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Abstract 

Uncontrolled leachate generation from operational and closed waste disposal sites is a major environmental 

concern in the coastal regions of Ghana which have abundant surface water and groundwater resources. The 

Ghana Landfill Guidelines requires the provision of a final cover or capping system as part of a final closure plan 

for waste disposal sites in the country as a means of minimizing the harmful environmental effects of these 

emissions. However, this technical manual does not provide explicit guidance on the material types or 

configuration for landfill covers that would be suitable for the different climatic conditions in the country. Four 

landfill cover options which are based on the USEPA RCRA-type and evapotranspirative landfill cover design 

specifications were evaluated with the aid of the HELP computer program to determine their suitability for waste 

disposal sites located in the Western, Central and Greater Accra regions. The RCRA Subtitle C cover which 

yielded flux rates of less than 0.001 mm/yr was found to be suitable for the specific climatic conditions. The 

RCRA Subtitle D cover was determined to be unsuitable due to the production of very large flux rates in excess of 

200 mm/yr. The results for the anisotropic barrier and capillary barrier covers were inconclusive. 

Recommendations for further study include a longer simulation period as well the study of the combined effects 

of different topsoil vegetative conditions and evaporative zone depths on the landfill water balance. The use of 

other water balance models such as EPIC, HYDRUS-2D and UNSAT-H for the evaluation of the 

evapotranspirative landfill cover design options should also be considered.   
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1. Introduction 

Landfill leachate is defined as the liquid that has percolated through solid waste and has extracted dissolved or 

suspended materials [1]. Leachate is generated either from external water or from within the waste mass. The external water 

sources include precipitation, surface water run-on and ground water interflow. Leachate needs to be controlled in a landfill 

for the following reasons [2-3]: to reduce the potential for seepage out of the landfill through the sides or the base either by 

exploiting weaknesses in the liner or by flow through its matrix; to prevent liquid levels rising to such an extent that they can 

spill over and cause uncontrolled pollution to ditches, drains, watercourses etc.; to influence the processes leading to the 

formation of landfill gas, chemical and biological stabilization of the landfill; to minimize the interaction between the 

leachate and the liner; and in the case of above ground landfill, to ensure the stability of the waste. Uncontrolled leachate 

generation is a major environmental concern in the coastal regions of Ghana namely the Western, Central, Greater Accra and 

Volta Regions which have abundant surface water and groundwater resources. Research studies on some abandoned 
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dumpsites in the Greater Accra Region [4-6] show that leachate samples have significant concentrations of dissolved 

organics, inorganic macro components, heavy metals and xenobiotic compounds. 

The Ghana Landfill Guidelines [7] require the provision of leachate management systems and procedures at all 

metropolitan, urban and rural landfills in the country. This ranges from recirculation of untreated leachate to the construction 

of site infrastructure for the collection, treatment and disposal of leachate for waste disposal facilities which are in operation. 

The Ghana Landfill Guidelines also requires the provision of a final cover system as part of a final closure plan for 

decommissioned waste disposal sites. However, this technical manual does not provide explicit guidance on the material 

types or configurations for landfill covers that would be suitable for the different climatic conditions at various locations in 

the country. In recent times, the Accra Metropolitan Assembly has awarded a contract for the remediation and closure of a 

number of abandoned waste disposal sites in the metropolis including the Oblogo No.1, Mallam SCC and Mallam Main 

dumpsites. Most of the other major waste disposal sites in the coastal regions including the Abloradjei, Saba, Axim, Agona 

Swedru, Nkamfua, Mfoum and Sofokrom dumpsites are fast approaching their capacity and would require that the 

appropriate landfill capping systems are put in place.  

This aim of this research study was to undertake a comparative assessment of various landfill cover design options 

which could be used to control leachate flows from decommissioned waste disposal sites in the coastal regions of Ghana. It 

involved the prediction of annual, monthly and daily water balance estimates for different landfill profiles using the HELP 

computer program.  The effect of using different types of topsoil material was also examined. Some concluding thoughts are 

then put forward on the choice of capping systems in order to minimize the impact of leachate flows from closed waste 

disposal sites after their useful design life.  

2. Study Design 

2.1 Description of Study Area 

The coastal regions considered during this study were the Greater Accra, Central and Western regions. Fig. 1 shows a 

location map of these coastal areas. Fig. 2 shows the current conditions at some disposal sites in these coastal areas.  

 

Fig. 1 Locations of major waste disposal sites in coastal districts and regions 

The study sites fall within the dry and wet equatorial climatic zones which have mean annual precipitation values 

ranging between 700 – 1500 mm [8-10]. The dry equatorial zone occurs along the middle to eastern coast of Ghana 
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including the Greater Accra and Central regions. The wet equatorial zone covers the Western region extending from the 

coast to the inland areas. These two climatic zones experience a double maxima rainfall regime. However the peak rainfall in 

the second season which occurs in October is not as heavy as the first which occurs in June. This geographical area is 

drained by the Southwestern and Coastal Rivers Systems which comprises of the Pra, Tano, Bia, Ankobra, Densu, and 

Ayensu rivers. 

 

Fig. 2 Conditions at major waste disposal sites in coastal regions 

The geology of the coastal areas is dominated by basement crystalline rocks and to a lesser extent by minor geological 

formations including cenozoic, mesozoic, and paleozoic sedimentary strata [11]. The minor geological formations are made 

up of two coastal formations, namely, the coastal block-fault and the coastal-plain. The coastal block-fault occurs in areas 

around Accra, Cape Coast and Sekondi-Takoradi where most of the major dumpsites are located. The coastal-plain 

formation occurs is in the south-eastern and south-western areas of the country such as Ada and Half Assini.  

Three aquifer types occur in the cenozoic and mesozoic sediments formation located in the coastal regions [11]. The 

first aquifer is unconfined and occurs in the recent sand very close to the coast. It has a depth ranging between 2 m and 4 m 

and contains fresh meteoric water. The intermediate aquifer is either semi-confined or confined and occurs mainly in the red 

continental deposits of sandy clays and gravels. The depth of this aquifer varies from 6 to 120 m, and it contains mostly 

saline water. The third aquifer is the limestone aquifer, which varies in depth between 120m and 300 m and has an average 

yield of about 148 m
3
/h. The groundwater in this aquifer is fresh and occurs under artesian condition. 

2.2 The HELP Model   

The HELP model is a computer model developed to assist landfill designers and regulators in evaluating cover 

systems, bottom liners and leachate collection systems [12-13]. Fig. 3 presents a schematic representation of the water 

balance components for the HELP Model. The input data types required for the HELP model include climatologic, 

vegetative cover, soil characteristics and landfill design site data. The output results for the HELP model includes daily 

volumes, monthly totals, annual averages, annual totals, amount of leachate collected and the percolation rates through the 

bottom of the landfill.  
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Fig. 3 HELP Model representation of water balance components 

Vertical drainage is modeled by Darcy’s law using the Campbell equation for unsaturated hydraulic conductivity 

based on the Brooks-Corey relationship. Saturated lateral drainage is modeled by an analytical approximation to the steady-

state solution of the Boussinesq equation employing the Dupuit-Forchheimer assumptions [12].   

2.3  HELP Modeling of Landfill Cover Design Options   

Four landfill covers were evaluated with the aid of the HELP Model. These design options shown in Fig. 4 are based 

on the USEPA RCRA-type and the evapotranspirative or alternative landfill cover design specifications. Table 1 presents a 

list of the various landfill cover system design options and the respective characteristics. The RCRA-type covers are based 

on the barrier concept that requires them to employ resistive principles i.e. a layer having low saturated hydraulic 

conductivity [14]. Alternative covers generally rely on the water storage capacity of the soil layer rather than low 

conductivity materials to minimize percolation [15-17].  

Topsoil layers were modelled as vertical percolation layers. All sand and gravel layers were modelled as lateral 

drainage layers. The compacted soil layers in the Subtitle D and C Covers were modelled as barrier layers. The compacted 

soil layers in all evapotranspirative covers were modelled as vertical percolation layers [17]. The difference in model layers 

for the compacted soil layers used was due to the design intent for each respective cover. The compacted soil layers in the 

Subtitle D and C covers were designed to serve as barriers while the compacted soil layers in the ET Cover and capillary 

barriers were designed to store water and allow for unsaturated water movement [17].  

Table 3, Table 4, Table 5 and Table 6 present the HELP Model setup for the Subtitle C, Subtitle D, anisotropic barrier 

and capillary barrier covers respectively. For each design option simulation a fair stand of grass vegetation condition and a 

surface slope of 5% having a horizontal slope length of 50 meters was assumed. The synthetic climatic data and landfill site 

characteristics for the Oblogo No.1 dumpsite [18] were used to represent the conditions in the study areas under 

consideration. The installation defects and placement quality for the geomembrane liners were assumed to be good. A leaf 

area index (LAI) of 2 and an evaporative zone depth of 55 cm was used for each of the simulations. The simulation period 

was one calendar year. The topsoil type was initially assumed to be loam. The simulations were repeated for two other types 

of topsoil which can also be found in this geographical area i.e. sandy clay loam and clay loam to assess their significance. 

Table 7 shows the HELP Model input setup for these two soil types.  
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Fig. 4 Profile of various USEPA landfill cover design options 

Table 1 Landfill cover system design option characteristics 

Cover System Design Option Number of layers Total thickness (cm) 

RCRA Subtitle C cover 4 120 

RCRA Subtitle D cover 2 60 

Capillary Barrier cover 5 142 

Anisotropic Barrier cover 4 105 

 

Table 2 HELP Model setup for Subtitle C cover soil profile 

Layer Material Type of Layer HELP  Classification Thickness (cm) 

Loam Vertical percolation 8 60 

Coarse Sand Lateral drainage 1 30 

Low density Polyethylene Geomembrane liner 36 0.15 

Barrier Soil Barrier soil liner 16 60 

 

Table 3 HELP Model setup for Subtitle D cover soil profile 

Layer Material Type of Layer HELP Classification Thickness (cm) 

Loam Vertical percolation 8 15 

Compacted Loam Barrier Soil Liner 22 45 

 

Table 4 HELP Model setup for anisotropic cover soil profile 

Layer Material Type of Layer HELP Classification Thickness (cm) 

Loam Vertical percolation 8 15 

Compacted Loam Soil barrier 22 60 

Coarse Sand Lateral drainage 1 15 

Gravel Lateral drainage 21 15 
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Table 5 HELP Model setup for capillary barrier cover soil profile 

Layer Material Type of Layer HELP Classification Thickness (cm) 

Loam Vertical percolation 8 30 

Coarse Sand Lateral drainage 1 15 

Gravel Lateral drainage 21 22 

Compacted Loam Soil barrier 16 45 

Coarse Sand Lateral drainage 1 30 

 

Table 6 HELP Model setup for other soil profile layers 

Layer Material Type of Layer HELP Classification 

Sandy Clay Loam Vertical percolation 10 

Compacted Sandy Clay Loam Vertical percolation 24 

Clay Loam Vertical percolation 11 

Compacted Clay Loam Vertical percolation 25 

 

3. Computer Simulation Results 

3.1 Monthly and Seasonal Variation of Landfill Water Balance Components 

Fig. 5, Fig. 6 and Fig. 7 shows a comparison of the monthly evapotranspiration, runoff and bottom layer percolation 

values respectively for the various landfill cover design options. It is observed that there are two peaks in June and October 

for the evapotranspiration, runoff and percolation which corresponds to the peak rainy months in the bi-modal rainfall 

regime that is exhibited in the coastal climatic zone. Minimum evapotranspiration, runoff and percolation values are 

observed in the dry months i.e. December to March.  

 

 

 

 

 

 

Fig. 5 Monthly evapotranspiration for various design options 

 

 

 

 

 

 

Fig. 6 Monthly runoff for various design options 
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Fig. 7 Monthly percolation for various design options 

3.2 Annual Evapotranspiration and Runoff  

Table 7 shows the annual totals for evapotranspiration and surface runoff for the various design options. 

Evapotranspiration from the RCRA Subtitle D cover which has a barrier soil liner just beneath the topsoil layer was about 

600 mm. However, evaporation from the RCRA Subtitle C, anisotropic barrier and capillary barrier covers which have either 

vertical percolation or lateral drainage layers beneath the topsoil layer were above 700 mm. 

 Table 7 Annual evapotranspiration and runoff for various design options  

Landfill Cover Design Option Evapotranspiration(mm) Runoff(mm) 

RCRA Subtitle C cover 705.8 19.0 

RCRA Subtitle D cover 600.2 44.1 

Anisotropic Barrier cover 705.0 20.9 

Capillary Barrier cover 705.0 19.0 

The highest runoff values were obtained for the RCRA Subtitle D, ET and anisotropic barrier cover which has a 

barrier layer just beneath the topsoil layer. Generally it is observed that the landfill cover design options with the lower 

values of runoff had comparatively higher values of evapotranspiration 

3.3  Percolation from Bottom Layer  

Table 8 shows the annual totals and peak daily percolation from the bottom layer for the various landfill cover design 

options. It observed that the annual total percolation through the bottom layer for the RCRA Subtitle C cover is less than 0.1 

m
3
. The largest value of 21,571 m

3
 was observed for the RCRA Subtitle D cover. Generally, the landfill covers which have a 

geomembrane layer produced much less lower percolation values compared to the covers that consist of natural soil layers. 

A similar trend was observed for the peak daily leakage values.  

Table 8 Annual totals and peak daily percolation for various cover system designs 

Landfill Cover Design Option Annual  Percolation (m
3
) Peak Daily Percolation (m

3
) 

RCRA Subtitle C cover 0.025 0.00029 

RCRA Subtitle D cover 21571 1138 

Anisotropic Barrier cover 17246 594 

Capillary Barrier cover 17302 1476 

3.4  Significance of Using Different Types of Topsoil Material  

The effect of using different types of topsoil on evapotranspiration, runoff and percolation is illustrated in Fig. 8, Fig. 

9 and Fig. 10 respectively. Annual evapotranspiration rates for the RCRA Subtitle D cover increased by 2.6% and 4% 

respectively when sandy clay loam and clay respectively were used. Annual evapotranspiration rates for the RCRA Subtitle 

C, anisotropic barrier and capillary barrier covers decreased by 4.7%, 5.9% and 4.7% respectively when sandy clay loam 

was used. The annual rates for the RCRA Subtitle C, anisotropic barrier and capillary barrier covers increased by 0.1%, 1.9% 
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and 0.1% respectively when clay loam was used. These results seem to suggest that the type of topsoil has a marginal effect 

on the annual evapotranspiration rates.  

 

 

 

 

 

 

 

Fig. 8 Annual evapotranspiration for different topsoil types 

Annual runoff rates for the RCRA Subtitle D cover increased by 285% and 235% respectively when sandy clay loam 

and clay respectively were used. Annual runoff rates for the RCRA Subtitle C, anisotropic barrier and capillary barrier 

covers increased by 33.2%, 39.7% and 33.2% respectively when sandy clay loam was used. The annual rates for the RCRA 

Subtitle C, anisotropic barrier and capillary barrier covers increased by 56.3%, 74.2% and 56.3% respectively when clay 

loam was used. These results seem to suggest that the type of topsoil has a significant effect on the annual runoff rates. 

 

 

 

 

 

 

 

 

Fig. 9 Annual runoff for different topsoil types 

 

 

 

 

 

 

 

 

 

 

Fig. 10 Annual percolation for different topsoil types 

Annual percolation rates for anisotropic and capillary barrier covers increased by 9.6% and 8.5% respectively when 

sandy clay loam was used whereas they decreased by 0.6% and 2.9% respectively when clay loam was used. Percolation 
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rates for the RCRA Subtitle cover were still less than 0.1 m
3
 irrespective of the topsoil type. These results seem to suggest 

that the type of topsoil has a marginal effect on the annual percolation rates. 

4. Discussion of Results 

4.1  Suitability of RCRA Cover Type Design Options  

The RCRA Subtitle C design option is a prescriptive cover that is specified for hazardous waste disposal sites in the 

United States [14]. Construction costs for this option can be relatively expensive in comparison to the other design options 

[19]. The Subtitle D cover could cost as much as three times more expensive than the Subtitle C cover. The simulation 

results show that the annual percolation rate is less than 0.001mm/yr for the loam, sandy clay loam and clay loam topsoils. 

Additionally it produces comparatively higher annual evapotranspiration and lower annual runoff rates. These results seem 

to indicate that this option would perform very well under the site specific climatic conditions in the Western, Central and 

Greater Accra regions of Ghana. The HELP Model generally tends to underestimate percolation through cover profiles that 

contain a geomembrane within them [17]. However, a comparison of field measurements and computer simulation results by 

[17] seem to indicate that the HELP Model is an excellent tool for the evaluation of the RCRA Subtitle C covers. The RCRA 

Subtitle C cover can thus be said to be a suitable for deployment in the coastal regions of Ghana due its minimal flux rate.  

The RCRA Subtitle D cover could be considered as the worst performing design option under the climatic conditions 

in the geographical zone under consideration. It has very high percolation rates which are in excess of 200 mm/yr for the 

loam, sandy clay loam and clay loam. Additionally it produces lower annual evapotranspiration and higher annual runoff 

rates compared to the other design options. Even though [17] found out that the HELP Model grossly overestimated 

percolation through covers without a geomembrane such as the Subtitle D cover, the flux rates obtained could still be 

considered as very high even if a safety factor of 10 is used. Consequently, using this particular landfill cover design in 

unlined waste disposal sites located in the Western, Central and Greater Accra regions of Ghana would most likely result in 

the contamination of groundwater resources especially in the areas which has shallow groundwater levels. There have been a 

number of documented cases of groundwater contamination in the USA from leaking landfills [20].  

4.2  Suitability of Evapotranspirative Cover Type Design Options 

An important advantage of evapotranspirative covers is that they are less expensive to construct and maintain than 

their prescriptive counterparts i.e. RCRA-type covers. The use of indigenous materials which is usually obtained from a 

nearby borrow site reduces construction costs. The anisotropic barrier cover limits the downward migration of water, while 

encouraging the lateral movement of water through drainage layers [15-17]. The capillary barrier cover utilizes the 

differences in pore-size distributions and the corresponding differences in capillary forces, under unsaturated conditions, to 

retain water in the upper soil layer [15-17]. The anisotropic barrier and capillary barrier covers performed poorly in 

comparison to the RCRA Subtitle C cover but marginally better than the RCRA Subtitle D cover. In principle, these two 

evapotranspirative covers would therefore not be suitable for use in the coastal regions.  

However, the use of the HELP Model in predicting the performance of evapotranspirative cover systems have been 

questioned by many researchers due to the fact that the vertical drainage routine does not permit capillary rise of water from 

below the evaporative zone depth [16]. Model validation studies have suggested that the HELP Model overestimates 

percolation from alternative evapotranspirative cover in semi-arid and arid climates [21-22]. A comparison of simulation 

results with field observations by [23] found that errors in the mean annual estimates for evapotranspiration and percolation 

were 20% and 15% respectively for the HELP Model compared to for the EPIC model which was 7% and 5% respectively.  

It would therefore not be possible to provide definitive recommendation on the suitability of any of the evapotranspirative 
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cover design options i.e. anisotropic barrier or capillary barrier for waste disposal sites in the Western, Central and Greater 

Accra regions of Ghana.  

5. Conclusion and Recommendation 

This paper has presented a comprehensive assessment of different USEPA landfill cover design specifications for the 

waste disposal sites located in the Western, Central and Greater Accra regions of Ghana. The four landfill cover design 

options which were modelled with the HELP computer program included two conventional RCRA-type covers and two 

evapotranspirative landfill covers. The RCRA Subtitle C cover which yielded flux rates of less than 0.001 mm/yr was found 

to be suitable for the study zones. However, the RCRA Subtitle D cover was determined to be unsuitable for use at landfill 

sites in the three coastal regions due to the production of very large flux rates in excess of 200 mm/yr. The results for the 

anisotropic barrier and capillary barrier covers were inconclusive since it was observed that the HELP model was not able to 

effectively simulate the capillary rise of water from below the evaporative zone which resulted in the overestimation of the 

percolation rates. The simulations in this study were conservative, as the period of simulation was limited to one calendar 

year. Additionally, no account was made for different topsoil vegetative conditions and evaporative zone depths. 

Recommendations for further study include a longer simulation period as well the study of the combined effects of different 

topsoil vegetative conditions and evaporative zone depths on the landfill water balance. The use of other water balance 

models such as EPIC [24], HYDRUS-2D [25] and UNSAT-H [26] for the evaluation of the evapotranspirative cover design 

options should also be considered. 
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