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Abstract 

Clustering is a method for analyzing grouped data. Circular data were well used in various applications, such as 

wind directions, departure directions of migrating birds or animals, etc. The expectation & maximization (EM) al-

gorithm on mixtures of von Mises distributions is popularly used for clustering circular data. In general, the EM 

algorithm is sensitive to initials and not robust to outliers in which it is also necessary to give a number of clusters a 

priori. In this paper, we consider a learning-based schema for EM, and then propose a learning-based EM algorithm 

on mixtures of von Mises distributions for clustering grouped circular data. The proposed clustering method is 

without any initial and robust to outliers with automatically finding the number of clusters. Some numerical and real 

data sets are used to compare the proposed algorithm with existing methods. Experimental results and comparisons 

actually demonstrate these good aspects of effectiveness and superiority of the proposed learning-based EM algo-

rithm. 
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1. Introduction 

Since von Mises [1] proposed a distribution on circular data, Watson and Williams [2] considered statistical inferences for 

von Mises distributions. Afterward, circular data were widely applied in biology, geology, medicine, oceanography, and me-

teorology [3-5]. Clustering is a useful tool for data mining. According to the statistical point of view, clustering methods can be 

generally divided into two categories. One is a model-based approach. Another is a nonparametric approach. In the mod-

el-based approach, the expectation and maximization (EM) algorithm [6-8] is the most used method. For a nonparametric 

approach, an objective function of dissimilarity measures is generally considered in which partitional clustering is the most 

popular, such as k-means [9-11], fuzzy c-means (FCM) [12-13], and possibilistic c-means (PCM) [14-15]. 

Generally, the EM algorithm was popularly used in the analysis of circular data based on mixtures of von Mises distri-

butions [16-19]. However, these EM clustering algorithms are sensitive to initials and not robust to outliers with a given 

number of clusters a priori. In this paper, we construct a learning-based schema for EM, and then propose a learning-based EM 

algorithm on mixtures of von Mises distributions for clustering circular data that is free of initials and robust to outliers. The 

proposed clustering method can also automatically find an optimal number of clusters. We apply the proposed algorithm to real 

circular data and several comparisons are given to demonstrate its effectiveness and superiority. 

2. Learning-Based EM Clustering for Circular Data 

In Yang et al. [20], they proposed a robust EM clustering for Gaussian mixture models. The algorithm can automatically 

find an optimal cluster number of data sets and solve the drawbacks of EM that is sensitive to initial values. In this paper, we 
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will modify the approach proposed by Yang et al. [20] such that it can handle circular data. We mention that Yang et al. [21] 

used the idea of the robust EM clustering on the mixtures of von Mises-Fisher distributions. We know that von Mises-Fisher 

distributions are well used to handle data higher than three dimensions, i. e. data on the unit hypersphere. However, the mix-

tures of von Mises distributions are well for handling circular data. In this paper, we especially focus on circular data based on 

the mixtures of von Mises distributions with angles measured by sine and cosine that is different from Yang et al. [21]. Suppose 

that the circular data set 𝑋 = {𝜃1, 𝜃2, ⋯ , 𝜃𝑛} is a random sample of size n from a mixture model 
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and 𝑓𝑖  is the pdf of ith class with parameter ∅𝑖 . Let class variable  𝑧 = {𝑧1, 𝑧2, ⋯ , 𝜃𝑐} with 𝑧𝑖 = {𝑧𝑖1, 𝑧𝑖2, ⋯ , 𝑧𝑖𝑛}𝑇  where 
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The log-likelihood for the complete data is given by 
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The EM algorithm consists of two steps with “Expectation”, shorten by E, and “Maximum”, shorten by M. In the E step, 

the expectation 
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is used to substitute for missing data 𝑧𝑖𝑗 . In the M step, estimates of parameters are used by maximizing 
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with the restriction of Eq. (2). 

The von Mises distribution is the most common used distribution on circular data. If we consider that the density 

𝑓𝑖 = (𝜃; ∅𝑖) is the von Mises distribution 𝑉𝑀 = (𝑣𝑖 ;  𝑘𝑖) with mean direction 𝑣𝑖 and the concentration 𝑘𝑖 with 
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is the modified Bessel function of order zero, then update equations for 𝑎𝑖, 𝑣𝑖, and 𝑘𝑖   can be obtained as follows: 
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where 𝐴−1(𝑥) a function that can be computed from Batschelet’s table (see Fisher [3]). In order to solve drawbacks for EM, 

Yang et al. [20] give an entropy term of the proportion to the EM log-likelihood function. According to their idea, we propose 

the learning-based EM objective function for mixtures of von Mises distributions as follows: 
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Thus, in the E step, the expectation 𝑧̂𝑖𝑗 = 𝐸(𝑧𝑖𝑗|𝜃𝑗) is used to substitute for missing data 𝑧𝑖𝑗  with 
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In the M-step, under the constraint Eq. (2), we need to maximize 
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Taking partial derivatives with respect to 𝑎𝑖, and then the following update equation is obtained 
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Eq. (15) provides us a method to seek the number of clusters. Because the number of clusters is not larger than n,  
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is not reasonable. In this situation, we must discard the ith class. Thus, the new number of clusters can be obtained with 

( ) ( ) ( ) ( ) ( )|{ | 1/ ,  1,  2, ,  }|   new old new new old

i ic c a a n i c  (19) 

In order to satisfy the constraints 

( )

1
1

newc

kk
a 

  (20) 

and 

( )

1
ˆ 1

newc

k jk
z 

  (21) 

we adjust 𝑎𝑘′  and 𝑧̂𝑘′𝑗  by 
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The purpose of the parameter β  is to control competition of proportions. Following Yang et al. [20], we set β as follows: 
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When the cluster number c is stable, let 𝛽 = 0. We also use the M-step to estimate 𝑣𝑖 and 𝑘𝑖. We take partial derivatives 

with respect to  𝑣𝑖 and 𝑘𝑖, respectively. Then, update equations are obtained as follows: 
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To solve the initialization problem, we let the initial number of clusters be n. It means that 
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We then consider the maximum likelihood estimate of the concentration of von Mises distribution as initial value 𝑘𝑖
(0)
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is the sample mean resultant length. Thus, the proposed learning-based EM for circular data can be summarized as follows: 

Learning-based EM algorithm for circular data 

Step 1: Fix 𝜀 > 0. Give initials 𝛽(0) = 1, 𝑐(0) = 𝑛, 𝑎𝑖
(0)

=
1

𝑛
, and assign (𝑣1

(0)
, 𝑣2

(0)
, ⋯, 𝑣𝑛

(0)
)= (𝜃1, 𝜃2, ⋯, 𝜃𝑛). 

Step 2: Compute 𝑘𝑖
(0)

 using Eq. (32) and set  𝑡 = 1. 

Step 3: Compute 𝑧̂𝑖𝑗
(0)

 with
(0)
ia , 

(0)
i , and

(0)
i  using Eq. (13). 
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Step 4: Compute 𝑣𝑖
(𝑡)

 with 𝑧̂𝑖1
(𝑡−1)

, 𝑧̂𝑖2
(𝑡−1)

, ⋯, 𝑧̂𝑖𝑛
(𝑡−1)

 using Eq. (28). 

Step 5: Update to 𝑎𝑖
(𝑡)

 with 𝑧̂𝑖1
(𝑡−1)

, 𝑧̂𝑖2
(𝑡−1)

, ⋯, 𝑧̂𝑖𝑛
(𝑡−1)

 and 𝑎𝑖
(𝑡−1)

using Eq. (15). 

Step 6: Compute 𝛽(𝑡) with 𝑎𝑖
(𝑡)

 and 𝑎𝑖
(𝑡−1)

 using Eq. (24). 

Step 7: Update 𝑐(𝑡−1) to 𝑐(𝑡) by discard those clusters with 𝑎𝑖
(𝑡)

≤ 1/𝑛 and adjust 𝑎𝑖
(𝑡)

 and 𝑧̂𝑖𝑗
(𝑡−1)

 by Eqs. (22) and (23). 

IF 𝑡 ≥ 60 and 𝑐(𝑡−60) − 𝑐(𝑡) = 0, THEN let 𝛽(𝑡) = 0. 

Step 8: Compute 𝑘̂𝑖
(𝑡)

 with 𝑧̂𝑖1
(𝑡−1)

, 𝑧̂𝑖2
(𝑡−1)

, ⋯, 𝑧̂𝑖𝑛
(𝑡−1)

 using Eq. (29). 

Step 9: Compute 𝑧̂𝑖𝑗
(𝑡)

 with  𝑎𝑖
(𝑡)

, 𝑣𝑖
(𝑡)

, and 𝑘̂𝑖
(𝑡)

 using Eq. (13). 

Step 10: Compute 𝑣𝑖
(𝑡+1)

 with 𝑧̂𝑖1
(𝑡)

, 𝑧̂𝑖2
(𝑡)

, ⋯, 𝑧̂𝑖𝑛
(𝑡)

 using Eq. (28). 

Step 11: Compute 𝑑(𝑣(𝑡+1), 𝑣(𝑡)) in a convenient norm 𝑑. 

IF 𝑑(𝑣(𝑡+1), 𝑣(𝑡)) < 𝜀, STOP 

ELSE 𝑡 = 𝑡 + 1 and return to Step 5. 

3. Examples and Comparisons 

In this section, we make comparisons between the proposed learning-based EM and EM algorithms on numerical and real 

data sets.  

Example 1: In Fig. 1(a), there is a 2-cluster data set which is generated from a mixture of two von Mises distributions 

0.4VM(60°, 6.5)+0.6VM(180°, 7.5) with 200 data points. If the angle is an observation, then x-coordinate represents cos and 

y-coordinate represents sin. We first implement EM with c = 2 for this data set. The clustering results of EM are shown in Fig. 

1(b). The data set is well separated, and so we obtain the same clustering results of EM with most random initial values. The 

estimates parameters are as:  𝑎̂1 = 0.4274, 𝑎̂2 = 0.5726, 𝑣̂1 = 61.0254°, 𝑣̂2 = 178.2695°, 𝑘̂1 = 6.54, 𝑘̂2 = 7.426. We can 

see that EM has good clustering results and estimates close to the given parameters. We use the learning-based EM without a 

priori cluster number. Figs. 1(c)-1(f) are the states of the cluster centers (denoted by “*” symbol) at iteration = 0, 5, 10, 20, 

respectively. The cluster centers also imply the mean directions. We can see that the cluster number decreases from 200 to 2. 

Therefore, the learning-based EM can find an optimal cluster number with c
*
=2. The clustering results of the learning-based 

EM are the same with EM (with a priori cluster number c=2), as shown in Fig. 1(b). The parameter estimates of the learn-

ing-based EM are as:  𝑎̂1 = 0.4257, 𝑎̂2 = 0.5743, 𝑣̂1 = 60.8349°, 𝑣̂2 = 178.1072°, 𝑘̂1 = 6.54, 𝑘̂2 = 7.426. The results are 

closed to those of EM. To compare the performance of the proposed learning-based EM with EM, we use the criterion of mean 

squared error (MSE) to evaluate the accuracy of the two algorithms. We generate 100 data sets from 0.4VM (60 ° , 

6.5)+0.6VM(180°, 7.5) and computer MSEs from EM and the learning-based EM. The MSE is defined as 

sum of SE of each data set for 
MSE

100


   

where the squared error (SE) for v is defined as 

2 2
1 2
ˆ ˆ( 60) ( 180)

SE
2

   
   

From the 100 data sets, we obtain that the MSE value from EM is 2.3561, and the MSE value from the learning-based EM 

is 2.2193. The proposed learning-based EM performs better than EM. 
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(a) 2-clusters data set (b) Clustering results of EM and the learning-ased EM 

  
(c) The states of cluster centers from the  

learning-based EM at iteration = 0 

(d) The states of cluster centers from the  

learning-based EM at iteration = 5 

  
(e) The states of cluster centers from the  

learning-based EM at iteration = 10 

(f) The states of cluster centers from the  

learning-based EM at iteration = 20 

Fig. 1 2-cluster circular data set with their clustering results 

Furthermore, we consider the influence of noisy points on the proposed learning-based EM and EM algorithms. We add 

50 randomly noisy points which are generated from the interval [0°, 240°] into 2-cluster data set and call noisy data set, as 

shown in Fig. 2(a). The noisy points are denoted by the "+" symbol. We first implement EM with c = 2 for the noisy data set. 

Fig. 2(b) shows the clustering results of EM. Compare Fig. 2(b) with Fig. 1(b), we find that one of the original 200 data points 

is classified into another cluster. The estimates parameters are as follows: 𝑎̂1 = 0.4223 , 𝑎̂2 = 0.5477, 𝑣̂1 = 61.9240° , 

𝑣̂2 = 178.4338°, 𝑘̂1 = 4.8590, 𝑘̂2 = 6.5400. We also implement the learning-based EM with unknown number c of clusters 

for the noisy data set. The final states of the cluster centers are shown in Fig. 2(c). The learning-based EM find the optimal 

cluster number c
*
=2 after 51 iterations. The clustering results of the learning-based EM are shown in Fig. 2(d). Compare Fig. 

2(d) with Fig. 1(b), we find that two clusters in the original 200 data points are the same. The estimates parameters are as 
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follows: 𝑎̂1 = 0.4490, 𝑎̂2 = 0.5510, 𝑣̂1 = 61.1672° , 𝑣̂2 = 178.1286° , 𝑘̂1 = 4.8590, 𝑘̂2 = 5.8520. To compare the influ-

ences of noisy points on the two algorithms, we compute the increasing rate of MSE. We generate 50 randomly noisy points 

from the interval [0°, 240°] for the data set. Then we compute MSEs for EM and the learning-based EM from 100 noisy data 

sets. The increasing rate is defined as 

(the noisy data set) (the original data set)

(the original data set)

MSE MSE
increasing rate 100%

MSE


   (34) 

Table 1 shows these MSEs with its increasing rate. From Table 1, we find the increasing rate of the learning-based EM is 

smaller than EM, which means that the noisy points have a smaller influence on the learning-based EM.  

  
(a) Noisy data set (b) Clustering results of EM 

  
(c) The final states of cluster centers of the learning-based EM (d) Clustering results of the learning-based EM 

Fig. 2 2-cluster data set with 50 noisy points and their clustering results 

Table 1 MSEs for EM and the learning-based EM with its increasing rates 

Algorithms EM Learning-based EM 

MSE(the original data set) 2.3561 2.2193 

MSE (the noisy data set) 2.8719 2.4621 

Increasing rate 21.89% 10.94% 

Example 2: In this example, we apply the proposed learning-based EM and EM algorithms to a real data set, sudden infant 

death syndrome (SIDS) data of Mooney et al. [17]. The SIDS data set consists of the SIDS cases in the UK by a month of death 

for the years 1983-1998, exhibiting a seasonal pattern with a winter peak. Mooney et al. [17] modified all of 12 months to 31 

days, i.e. the SIDS data were month-corrected to 31 days by multiplying February by 1.097 and the 30 day months by 1.033. 

Then they found that the SIDS data for the year 1998 could be fitted by a mixture of two von Misses distributions. Table 2 

shows the corrected number of SIDS cases for the year 1998. We transform Table 2 to circular data. We map the 12 months 

from 0 to 360 in degree. Every month has equal length (31 days), and so [0, 360] should be divided into 12 equal length in-

tervals. January corresponds to the interval [0°, 30°], February corresponds to the interval [30°, 60°] and so on. Based on 
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frequency in each month, we generate random numbers from the uniform distribution on the corresponding interval. 402 

observations and its rose diagram (circular histogram) are shown in Fig. 3(a) and Fig. 3(b), respectively. Clearly, we can see 

two modes on the intervals [150°, 180°] and [330°, 360°] from Fig. 3(b). We implement EM with cluster number c=2 for the 

data set in Fig. 3(a). The clustering results of EM are affected by different initials. Figs. 3(c)-3(e) are results with different 

initials. If we implement EM for this data set with 100 random initials, then we obtain 23 of 100 results as shown in Fig. 3(c), 

72 of 100 results as shown in Fig. 3(d), and 5 of 100 results as shown in Fig. 3(e). We also implement the learning-based EM 

without giving c  for the data set in Fig. 3(a). Fig. 3(f) shows the cluster number decreases from 402 to 2. Therefore, the 

learning-based EM finds an optimal cluster number c
*
=2. The final states of cluster centers are shown in Fig. 3(g). We can see 

that the locations of two mean directions are consistent with two modes in Fig. 3(b). The clustering results of the learn-

ing-based EM are shown in Fig. 3(h). Obviously, the results are different from EM. Note that the learning-based EM sets all 

data points as initials. Thus, an initial condition is not necessary for the learning-based EM. If we perform the learning-based 

EM for 100 times, then 100 clustering results are the same. The estimated parameters of the learning-based EM, EM (with Fig. 

3(d)) and Mooney et al. [17] are shown in Table 3. We find the estimates of the learning-based EM are closed to Mooney et al. 

[17]. According to mean direction estimates, we know that there are two peaks in SIDS cases for the year 1998. One peak is in 

early June and the other is in early December. 

Table 2 Corrected number of SIDS case for the year 1998 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Total 

40 31 25 26 29 33 25 20 27 40 43 63 402 

Table 3 Estimates of parameters for SIDS data 

Algorithms EM Learning-based EM Mooney et al. [17] 

𝑣̂1 153.32° 151.84° 154.48° 

𝑣̂2 337.66° 340.33° 340.52° 

 

  

(a) The SIDS data set (b) Rose diagram to SIDS data for the year 1998 

  
(c) Clustering results of EM with different initials (d) Clustering results of EM with different initials 

Fig. 3 Clustering results of learning-based EM and EM algorithms for SIDS data set 
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(e) Clustering results of EM with different initials (f) Cluster number obtained by the learning-based  

EM under different iterations 

  

(g) Final states of cluster centers of the learning-based EM (h) Clustering results of learning-based EM 

Fig. 3 Clustering results of learning-based EM and EM algorithms for SIDS data set (continued) 

4. Conclusions 

In general, the EM algorithm for clustering circular data quite depends on initializations with a given number of clusters a 

priori. To solve these drawbacks of EM, a learning-based EM algorithm is proposed for circular data in this paper. The pro-

posed learning-based EM can automatically find an optimal number of clusters for different circular data sets without any 

initialization and also robust to outliers. Some numerical data from mixtures of von Mises distributions and real circular data 

are used for comparisons of the proposed learning-based EM with EM algorithms. Furthermore, we also consider noisy points 

and outliers in data sets. These comparisons and experimental results actually demonstrate the effectiveness and usefulness of 

the proposed learning-based EM clustering algorithm for circular data. Although the proposed learning-based EM works well 

for circular data, it is only fitted for 2-dimensional angular data sets. In our future work, we will further construct a learn-

ing-based EM algorithm for spherical data sets, i.e. 3-dimensional angular data, and then apply it to extrasolar planet tax-

onomy. 
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