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Abstract 

This paper presents the design and implementation of an intelligent wireless remote control system for a biped 

robot. A recurrent cerebellar model neural network (RCMNN) is introduced, then it is used for the walking control of a 

biped robot. Furthermore, the remote communication module is designed for the remote control of a robot. Finally, 

experimental results show that the developed system can achieve satisfactory control performance for the walking 

control of a high-order nonlinear biped robot. 
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1. Introduction 

Biped robots are a favorite topic in the field of robotics [1-3]. Many dynamics analysis and system control researches have 

been presented for the biped robots [4-5]. In order to achieve adaptive control of a biped robot to face unknown environment, an 

intelligent control algorithm will be proposed in this study. 

Cerebellar model neural network (CMNN), first proposed by Albus, has been applied to control a robot manipulator [6]. 

CMNN has been applied for the control of complex dynamic systems due to its good generalizing capability and fast learning 

property. In this paper, a recurrent CMNN (RCMNN) is introduced; then, an adaptive RCMNN-based control system is designed 

for the walking control of a biped robot. 

Remote control has been frequently used in a lot of auto-matic control systems. Recently, the wireless remote control robots 

have been developed to dictate a biped robot to move according to the user’s commands. The proposed walking command 

system can be applied to the remote medical robot, the exploration robot, the home security robot, and so on [7]. In the deve loped 

biped robot, the Zigbee wireless communication has been designed for the remote communication between the monitoring 

computer and the robot. 

2.  Remote Control of the Biped Robot 

In order to achieve remote wireless control, a wireless module is used for the communication between the robot and personal 

computer (PC), as shown in Fig. 1. The wireless module is also used to monitor the motion of the robot. The Zigbee-100, which 

has 2.4 GHz bandwidth, is designed for robot communication. This peer-to-peer communication module is not easy to be 

interfered by other equipment or bands . 
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Fig. 1 Block diagram of remote communication robot 

3. Adaptive RCMNN-Based Control System 

3.1.   Cerebellar model neural network  

A recurrent CMNN (RCMNN) is introduced as shown in Fig. 2. The basic functions of RCMNN are described as follows. 
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Fig. 2 Architecture of an RCMNN 

(1) Input space
s

I : For a given a

a

nT

nppp  ],,,[ 21 p , where an  is the number of input state variables, each input state 

variable   ip is assumed to be quantized into en  discrete regions (called “neurons”) according to a given control space. 

(2) Association memory space
s

A : Several elements, fn , can be accumulated as a “block”. In this space, each block performs 

a receptive-field basis function, and the Gaussian function is adopted here as the receptive-field basis function, which can 

be represented as 
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where   ik represents the output of the k-th receptive-field basis function for the i-th input with the mean   ikc and 

variance  . ikv In addition, the input of this block can be represented as  

)()()( Ttrtptp ikikirik  
 (2) 

where ikr  is the recurrent weight, and )( Ttik  denotes the value of   ik through delay time T . It is clear that the input of this 

block contains the memory term )( Ttik  , which stores the past information on the network and presents a dynamic mapping. 

(3) Receptive-field space
s

R : The k-th multidimensional receptive-field function is defined as 
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where a

a

nT

knkkk ccc  ],,,[ 21 c , a

a

nT

knkkk vvv  ],,,[ 21 v  and a

a

nT

knkkk rrr  ],,,[ 21 r . The multi-dimensional 

receptive-field functions can be expressed in vector form as 
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(4) Weight memory space
s

W : Each location of 
s

R  to a particular adjustable value in the weight memory space can be 

expressed as 
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where d

d

nT

pnkppp www  ],,,[ 1 w , and 
kpw  denotes the connecting weight value of the p-th output associated with the 

k-th receptive-field. 

(5) Output space
sO : The output of RCMNN is the algebraic sum of the activated weights in the weight memory and is 

expressed as 
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The outputs of CMNN can be expressed in a vector notation as 

ΦWo
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(7) 

The architecture of RCMNN is designed to have the advantages of simple structure and dynamic characteristics. The role 

of the recurrent loops is to consider the past value of the receptive-field basis function in the association memory space. Thus, 

this RCMNN has dynamic characteristics. 

3.2.   Adaptive RCMNN-based control system 

The biped robot system is highly nonlinear. To effectively control a biped robot, an adaptive RCMNN-based control is 

introduced in this subsection. The configuration of the proposed adaptive RCMNN control system of the biped robot system is 

illustrated in Fig. 3. There are two inputs for the adaptive RCMNN controller: first is the tracking error, wh ich is the difference 

between the reference trajectory md  and actual trajectory d  derived from accelerometer; and second is the angular velocity   

obtained from gyroscope. The output of RCMNN is  the control signal HipU , which adjusts the hip joint to achieve a stable 

posture. The robot needs this on-line adjusting technique to adjust its original trajectories as it encounters unexpected situations. 

Another controller is the ZMP compensator, which is also an adaptive RCMNN for auto-tuning the reference trajectories. The 

two inputs of the ZMP compensator are: the tracking error between the reference ZMP position 
ref

ZMPP  and the actual ZMP 

position ZMPP  derived from (8); and the change of this ZMP tracking error. The output of this RCMNN is the ZMP control effort 

ZMPu . By combining the pre-scheduled walking pattern P with the output of ZMP compensator ZMPu , and after inverse 

kinematics, the computed control torque 0  can be obtained for the biped robot. By adding the computed torque 0  with the hip 

compensating torque, HipU , the actual driving torque  will be applied to drive the biped robot. 
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Fig. 3 Block diagram of the adaptive RCMNN control biped robot system 

4. Experimental Results 

0 2 4 6 8 10 12 14 16

-5

0

5

10

15

20

25

30

Z
M

P
 x

-c
o
o
rd

in
a
te

(c
m

)

Time(sec)

Stable region

(a)

0 2 4 6 8 10 12 14 16

-5

0

5

10

15

20

25

30

Z
M

P
 x

-c
o
o
rd

in
a
te

(c
m

)

Time(sec)

Stable region

0 2 4 6 8 10 12 14 16

-5

0

5

10

15

20

25

30

Z
M

P
 x

-c
o
o
rd

in
a
te

(c
m

)

Time(sec)

Stable region

(a)
 

(a) x-direction 

0 2 4 6 8 10 12 14 16
-8

-6

-4

-2

0

2

4

6

8

Z
M

P
 y

-c
o
o
rd

in
a
te

(c
m

)

Time(sec)

Stable region

(b)

0 2 4 6 8 10 12 14 16
-8

-6

-4

-2

0

2

4

6

8

Z
M

P
 y

-c
o
o
rd

in
a
te

(c
m

)

Time(sec)

Stable region

0 2 4 6 8 10 12 14 16
-8

-6

-4

-2

0

2

4

6

8

Z
M

P
 y

-c
o
o
rd

in
a
te

(c
m

)

Time(sec)

Stable region

(b)
 

0 2 4 6 8 10 12 14 16
-8

-6

-4

-2

0

2

4

6

8

ZMP x-coordinate(cm)

Z
M

P
 y

-c
o
o
rd

in
a
te

(c
m

)

(c)

0 2 4 6 8 10 12 14 16
-8

-6

-4

-2

0

2

4

6

8

ZMP x-coordinate(cm)

Z
M

P
 y

-c
o
o
rd

in
a
te

(c
m

)

(c)
 

(b) y-direction (c) x-y plane 

Fig. 4 Actual ZMP of biped robot 
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The RCMNN control system is accomplished by the proposed control system, whose structure is depicted in Fig. 2. The 

RCMNN used here is characterized as 9 en , 4fn . The initial learning-rates are selected as 01.0zwη  and 

.001.0 zrzvzm ηηη  The initial values of weights are chosen as 0kpw  and 0ikr . The initial values of parameters of means 

and variances are chosen as 22ikv and 1 2 3 4 5 6 7 8
[ , , , , , , , ] [ 49, 35, 21, 7, 7, 21, 35, 49]

i i i i i i i i
m m m m m m m m       for all i  and k . The 

receptive-fields are selected to cover the input space ]}35,35][35,35{[   along each input dimension, respectively. These 

parameters have been chosen through trials to achieve satisfactory con trol performance. The actual zero moment points (ZMPs) 

are shown in Fig. 4. The experimental results show that the robot’s ZMP has been maintained within a stable region to achieve 

stable walking. 

5. Conclusions 

This paper has successfully developed and implemented an intelligent wireless remote control system for a 

biped robot. The RCMNN-based control system is developed. This adaptive control system has been 

successfully implemented on a biped robot system. The experimental results demonstrate the ability to achieve 

satisfactory control performance for stable walking for a high nonlinear biped robot. 
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