International Journal of Engineering and Technology Innovation, vol. 2, no. 4, 2012, pp. 265-272

A Modeling & Simulation Implementation Framework

for Large-Scale Simulation

Song Xiao™", Teng Da*, Qian Lidong", Shi Xuecheng®
!Science and Technology on Aircraft Control Laboratory, School of Automation Science and Electrical Engineering,

Beihang University, Beijing, China
Received 15 July 2012; received in revised form 30 August 2012; accepted 29 September 2012

Abstract
Classical High Level Architecture (HLA) systems are facing development problems for lack of supporting
fine-grained component integration and interoperation in large-scale complex simulation applications. To provide
efficient methods of this issue, an extensible, reusable and composable simulation framework is proposed. To
promote the reusability from coarse-grained federate to fine-grained components, this paper proposes a modelling &
simulation framework which consists of component-based architecture, modelling methods, and simulation services
to support and simplify the process of complex simulation application construction. Moreover, a standard process

and simulation tools are developed to ensure the rapid and effective development of simulation application.

Keywords: simulation environment, HLA federate, component, system architecture

1. Introduction

The modeling and simulation technology is widely used in many fields such as industry, scientific research and military
analysis. As the simulation applications become more and more complicated, constructing these systems become more
difficult. There are measures to simplify the simulation development. Standard process models, such as Distributed Simulation
Engineering and Execution Process (DSEEP) [1], define common, unified process models, which provide a common
framework for different communities to describe their engineering practices, so the engineers can communicate with each

other well.

And standard simulation interoperation protocols, such as HLA [2], DIS [3] and TENA [4] provide common distributed
interoperation methods between different member applications, so subsystems can be composed to construct a more complex
simulation system. This paper presents a simulation environment, which is intended to utilize the best practices in the field of

simulation to support simulation applications for large-scale complex system.

The rest of this paper is organized as follows. Section 3 provides a brief introduction to the whole simulation
development process and the architecture of the simulation environment. Simulation model components are discussed in
Section 4, including the definition of components and how to compose these components. In Section 5, simulation services are
described, which form the runtime for simulation models. At the last runtime, object database is presented in Section 6, which

provides distributed communication capabilities.

» Corresponding author. E-mail address: songxiao@buaa.edu.cn
Tel.: +86-13671289267; Fax: +86-10-823385776



266 International Journal of Engineering and Technology Innovation, vol. 2, no. 4, 2012, pp. 265-272

2. Related Work

Large-scale simulation requires advanced implementation simulation software approaches. Many pioneering works
have been done to construct the theory base, including [1-6]. However, most of the works are focused on simulation process

and components theoretic methods while they are lack of implementation techniques.

[11-12] proposed cell-DEVS and developed CD++ tools, which is open source and supporting discrete event system
modeling and simulation. [13] designed HyperWarpSpeed time management algorithms, developed parallel simulation engine
and used the engine in military simulation systems. [14] developed simulation engine GTW and the product named FDK, using
in multi-field including biology, physiology, traffic and communication etc. All the works are useful for reference. However,

they did not address the scheduling service management of local multi-components.

Moreover, HLA is also recognized with its low running efficiency because of losing fine-grained component integration
and interoperation in local HLA federates. Here we have an underline prerequisite is that a lower HLA federation is made slow
for the lowest federate waiting by other federates. Therefore, to provide more efficient methods of this issue, an extensible,
reusable and compensable simulation framework is proposed in this paper and we start discussing the development of a

promoted and standardized process and architecture.

3. Process and Architecture

A standard process can provides a common language for simulation developers to communicate and gives a better
understanding to the life-cycle of the simulation application. To suit this component-based simulation environment, a process

is proposed which tailored and specialized from DSEEP. The process is summarized as follows.

Step 1: Define simulation application objective. The user, the sponsor, and the development/integration team define and

agree on a set of objectives and document what must be accomplished to achieve those objectives.

Step 2: Perform conceptual analysis. Scenario development and conceptual modeling take place in this step. The output

including scenarios and conceptual models guides the rest of the development process.

Step 3: Design simulation application. Existing simulation model components which are reusable is selected, and new

components are designed. Component model is described in the next section.

Step 4: Develop simulation application. The new simulation model components are implemented, and data exchange

model is developed for Runtime Object Database.

Step 5: Integrate and test simulation application. Simulation model components are composed to form simulation

entities, and simulation services suitable for this simulation are selected and integrated.

Step 6: Execute simulation and analyze results. The simulation is executed and output data from the execution is

collected and analyzed.

The scenarios, conceptual models and model components created in the process can be stored in repositories for reuse in

other simulation applications.

In the simulation environment, common simulation services are provided to form the simulation runtime, so the
simulation application developers can focus on simulation modeling. The simulation environment consists of four layers,

which are network communication layer, runtime object database layer, simulation services layer and models & tools layer.

Copyright © TAETI



International Journal of Engineering and Technology Innovation, vol. 2, no. 4, 2012, pp. 265-272 267

Simulation Models I Simulation Tools I

Runtime Object Database I

Event
Dispatching
Services

Monitor
Services

Scheduling
Services

Sim Engine [Services] ‘

Network Communication
Layer

‘ HLA ‘ ‘ DIs ‘ ‘ TENA ‘ I

Fig. 1 Simulation environment architecture
4. Simulation model components

Component-based composability is one of the key features of the simulation environment. Small granular models have
lots of advantages compared to large granular models. For example, they are easy to understand and develop. So one of the best
ways to simulate complex system is breaking the system into smaller sub models (also referred to as simulation model
components), and then composing them together to form the whole system. Composability refers to the ability of a simulation
to be flexible configured to adapt to a range of missions, scenarios and simulation models [7]. With composability, one can
rapidly assemble and configure a unique simulation system from existing simulation components. These created simulation

applications can vary in not only scenarios but also behaviors.

Conceptual model is a non-software description of the computer simulation model, describing the objective, inputs,
outputs, contents, assumptions and simplifications of the model [8][9]. Although conceptual model is not a part of the
component architecture, it is vital to model component development because it restrains what the components do and how they
communicate. So the conceptual model formalism is briefly introduced here; and how it is converted to components is

described in the following paragraphs.

In DEVS [6], a discrete event system is presented as

M =< X,S,Y,9,

int?

0,

ext’

A ta>

where X is the set of input values; S is a set of states; Y is the set of output values; &;,.: S = S is the internal transition function;
Sex: @ x X = S is the external transition function, where @ = {{(s.e)Is} € 5,0 < e < ta(s)} is the total state set , e is the time elapsed

since last transition; 4:5 - Y is the output function; ta: S - R3.. is the set positive reals with 0 and oo, In the simulation

environment, X and Y are mapped to interfaces and events of components, S are mapped to properties of components, and Jine,

dext, A, ta are translated to implementations of components.

4.1. Interfaces
An interface declares a set of operations that a client may request. A component which satisfies the interface provides its
service through the operations of this interface. Components communicate only through interfaces they implement, so it is easy

to reuse and extend components as the whole system is described by interfaces not specific components.

4.2. Events

The notion of events is also described by interfaces. There are two specific interfaces which are EventSource and
EventSink. Components which support events must implement one or both of them. An event source embodies the potential for
the component to generate events of a specified type. An event sink embodies the potential for the component to receive events
of a specified type.

Copyright © TAETI



268 International Journal of Engineering and Technology Innovation, vol. 2, no. 4, 2012, pp. 265-272

interface EventSource {

Events getEvents() ;

}

interface EventSink {

void pushEvent (in Event e);

The event dispatch strategy is not specified by the components but decided when composing the components into a
system. Two dispatch strategies are provided by now, and more can be added. To solve the problem of confliction, each type of
events can only has one dispatch strategy. The publish/subscribe strategy is that the event sources, sinks publish, subscribe
types of events, and event dispatching service transmits the specified types of events from publishers to subscribers. The
connect strategy is defined by connections between components with each connection linking two components. Events are

transmitted through the connections.

4.3. Components
There are two types of DEVS components: atomic components and composed components [6]. A composed component
consists of atomic components and/or other composed components, while atomic components cannot be divided into smaller

parts.

The definition of a component includes interfaces, references, input events and output events. Interfaces indicate the
operations provided by this component. References are connection points to other components, so this component can use
services supplied by the referred object. Input and output events are the types of events used to communicate with other

components.

4.4. Component Composition

Component composition is implemented by references which link to subcomponents. References to other components
are usually though not specific components but interfaces. The component can refer to any component which satisfies the
specified interface. Component connections are specified by an assembling script based on XML. The script describes which

instances of components are in the system, their initialization parameters and how they connect to each other.

In this simulation environment, simulation entity is a kind of component, which satisfies special constrains including the
initial parameter loading interface and simulation engine event interfaces. Simulation entities are relatively independent
components, because they do not have references to other components and they communicate only through events. Simulation

entities are the smallest process units scheduled by the simulation runtime.

5. Simulation services

5.1. Simulation Engine
Simulation services forms Simulation engine, which includes simulation monitor service, time management service,
event dispatching service and simulation scheduling service. The engine drives simulation models to advance the simulation

and generate output data. The kernel classes of the simulation engine are shown in Fig. 2.

Entity and Event are the fundamental elements of discrete event simulation. Events are passed form Event Sources to
Event Sinks by Event Dispatcher. Scheduler manages Logical Processes which manipulate the runtime states of the Entities.

The running process is illustrated in Fig. 3.

Copyright © TAETI



International Journal of Engineering and Technology Innovation, vol. 2, no. 4, 2012, pp. 265-272 269

Event EventDispatcher
dispatch
receiv
send
EventSink EventSource LogicalProcess
+1
+1 schedule
EntityManager Entity Scheduler
+1 +n

store properties

RuntimeObjectDatabase

Fig. 2 Kernel classes

Goad initial Entity Paramete@

Glecord Local Entity Pointers in EntityManageD

%@cheduler call Logical Processes of Entitie9

Judge if there are events to senD

Scheduler uses Event Dispatcher to send events
from Event Source to Event Sink

Glecord Interactive Entity Properties in Runtime Databasa

|

Judge if the simulation is f'mshed
| ;ﬁ

Fig. 3 Running Process of Simulation Engine

Copyright © TAETI



270 International Journal of Engineering and Technology Innovation, vol. 2, no. 4, 2012, pp. 265-272

5.2. Simulation Monitor Service

Simulation monitor service controls the working state of the simulation engine. These states include the initializing,
suspending, running, saving, restoring and terminating states. After the simulation engine has been initialized, it goes
automatically into the suspending state. In the simulation process, the engine can be in suspending or running state, controlled
by the commands from the client. When the simulation terminating condition is satisfied or the monitor receives terminating

commands, the simulation engine goes into terminating state, and the simulation process finishes.

5.3. Event Dispatching Service

The notion of events has been introduced above, and two event dispatch strategies between components have been
proposed. At the inter-entity level, a third strategy is provided to enrich the semantics of events. As each simulation entity has
a unique identifier, so simulation entities can send events to the certain entities which they want to communicate with by using
this unique identifier. The types of events using this dispatch strategy must have an identifier to indicate the event target and a
time tag, and the events are delivered to the target specified by target identifier and sorted by the time tag. More strategies can

be added at the inter-entity level, and events must register their dispatch strategies before simulation starts.

5.4. Scheduling Service

Scheduling service is responsible for scheduling simulation models to processing units. There are two ways which are
serialization and parallelization to do this. Serialization way is relatively simpler and runs faster on single processing unit,
while parallelization way is more effective on multiple processing units, because it can utilize the parallel computation

capability of multi-processors.

The simulation entities are processed one by one in the serialization method, which is described as follows.

for each simulation entity Entity; {
for each simulation event Eventj of Entity; {
process Event;

The parallelization method consists of a monitor thread and multiple worker threads. The monitor thread is responsible
for computation task assignment to worker threads, while the worker threads complete the computation tasks. The scheduling
is committed at the simulation entity level, which means a simulation entity with all its child components is assigned to one
worker thread. As simulation entities do not refer to other simulation entities, the worker threads do not have shared variables

and the simulation can be paralleled without synchronization between worker threads. The algorithm is presented below.

Worker thread:
while the simulation is running {
if there are computation task Taﬁq{
run Task;
} else
notify the monitor thread and wait for next task
Monitor thread:
while there are simulation entities to be processed ({
if worker thread Thread, is idle ({
assign one of the simulation entities to Thread;

}

5.5. Event-driven Conservative Time Synchronization Mechanism
An important concept in the field of distributed simulations is time synchronization mechanism, which maintains a

consistent causality in the process. This paper uses the event-driven conservative time management mechanism.

Monitor thread receives the Lower Bound on Time Stamp (LBTS) in the message format from the Worker threads,
calculates the minimum of all LBTSs, and then returns the minimum as Greatest Available Logical Time (GALT) to all the
Worker threads.

Copyright © TAETI



International Journal of Engineering and Technology Innovation, vol. 2, no. 4, 2012, pp. 265-272 271

According to logical time management strategy in HLA, the relationship of a federate to other federates is divided into
two types: logical time regulating and logical time constrained. So there are four logical time management states: not only
logical time-regulating but also constrained, neither logical time-regulating nor constrained, only logical time-regulating and
only logical time constrained. Accordingly, Worker threads are divided into four types in this paper:

Only logical time regulating Worker threads: Its time synchronization affects other Worker threads’ time
synchronization without being affected by the others. So its LBTS is constantly 1. Only logical time constrained Worker
threads: Its time synchronization is affected by other Worker threads’ time synchronization without affecting others’ time

synchronization. So its LBTS can be calculated by the formula below:

LBTS, = Min(Ltime, + Lookhead )

Ltime; js the current logical time of Worker thread j, Lookhead; js the looking ahead time of Worker thread j, i,j=1, 2, .. .n.

Not only logical time regulating but also constrained Worker thread: Its time synchronization not only affects other
Worker thread’s time synchronization but also is affected by other Worker thread’s time synchronization. When it is
considered as the logical time regulating Worker thread, its LBTS is 1. When it is considered as the logical time constrained
Worker thread, its LBTS can be calculated according to only logical time constrained Worker thread. Neither logical time

regulating nor constrained Worker thread; It is not referred in this platform, so we do not discuss it in this paper.

6. Runtime object database

Runtime object database is a virtual database, which provides a unified method to represent simulation object data and
the transparent distributed communication capabilities. The database supports publish/subscribe facility. Simulation entities
publish their states to the database and subscribe the messages they interested in. Runtime object database supplies the
interoperation environment between simulation entities, and provides data access ports for simulation tools, such as
visualization tools and data collection tools. It hides network communication protocols from the simulation models and

simulation services above this database. The relationship between runtime object database and other modules is shown below.

Simulation Models:

el
1

Simulation Engine

Data . \
Collection g ) Runtime Object
Tool Database

Network
Communication

Fig. 5 Runtime object database

Runtime object data model is defined by simulation objects and simulation interactions. Simulation objects which are
described by properties map to simulation entities, while interactions represented by parameters map to simulation events. All
of the data saved into this database must satisfy the runtime object data model. There are a layer between the simulation models

Copyright © TAETI



272 International Journal of Engineering and Technology Innovation, vol. 2, no. 4, 2012, pp. 265-272

and the database which translate the model data into runtime object data model, and a layer between the database and the
network communication service which translate the runtime object data model to data structures of the specific network

communication protocol.

7. Conclusion

This paper presents the architecture of a modeling and simulation environment, in which simulation components are
composed to construct the simulation application. This simulation environment provides common simulation services and
offers every chance to reuse exited resources to simplify development of complex simulation systems. By using of the runtime
object database and software adapters including HLA-DEVS and DEVS-DIS agents, this environment can be compatible to
many distributed interoperation protocols, such as HLA, DIS et cetera. By composing simulation services, this simulation

environment can be tailored and specified to meet the needs of certain simulation applications.
Acknowledgements

This research was supported by grant 61104057 and 61074144 from the Natural Science Foundation of China and

Pre-research project of PLA. The authors thank the reviewers for their comments.

References

[1] IEEE Criteria for Distributed Simulation Engineering and Execution Process, IEEE Standard 562, 1982.
[2] IEEE Criteria for Modeling and Simulation (M&S) High Level Architecture (HLA), IEEE Standard 1516, 1999.
[3] IEEE Criteria for Distributed Interaction Simulation, IEEE Standard 1278, 1995.
[4] U.S. Department of Defense, “The Test and Training Enabling Architecture Reference Document,” 12th IEEE/ACM
International Symposium on Distributed Simulation and Real-Time Applications, Nov 2002, pp.259-268.
[5] The Common Object Request Broker: Architecture and Specification, Victorian Electronic Records Strategy, 2nd ed., 2003.
[6] Bernard P. Zeigler, Herbert Prachofer, Tag Gon Kim, Theory of modeling and simulation, Academic Press, 2000.
[7] Brett Butler, “Simulation Composability for JSIMS,” Proc. Distributed Interactive Simulation and Real-Time Applications,
2nd International Workshop,1998 , pp. 4-14
[8] Robinson, S., “Choosing the Right Model: Conceptual Modeling for Simulation,” Proceedings of the Winter Simulation
Conference, 2011.
[9] Robinson, S., “Conceptual Modeling for Simulation Part I: Definition and Requirements,” Journal of the Operational
Research Society, vol. 3, pp. 278-290, Jan 2008.
[10] Robinson, S., “Conceptual modeling for simulation part I1: a framework for conceptual modeling,” Journal of the Operational
Research Society, vol. 3, pp. 291-304, Oct 2008.
[11] Gabriel A. Wainer, Discrete-Event Modeling and Simulation: A Practitioner's Approach [M]. UK: Taylor and Francis Press,
2009.
[12] Qi Liu, Gabriel Wainer, Parallel Environment for DEVS and Cell-DEVS Models, SIMULATION, Vol. 83, Issue 6, June 2007,
449-471.
[13] Jeffrey S. Steinman, Craig N. Lammers, Maria E. Valinski, Maria E. Valinski. Simulating Parallel Overlapping Universes in
the Fifth Dimension with HyperWarpSpeed Implemented in the WarplV Kernel, 08S-SIW-025, 2008.
[14] Craig Lammers, Jeffrey Steinman, Maria Valinskil, Karen Roth, Five-Dimensional Simulation for Advanced Decision
Making, SPIE — Enabling Technologies for Simulation Science XIII, Paper SPIE 7348-16, 2008.
[15] S.Y. Wang, C.L. Chou, C.C. Lin, “The design and implementation of the NCTUns network simulation engine,” Simulation
Modelling Practice and Theory, vol. 15, pp. 57-81, May 2007.
[16] Olivier Labarthe, Bernard Espinasse, Alain Ferrarini, Benoit Montreuil, “Toward a methodological framework for
agent-based modelling and simulation of supply chains in a mass customization context,” Simulation Modelling Practice and
Theory, vol. 15, pp. 113-136, May 2007.

Copyright © TAETI



