—=Y2 Y=Y
LT - S S T b - Ink + Ink . Then, GIn— 2 N2 _|nk 4 Gink because
Yi—=Y2 S—Y2 Y1—Y2 S—Y2 Y1—Y2 Y1—Y2 S—Y; S—VY2
Dy(lns'_—yl—anJ:O.Therefore, In y(X’K’S)_ 1 =In S™h —Ink + Inx. Finally, the solution in the explicit form reads:
S—Y, y(x,zc,s)—yz S—Y»
y(x,x,s)= Y2(3_Y1)X_y1(S_Y2)K; y(K,K,S)=S.

(s- yl)x_(s_ Yo )i

An even more complex problem is investigated in Example 9.

Example 9 (Invariants and the s-representation of the Liouville type equation). Let us consider the differential

equation

%:—%Jl—@y; 7eR; y=y(xx,s), (32)

with the initial condition y(x, x,s)=s. Then, D, =D, -5 fiaD,.
K
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S

-2+ 1- 45

The invariant reads: v(x,s)=

). Really, it is easy to check that

S

K(l—2;6+M)

Nevertheless, it is clear that finding the invariant can be as much complex problem as solving the original differential

(DC—E 1-4;5D3j -0.
K

equation. It was rather easy to determine invariants in Example 8. But the identification of V(K, s) becomes a difficult task now.

In general, one needs to have some sort of algorithm for the construction invariants (especially if differential equations are
complex). We are going to present a detailed description of this algorithm in the second part of this paper (the object of the first

part is to derive the general framework for the solution of nonlinear ordinary differential equations).

At this point we will illustrate the duality of the problem. One can derive invariants and then the construction of the
solution becomes a straightforward task. On the contrary, one can reconstruct invariants if the explicit expression of the solution
is available. Note that the algorithm for the construction of invariants (the objective of the second part of the study) does not

require the analytic solution of the original differential equation.

In [24] it is shown that the solution of Eq. (32) reads:

y(x,/c,s): 25(1—2;/5 +M)xzc .
(2;»sx + K(l— 295 +4J1—4ys ))2

+00 +00
Then, according to Corollary 8 (part (i) y(x,x,s)= > v;(x,s)xJ and the s-representation reads s="» v;(x,s)x’ (because
j=0 j=0

+o0
Gs= Zvj (x,s)x3 = y). Now, keeping in mind that E Z jz1™, one can deduce:
j=1

=0 (1— Z)Z - =
25(1— 255+ 41— 45 )XK

21 2.+ J—asfl1- 275X 2
-2+ 1) (1 K(l—?_}/S-l-M)]

y:

i |
25 & — 275 P SR () L Y
K(1_27,3+M)§ ](K(1—2ﬁ+\/1—473ﬂ S% (K(:L—Z]/S-i-ﬂl—“-]’s))J "

+00 s j-1 .
Now, immediately, s:ZSZ i25) — ) Therefore, v;(x,s)=

j=0 (K(l— 255+ M))J

j(-28)

(e—2s +i-4))

S

k
dKerD, =13 > Re-
e SR Eer ) |

v(k,s)=

6. Concluding remarks

A number of examples are used to illustrate the functionality of the proposed technique. It becomes clear that the
identification of invariants can be as much complex problem as the solution of the initial ODE problem. A necessity of an

explicit algorithm for the construction of invariants becomes obvious for more demanding and complex nonlinear ODE

Copyright © TAETI



18 International Journal of Engineering and Technology Innovation, vol. 5, no. 1, 2015, pp. 01-18

problems. The construction of this algorithm is the primary objective of the second part of this paper. Theoretical results
presented in the first part serve as a foundation for the construction of this algorithm. Moreover, the concept of the generalized
multiplicative operator provides the insight into the algebraic structure of solutions to nonlinear ODE which cannot be

identified using conventional exponential operators.
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