Optimizing the Organic/Inorganic Barrier Structure for Flexible Plastic Substrate Encapsulation

  • Yi-Chiuan Lin
  • Quoc-Khoa Le
  • Li-Wei Lai
  • Ren-Mao Liao
  • Ming-Shin Jeng
  • Day-Shan Liu
Keywords: Multilayered barrier structure, organosilicon/SiOx, plasma-enhanced chemical vapor deposition, flexible plastic substrate, residual internal stress, adhesion, water vapor transmission rate


A multilayered barrier structure stacked with organosilicon and silicon oxide (SiOx) films consecutively prepared using plasma enhanced chemical vapor deposition (PECVD) was developed to encapsulate flexible plastic substrate. The evolution on the residual internal stress, structural quality of the organosilicon/SiOx multilayered structure as well as its adhesion to the substrate were found to correlate closely with the thickness of the inset organosilicon layer. Due to the significant discrepancy in the thermal expansion coefficient between the substrate and SiOx film, the thickness of the organosilicon layer deposited onto the substrate and SiOx film thus was crucial to optimize the barrier property of the organosilicon/SiOx structure. The organosilicon/SiOx barrier structure possessed a lowest residual compressive stress and quality adhesion to the substrate was achieved from engineering the organosilicon layer thickness in the multilayered structure. The relaxation of the residual internal stress in the barrier structure led to a dense SiOx film as a consequence of the enhancement in the Si-O-Si networks and thereby resulted in the reduction of the water vapor permeation. Accordingly, a water vapor transmission rate (WVTR) below 1 × 10-2 g/m2/day being potential for the application on the flexible optoelectronic device packaging was achievable from the 3-pairs organosilicon/SiOx multilayered structure deposited onto the polyethylene terephthalate (PET) substrate.


J. Lange and Y. Wyser, “Recent innovations in barrier technologies for plastic packaging—a review,” Packaging Technology and Science, vol. 16, pp. 149-158, Sep. 2003.

A. Gruniger, A. Bieder, A. Sonnenfeld, Ph. Rudolf von Rohr, U. Muller, and R. Hauert, “Influence of film structure and composition on diffusion barrier performance of SiOx thin films deposited by PECVD,” Surface and Coatings Technology, vol. 200, pp. 4564-4571, Apr. 2006.

T.T. Pham, J. H. Lee, Y. S. Kim, and G. Y. Yeom, “Properties of SixNy thin film deposited by plasma enhanced chemical vapor deposition at low temperature using SiH4/NH3/Ar as diffusion barrier film,” Surface and Coatings Technology, vol. 202, pp. 5617-5620, Aug. 2008.

U. Schulz and N. Kaiser, “Vacuum coating of plastic optics,” Progress in Surface Science, vol. 81, pp. 387-401, Aug. 2006.

P. Morin, E. Martinez, F. Wacquant, and J. L. Regolini in T. E. Buchheit, A. M. Minor, R. Spolenak, and K. Takashima (Eds.), Thin Films: Stresses and Mechanical Properties XI, Warrendale, PA, U.S.A., Materials Research Society Symposium Proc., vol. 875, pp. 437, 2005.

E. Cianci, L. Visigalli, V. Foglietti, G. Caliano, and M. Pappalardo, “Improvements towards a reliable fabrication process for cMUT,” Microelectronic Engineering, vol. 67-68, pp. 602-608, Mar. 2003.

T. N. Chen, D. S. Wuu, C. C. Wu, C. C. Chiang, Y. P. Chen, and R. H. Horng, “Improvements of Permeation Barrier Coatings Using Encapsulated Parylene Interlayers for Flexible Electronic Applications,” Plasma Processes and Polymers, vol. 4, pp. 180-185, Feb. 2007.

J. W. Han, H. J. Kang, J. Y. Kim, G. Y. Kim, and D. S. Seo, “Improvement of Permeation of Solvent-Free Multilayer Encapsulation of Thin Films on Poly(ethylene terephthalate),” Japanese Journal of Applied Physics, vol. 45, pp. 9203-9204, Dec. 2006.

G. L. Graff, R. E. Williford, and P. E. Burrows, “Mechanisms of vapor permeation through multilayer barrier films: Lag time versus equilibrium permeation,” Journal of Applied Physics, vol. 96, pp. 1840-1849, May 2004.

N. Sabate, I. Gracia, J. Santander, L. Fonseca, E. Figueras, C. Cane, and J. R. Morante, “Mechanical characterization of thermal flow sensors membranes,” Sensors and actuators A-Physical, vol.125 , pp.260-266, Sep. 2006.

C.Y. Wu, W.C. Chen, D.S. Liu, 2008, “Surface modification layer deposition on flexible substrates by plasma-enhanced chemical vapour deposition using tetramethylsilane–oxygen gas mixture,” Journal of Physics D: Applied. Physics, vol. 41, pp. 225305/1-225305/8, Oct. 2008.

K. Lau, J. Weber, H. Bartzsch, and P. Frach, “Reactive pulse magnetron sputtered SiOxNy coatings on polymers,” Thin Solid Films, vol. 517, pp. 3110-3114, Mar. 2009.

ASTM D3359, Standard Test Methods for Measuring Adhesion by Tape Test, ASTM International, West Conshohocken, PA (2008).

V. Bhatt, S. Chandra, S. Kumar,and P .N .Dixit, “Stress evaluation of RF sputtered silicon dioxide films for MEMS,” Indian Journal of Pure & Applied Physics, vol. 45, pp. 382-386, Apr.2007.

D. S. Liu, and C. Y. Wu, “Adhesion enhancement of hard coatings deposited on flexible plastic substrates using an interfacial buffer layer,” Journal of Physics D: Applied. Physics, vol. 43, pp. 175301/1-175301/10, Apr.2010.

K. Teshima, H. Sugimura, Y. Inoue, and O. Takai, “Gas Barrier Performance of Surface-Modified Silica Films with Grafted Organosilane Molecules,” Langmuir, vol. 19, pp. 8331-8334, Aug. 2003.

W. S. Liao and S. C. Lee,” Waterinduced roomtemperature oxidation of Si–H and –Si–Si– bonds in silicon oxide, ” Journal of Applied Physics, vol. 80 , pp. 1171-1176, Jul.1996.

M. Benmalek and H. M. Dunlop, "Inorganic coatings on polymers," Surface and Coatings Technology, vol. 76-77, pp. 821-826, Dec. 1995.

S. H. Kong, K, Mizuno, T. Okamoto, and S. Nakagawa, "Oxide seed layer with low surface energy to attain fine grains in magnetic layers," Journal of Applied Physics, vol. 93, pp. 6781-6783, May 2003.

M. A. El Khakani, M. Chaker, A. Jean, S. Boily, H. Pépin, J. C. Kieffer, and S. C. Gujrathi, "Effect of rapid thermal annealing on both the stress and the bonding states of a-SiC:H films," Journal of Applied Physics, vol. 74, pp. 2834-2840, Apr. 1993.

H. Nakashima, K. Furukawa, Y. C. Liu, D. W. Gao, Y. Kashiwazaki, K. Muraoka, K. Shibata, and T. Tsurushima, "Low-temperature Deposition of High-Quality Silicon Dioxide Films by Sputtering-type Electron Cyclotron Resonance Plasma," Journal of Vacuum Science and Technology A, vol. 15, pp. 1951-1954, Jul. 1997.

D. S. Kim and Y. H. Lee, "Room-temperature deposition of a SiC:H thin films by ion-assisted plasma-enhanced CVD," Thin Solid Films, vol. 283, pp. 109-118, Sep. 1996.

D. S. Wuu, W. C. Lo, C. C. Chiang, H. B. Lin, L. S. Chang, R. H. Horng, C. L. Huang, and Y. J. Gao, "Plasma-deposited silicon oxide barrier films on polyethersulfone substrates: temperature and thickness effects," Surface and Coatings Technology, vol. 197, pp. 253-259, Jul. 2005.

D. G. Howells, B. M. Henry, J. Madocks, and H. E. Assemder, "High quality plasma enhanced chemical vapour deposited silicon oxide gas barrier coatings on polyester films," Thin Solid Films, vol. 516, pp. 3081-3088, Mar. 2008.

G. Dennler, C. Lungenschmied, H. Neugebauer, N. S. Sariciftci, M. Latreche, G. Czeremuszkin, and M. R. Wertheimer, "A new encapsulation solution for flexible organic solar cells," Thin Solid Films, vol. 511-512, pp. 349-353, Jul. 2006.

How to Cite
Y.-C. Lin, Q.-K. Le, L.-W. Lai, R.-M. Liao, M.-S. Jeng, and D.-S. Liu, “Optimizing the Organic/Inorganic Barrier Structure for Flexible Plastic Substrate Encapsulation”, Int. j. eng. technol. innov., vol. 2, no. 3, pp. 184-194, Jul. 2012.