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Abstract 

This study combined three by-products to fully replace cement as cementless blended materials without the 

need for an alkali activator. The feasibility of the cementless materials was assessed in terms of workability, 

mechanical properties, permeability, and microscopic properties. An innovation cementless blended material is 

consisted of desulfurized gypsum, water-quenched blast-furnace slag, and co-fired fly ash, resulting in a ternary 

mixture. The results were shown to perform well in terms of compressive strength, absorption, and chloride ion 

penetration. Scanning electron microscopic micrographs revealed that desulfurized gypsum accelerated hardening 

and improved the compressive strength through the formation of C-S-H and C-A-S-H gels produced by Ca(OH)2, 

SiO2, and Al2O3. The improvements in permeability can be attributed to the coating of gypsum particles by hydration 

products. Overall, our results confirm the efficacy of combining 3% gypsum, 60% slag, and 37% fly ash as the 

cementless composites with excellent strength and permeability. 
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1. Introduction 

The enormous quantity of CO2 produced in the manufacture of cement has prompted efforts to develop green alternatives 

[1]. Much of this work has focused on the use of fly ash, ground-granulated blast-furnace slag (ggbs), and/or silica fume as a 

partial replacement for cement, referred to as supplementary cementitious materials [2-4]. At present, construction regulations 

in many countries stipulate an upper limit on the use of these materials; however, researchers continue efforts to develop new 

materials that could completely replace cement in civil construction. Alkali-activated cementless composites (AAC) and 

geopolymer are currently the main focus of this research [5-7]. AAC and geopolymers use fly ash, ggbs, and other 

supplementary cementitious materials (or their by-products) presenting pozzolanic activity [8-9]. Cementless composites are 

combined with a sodium/silicate-based alkali activator to promote the activation of AAC or the geopolymer. AAC provides 

good mechanical properties and excellent durability [10-13]; however, the need for of alkali activator greatly increases the 

overall cost.  

Researchers have shown that using fly ash and slag as a partial or full replacement for Portland cement can immobilize 

lead and other toxic elements [14-15]. In several countries, these materials have also been used to make bricks and other 

non-structural elements for construction [16-17]. Nonetheless, there is a pressing need to find other suitable uses for these 

materials to reduce the cost of reprocessing, avoid the construction of large landfills, and conserve raw materials [18-20].  

Taiwan, Korea, and Japan have recently begun developing cementless construction materials which do not impose high 

energy consumption. Researchers have demonstrated that ggbs can be combined with supplementary cementitious materials to 
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create materials with compressive strength and durability sufficient for civil construction (30 MPa to 60 MPa) without the need 

for an added alkali activator [21-25]. Cementless blended materials containing ggbs and circulating-fluidized-bed (CFB) 

co-fired fly ash have been shown to form strong cementitious materials via hydration reactions without the addition of an alkali 

activator. These materials have been used to make CLSM, pervious concrete, and RCC [25-28]. The objective in this study was 

to combine ggbs and co-fired fly ash with desulfurized gypsum to create a novel cementless material for construction. Various 

combinations of desulfurized gypsum, water-quenched blast-furnace slag, and co-fired fly ash from circulation of fluidized bed 

combustion were assessed in terms of flowability, compressive strength, absorption, total charge-passed (rapid chloride 

permeability), chloride diffusion coefficient (accelerated chloride migration), and scanning electron microscopic (SEM) 

observations. A flowchart of the research methodology is presented in Fig. 1. 

 

Fig. 1 Flowchart of research methodology 

2. Materials and Methods 

2.1.   Materials 

  

(a) ggbs (b) CFB 

Fig. 2 SEM images of ggbs and co-fired fly ash 

The ternary cementless blended material introduced in this paper combined ggbs, CFB co-fired fly ash, and desulfurized 

gypsum as an alternative to Portland cement. The first step involved screening the above combined materials through a No. 100 

sieve (150 μm). The ggbs (CHC Resources Corporation, Taiwan) had a fineness of 5860 cm
2
/g and specific gravity of 2.88. 

The CFB co-fired fly ash (Yuen Foong Yu Corporation, Taiwan) had a fineness of 3000 cm
2
/g and specific gravity of 2.73. The 
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desulfurized gypsum (Sing Da thermal power plant, Taiwan) had a fineness of 2300 cm
2
/g and specific gravity of 2.59. Figs. 

2(a)-2(b) respectively present SEM images of the ggbs and CFB co-fired fly ash [27]. As shown in Table 1, the chemical 

composition of both materials met the requirements of ASTM C989.  

Table 1 Chemical composition of by-products 

Materials 
Chemical composition 

SiO2 (%) Al2O3 (%) Fe2O3 (%) CaO (%) MgO (%) SO3 (%) others 

ggbs 33.68 14.37 0.29 40.24 7.83 0.66 2.93 

co-fired fly ash 29.47 19.27 3.49 35.54 1.82 7.36 3.05 

desulfurized gypsum 3.44 0.98 0.15 67.90 0.67 10.15 16.71 

2.2.   Mix design and test methods 

Table 2 Mix design (kg/m
3
) 

Mix no. ggbs desulfurized gypsum CFB co-fired fly ash fine aggregates water superplasticizers 

G50D1 262 5.3 257 

1456 

280.7 

10.6 

G50D3 262 15.9 246 10.6 

G50D5 262 26.4 236 10.6 

G60D1 318 5.3 206 

283.3 

8.0 

G60D3 318 15.9 196 8.0 

G60D5 318 26.4 185 8.0 

In accordance with ASTM C109 specifications, the water/blender ratio (w/b) of the mortar specimens was maintained at 

at 0.55, and the mass ratio of the blender/fine aggregates was 1:2.75. Table 2 lists all of the mix designs used in this study. 

Superplasticizers were used in accordance with ASTM C494 standards for Type F mixes. The specimens were numbered using 

letters and numbers to indicate the composition of the blended materials, where G indicates ggbs, D indicates desulfurized 

gypsum, and the following number indicates the percentage in the mix. For example, G50 denotes 50% ggbs and D1 denotes 

1% gypsum. Note however that ternary cementless blended materials also included a large quantity of fly ash. Thus, specimens 

labeled G50D3 included 50% ggbs and 3% desulfurized gypsum with the remaining 47% made up of CFB co-fired fly ash. 

Table 3 presents the test methods, the dimensions of the specimens, and the standards referenced in this study. The setting time 

test was conducted using a Vicat Needle device and flow tests were conducted using a flow table in accordance with ASTM 

C230. Compressive strength was measured using a universal testing machine (SHIMADZU UH-1000). Particles were 

characterized using SEM (JSM-IT100) observation.  Water absorption and non-steady-state chloride migration were tested 

using proprietary devices, the latter of which is shown in Fig. 3.  

Table 3 Test methods 

Test methods Specimen dimensions (mm) Referenced standard 

Fresh properties 
Setting time test - ASTM C191 

Flow test - ASTM C1437 

Mechanical properties Compressive strength test 50x50x50 ASTM C109 

Permeability 
Absorption 50x50x50 ASTM C642 

Non-steady-state chloride migration test 100x50 NT Build 492 

Micro-structure observation SEM observation 10x10x1 ASTM C1723 

 

Fig. 3 Device used for non-steady-state chloride migration test 
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3. Results and Discussion 

3.1.   Fresh properties 

The fresh properties of the ternary cementless blended materials were evaluated in terms of setting time and flowability. 

Note that setting time included the initial setting time and final setting time, as summarized in Table 4. Under fixed dosage of 

slag (60% of the cementless blended materials), the addition of desulfurized gypsum greatly decreased the setting time. The 

lowest setting time (30 min) was observed in the G60D10 specimens. The dosage of desulfurized gypsum was proportional to 

the formation of C-S-H gel, and the mixes containing desulfurized gypsum also produced larger quantities of ettringite. Note 

that the ettringite and C3A dissolved to form monosulfoaluminate and/or hydroxy-AFm phases immediately after the depletion 

of the gypsum [29-30]. 

Table 4 Setting times of G60 mixes 

Mix no. Initial setting time (min) Final setting time (min) 

G60 723 976 

G60D2 200 575 

G60D5 52 80 

G60D7 34 53 

G60D10 15 30 

The G60 specimens easily met the 110% flowability standard; however, the G50 specimens were unable to do so without 

a larger quantity of added superplasticizer. Table 5 lists the flowability results obtained for the three G60 specimens. The 

addition of desulphurized gypsum was shown not to have significant effect on the fluidity of the mix.   

Table 5 Flow test results of G60 mixes 

Testing no. 
Mix no. 

G60D1 G60D2 G60D3 

1 21.5 21.5 21.6 

2 21.3 21.0 21.8 

3 21.8 20.6 21.8 

4 21.5 21.3 21.6 

Ave. 21.5 21.1 21.7 

Flowability (%) 115 111 117 

3.2.   Compressive strength 
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Fig. 4 Compressive strength development curves of G60 specimens 

Fig. 4 presents the compressive strength development curves of G60 specimens containing various quantities of 

desulphurized gypsum. Compressive strength was shown to increase proportionally with curing age and inversely to the 

proportion of desulphurized gypsum. At a curing age of 7 days, the strength of all three specimens was similar; however, at 28 
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days, the compressive strength of the G60D3 specimens was slightly (5%) higher than that of the other specimens. At 91 days, 

the G60D1 specimens presented the highest compressive strength. These results indicate that the desulfurized gypsum was 

weaker than co-fired fly ash in terms of its ability to blend with ggbs. 

The compressive strength of all cementless specimens approached the target strength of 30 MPa at 7 days, reaching 40 

MPa at 28 days. At 91 days, the maximum strength in G60D1 specimens reached 48.5 MPa (a 22% increase from 28 days). 

This is an indication that in these specimens, the co-fired fly ash and desulfurized gypsum can be regarded as an alkaline 

excitation material. Following the addition of ggbs, the cementless blended specimens reached the target strength for ternary 

cementless blended materials. This can be attributed to the reaction of Ca(OH)2 and other hydrated components with water 

after CaO hydration. Note that ggbs must be mixed with strongly alkaline materials (e.g., co-fired fly ash) to achieve an 

activated hydration reaction and corresponding hardening. 

Fig. 5 presents compressive strength histograms of G50 specimens containing various quantities of desulfurized gypsum. 

The compressive strength of specimens with 3% desulfurized gypsum exceeded that of the other samples at 7, 14, 28, and 56 

days. Note that the G50D3 sample achieved compressive strength of 47.4 MPa at 56 days, which far exceeds the typical target 

strength of conventional Portland (35 MPa) [24, 31-33].  
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Fig. 5 Compressive strength histograms of G50 specimens Fig. 6 Compressive strength histograms comparing G50D3 

and G60D3 specimens 

Fig. 6 presents compressive strength histograms of specimens with a fixed quantity of gypsum (3%) and either 50% or 

60% ggbs (G50D3 and G60D3). The compressive strength of G50D3 exceeded that of G60D3 specimens at 7 to 28 days, due 

to the high proportion of co-fired fly ash. Like conventional fly ash, specimens containing higher proportions of co-fired fly 

ash achieved the majority of their strength between 28 and 90 days. The retarded hydration reaction associated with the 

co-fired fly ash caused the molecules to react with water and gain strength at a later stage. Note that the compressive strength of 

G60D3 specimens exceeded that of G50D3 specimens at 56 days. Thus, engineers should consider the late strength 

development of composites containing co-fired fly ash and apply them accordingly. 

3.3.   Absorption 

Absorption testing is an indirect approach to the evaluation of pore structure and compactness in cementitious materials. 

The main active components in co-fired fly ash, desulfurized gypsum, and ggbs include CaO, SiO2, Al2O3, MgO. As shown in 

Fig. 7, the absorption of all specimens decreased with curing age. The absorption of G60D1and G60D3 dropped off 

significantly at 91 days, whereas the absorption of G60D5 began slowing after just 14 days. Increasing the proportion of 

desulfurized gypsum was shown to reduce the density of the cementless materials through the formation of pores via the 

expansive formation of ettringite. The formation of ettringite (3CaO⋅Al2O3⋅3CaSO4⋅32H2O) can be attributed to reactions  
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Fig. 7 Absorption of G60 specimens containing various 

quantities of desulfurized gypsum 

Fig. 8 Absorption of G50 specimens containing various 

quantities of desulfurized gypsum 

between gypsum and calcium aluminate hydrates (e.g., 4CaO⋅Al2O3⋅13H2O) [34]. However, the different proportions in each 

group of G50 specimens produced similar results, and the effect of desulfurized gypsum on absorption was not significant, as 

shown in Fig. 8. 

3.4.   Penetration depth of chloride ions and SEM observations 

Fig. 9 presents the results of accelerated chloride ion migration tests of G60 specimens under non-steady-state conditions. 

All three test mixtures presented low diffusion behavior (penetration depth), and the depth of penetration decreased 

significantly with an increase in curing age. The initial current measurement of 22 mA revealed that the inclusion of pozzolanic 

materials affected electron ionization. The penetration depth of G60D1 specimens was the lowest at 91 days and presented a 

linear relationship with compressive strength (see Fig. 10). Desulfurized gypsum, co-fired fly ash, and ggbs contain large 

quantities of aluminum and iron oxides, such as Al2O3 and Fe2O3, which react easily with CaO in the hydration products to 

form CaO·Al2O3·Fe2O3. Likewise, reactions of CaO with Al2O3, Fe2O3, and H2O in the hydration products form hydration 

reactants such as 3CaO·Al2O3·10H2O or 3CaO·Fe2O3·10H2O, which are key factors in the development of strength in 

cementitious materials [35-36]. This is likely the main issue reducing the transmission of chloride ions. Fig. 9 presents 

regression analysis of compressive strength tests and chloride migration tests, showing that chloride ion permeability was 

negatively correlated with compressive strength and that the relationship was linear. 
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Fig. 9 Penetration depth histograms of G60 specimens Fig. 10 Compressive strength versus ion penetration depth 

The SEM images in Figs. 11-12 show that few of the particles in the G50D1 and G60D1 specimens presented the 

polygonal shape characteristic of ggbs, indicating that there was insufficient fly ash and ggbs to participate in the hydration 
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reaction. The low absorption of the G60D3 and G60D1 specimens can be attributed to the fact that the ggbs particles were 

covered and most of the pores were filled with C-S-H colloids. The G50D1 specimens presented a small number of 

needle-shaped ettringite (AFt) and hexagonal flake-shaped or rose petal-shaped monosulfide calcium aluminate (AFm) 

hydration products. G60D1 specimens presented a large number of needle-shaped ettringite (AFt) and flake-shaped (AFm) 

hydration products. This is an indication that there was a sufficient quantity of co-fired fly ash and ggbs to produce a complete 

hydration reaction, which may explain the high compressive strength. Note however, that the large quantities of AFt and AFm 

had a swelling effect, which left the specimens somewhat porous (i.e, susceptible to absorption and greater penetration depth). 

The SEM images also revealed needle-like C-S-H particles stacked irregularly on the surface of the gypsum, slag, and co-fired 

fly ash particles. These results are consistent with those reported in previous studies [23, 26, 31, 37], in which the main 

hydration products were C-S-H and C-A-S-H gels with high strength development in later curing stages (56 to 91 days). 

  

Fig. 11 SEM image of G50D1 specimen (x1000) Fig. 12 SEM image of G60D1 specimen (x1000) 

4. Conclusions 

This study examined ternary cementless blended materials without an alkali activator. The engineered properties of the 

proposed cementless materials meet or exceed those of conventional concrete based on Portland cement. The  compressive 

strength of the G60D1 specimens reached 48.5 MPa  at 91 days. The addition of desulfurized gypsum increased the setting time 

due to the formation of monosulfoaluminate and hydroxy-AFm phase. 

It has previously been demonstrated that cementless materials containing ggbs are capable of self-hydration when 

combined with industrial by-products even in the absence of an alkali activator. It appears that the large quantities of calcium 

oxide and calcium oxide in co-fired fly ash and desulfurized gypsum met water as hydrogen, resulting in the rupturing and 

dissolution the glassy ggbs particles. The consumption of calcium hydroxide to produce C-S-H colloid as a hydration product 

increased the compactness and hardness of the specimens, resulting in strength values comparable to those of cementitious 

materials. All of the specimens demonstrated extended pozzolanic reactions, which reduced the number of capillary or gel 

pores as well as the connectivity between pores. The G60D3 specimens presented the highest compressive strength and highest 

resistance to absorption and chloride ion penetration. An excessive quantity of desulfurized gypsum tended to hinder hydration, 

which had negative effects on the engineering properties and durability of the resulting cementless materials. These cementless 

materials could help to reduce carbon dioxide emissions and conserve the consumption of raw materials. 
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