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Abstract 

This study aims to develop an innovative image recognition and information display approach based on you 

only look once version 4 (YOLOv4)-tiny framework. The lightweight YOLOv4-tiny model is modified by replacing 

convolutional modules with Fire modules to further reduce its parameters. Performance reductions are offset by 

including spatial pyramid pooling, and they also improve the model’s detection ability for objects of various sizes. 

The pattern analysis, statistical modeling, and computational learning visual object classes (PASCAL VOC) 2012 

dataset are used, the proposed modified YOLOv4-tiny architecture achieves a higher mean average precision (mAP) 

that is 1.59% higher than its unmodified counterpart. This study addresses the need for efficient object detection and 

recognition on resource-constrained devices by leveraging YOLOv4-tiny, Fire modules, and SPP to achieve accurate 

image recognition at a low computational cost. 
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1. Introduction 

Target detection methods that leverage deep learning have greatly advanced with the introduction of models such as 

recursive convolutional neural networks (R-CNNs) [1-2], Fast R-CNN [3], Faster R-CNN [4], Mask R-CNN [5], single shot 

detector (SSD) [6], and you only look once (YOLO) [7]. Mask R-CNN proposes a region of interest (ROI) align technology 

to address the problem that the bounding box positioning of Faster R-CNN’s RoI pooling is not accurate enough. The ROI 

align uses bilinear interpolation to replace the original ROI pooling’s use of integers to record coordinates and instead uses a 

floating point to record coordinates. SSD uses a multiBox detector based on a convolutional neural network and sets a series 

of anchor boxes (anchor boxes) on each layer of feature maps. Each anchor box corresponds to an object of different sizes and 

aspect ratios. The SSD detects and locates objects by predicting whether each anchor box contains an object and the category 

and location information of the object.  

During training, SSD uses a cross-entropy loss function to minimize the gap between predicted values and true values. 

These methods have enabled accurate and efficient object detection in domains such as medical image analysis, face 

recognition, and self-driving cars [8]. However, applying computationally demanding deep learning models in resource-

constrained edge devices is challenging [9-10]. In this study, the efficient and lightweight object detection architecture you 

only look at once version 4 (YOLOv4)-tiny [11] was modified to achieve a superior trade-off between accuracy and 

computational cost. Specifically, convolution-batch normalization-leaky ReLU (CBL) modules in YOLOv4-tiny were 

replaced with Fire modules to reduce the number of parameters without compromising performance [12], enabling its 
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deployment on low-power devices. Spatial pyramid pooling (SPP) was then to enhance the feature extraction capabilities of 

the network at various scales and capture fine-grained details in objects of varying sizes [13]. The proposed method was used 

to effectively recognize objects within images and could then display information on these objects. 

The motivation behind this study is to assist individuals in capturing moments using their convenient photography devices 

or accurately retrieving desired product information from online photos. However, achieving high precision in image 

recognition and fast detection often relies on extensive computation and high-performance hardware. Therefore, an approach 

that maintains high accuracy while minimizing computational costs is investigated. 

The remainder of this article is organized as follows: Section 2 presents a literature review related to the proposed method 

in the paper, Section 3 describes the system architecture of the modified YOLOv4-tiny architecture, which was adjusted to 

reduce the complexity of the CBL module, Section 4 outlines the experiments and presents the results, and Section 5 concludes 

the paper. 

2. Literature Review and Methodology 

The YOLO series is a well-established architecture and was selected as the basis for the proposed method [14-15]. YOLO 

is widely recognized for its real-time object detection capabilities and high efficiency. For YOLOv3, a novel backbone network, 

Darknet-53, was developed [16]. As the name suggests, Darknet-53 has 53 convolutional layers and uses the ResNet structure 

to solve the vanishing gradient problem. The architecture also uses feature pyramid networks (FPNs) in its neck; the different 

sizes of these FPNs improved its prediction accuracy for small targets. YOLOv4 [17] constitutes a leap in image recognition 

technology. Its backbone network, denoted CSPDarknet-53, is an integration of Darknet-53 and CSPNet. The FPN neck of 

YOLOv3 was replaced with SPP and a path aggregation network in YOLOv4. These changes both decreased its parameter 

count and improved detection accuracy, greatly increasing its average precision (AP) and frames per second (FPS) [11].  

In this study, a version of YOLOv4, YOLOv4-tiny, was adopted to enable detection on computationally constrained 

hardware. Fig. 1 presents an overview of the YOLOv4-tiny architecture, which comprises a CSPDarknet53-tiny module, five 

convolution, batch normalization, and CBL modules, an upsampling layer, and two convolutional layers. Unlike YOLOv4, 

YOLOv4-tiny produces two feature outputs instead of three. 

 

Fig. 1 YOLOv4-tiny architecture 

The backbone of the YOLOv4-tiny architecture is the CSPDarknet53-tiny module shown in Fig. 2. This module comprises 

two CBL modules, three cross stage partial (CSP) modules, and three max pooling modules. In contrast to YOLOv4, which 

employs the Mish activation function, the CBL module in CSPDarknet53-tiny uses leaky ReLU for improved speed and 

performance. To enhance the efficiency of the CSP module, the original CSPnet [18] from YOLOv4 was modified by splitting 

the residual block into two parts, reducing intermediate processing; the outputs are merged at the end of the module shown in 

Fig. 3. This approach reduces the computational cost of the network architecture while improving accuracy.  
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Specifically, the input of the CSP module is a feature map, which is dimensionally reduced through a convolutional layer 

to generate two feature maps. After passing through some convolutional layers, batch normalization layers, activation function 

layers, etc., the two feature maps are concatenated and then passed through some convolutional layers to obtain the output 

feature map. Therefore, the CSP part can be seen as a multi-layer convolutional network that can learn high-level information 

from the input feature map, while the residual connection can retain low-level information from the input feature map, thus 

effectively utilizing the information in the input feature map. 

 

Fig. 2 CSPDarknet53-tiny module 

 

 

Fig. 3 CSP module 

SPP was applied in this study to enhance the model’s ability to detect objects at various scales [19]. Specifically, SPP 

facilitates feature extraction at different scales when the model is trained on images of various sizes. The proposed SPP module 

differs from previous approaches [19] in that it connects three feature maps of the same size to the input feature map, resulting 

in a final feature map four times the size of the original input as shown in Fig. 4. SPP mainly addresses two issues related to 

fully connected layers. 

Firstly, fully connected layers require fixed-size inputs, which means that when using convolutional neural networks for 

object recognition, the size of the input image must be fixed, limiting the model’s application range. Secondly, fully connected 

layers require a large amount of memory, which means that when the size of the input image increases, more memory is 

consumed, making it impossible to train the model or run it on devices with limited memory. 

SPP solves these problems by pooling different-sized regions to obtain a fixed-size feature vector, which can be used as 

the input of the fully connected layer, avoiding the aforementioned problems. In addition, SPP can increase the model’s ability 

to extract features of different scales. This is because, through pyramid pooling, SPP can extract features from regions of 

different sizes, thereby improving the model’s generalization ability. 

  

Fig. 4 SPP module Fig. 5 Fire module 

The fire module [12], comprising a squeezing part and two expansion parts, is crucial in reducing the model’s parameter 

count. The squeeze part is a convolutional layer with a kernel size of 1, and the expansion part comprises two convolutional 

layers with kernel sizes of 1 and 3 shown in Fig. 5. 
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The following formulas represent the parameter calculation for a general convolutional layer (�����) and the fire module 

(����	), respectively. 

( )2 1= × + ×conv input outputR C K C  (1) 

( ) ( ) ( )2 2 2

1 1 31 1 1 1 1 1 1 3= × + × + × + × + × + ×
S E EinputfireR C K S S K E S K E  (2) 

In Eq. (1), 
����
 is the number of channels of the current convolution input, K is the size of its kernel and 
��
��
 is the 

number of channels of its output. In Eq. (2), 
����
 is the input channel number of the fire module, ��� is the kernel size of the 

squeeze layer, S1 is the output channel number of the squeeze layer, and the following parts are respectively the two 

convolution modules of the expand layer. ��� is the kernel size of the convolution module, and E1 is its output channel number. 

Similarly, ��� and E3 are both the kernel size and output channel number.  

The customized YOLOv4-tiny architecture comprised the CSPDarknet53-tiny module, CBL modules, upsampling layer, 

and convolutional layers. The CBL module is mainly composed of a convolution layer, batch normalization, and an excitation 

function. The operation of the convolution layer mainly has the parameters, including convolution kernel size, stride, and 

padding, to determine the operation of the convolution and the control feature map.  

In the convolution operation, by setting these parameters, the size, shape, depth, and other attributes of the output feature 

map can be controlled, so that the convolution layer can perform feature extraction and feature mapping of different sizes and 

directions on the input image. The modified SPP module and fire module were also included to improve feature extraction and 

reduce the model’s parameter count. To evaluate the effectiveness of these modifications, the proposed model and vanilla 

YOLOv4-tiny were trained on the PASCAL VOC 2012 dataset and compared against each other. 

3. System Structure 

The YOLOv4-tiny architecture was modified to reduce the complexity of the CBL module. However, reducing parameters 

in the critical backbone of CSPDarknet53-tiny may reduce the accuracy of the model. According to Fang et al. [20], the CBL 

module following CSPDarknet53-tiny was replaced with an appropriate number of Fire modules. Eqs. (1)-(2) can be used to 

calculate the parameter counts of the CBL module and the modified Fire modules; the results for various modifications are 

presented in Table 1. Table 1 reveals that the Fire module reduced the number of parameters more for convolutional layers 

with more input channels. Consequently, two CBL modules were replaced with three Fire modules, and the CBL modules 

preceding the final output were replaced with two Fire modules, reducing the parameter count by a factor of 5.8. This reduction 

in parameters reduces accuracy; however, additional modules could be introduced to improve the model’s multiscale feature 

extraction capabilities. Therefore, in reference to Prasetyo et al. [21], an SPP module was included after the Fire3 module to 

improve training stability for multisize training images. 

Table 1 Parameters for various CBL and Fire module 

configurations and input/output channels 

Input/output CBL Fire module 

512/512 2359808 197184 

512/256 131328 57632 

256/256 - 49440 

256/512 1180160 180800 

256/256 - 197184 

384/256 884992 53536 

256/256 - 49440 

Total 4556288 785216 
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The integrated definition for function modeling (IDEF) methodology is widely used in software development; IDEF0 was 

designed explicitly for functional modeling [22]. IDEF0 uses visual graphics and structured methods to describe the entire 

system, which can concisely and quickly understand the purpose and process of the system, effectively avoiding the use of 

excessive text descriptions and complicating the narrative. Fig. 6 presents an IDEF0 diagram that visually represents the key 

components of the proposed system architecture. In the image processing (A1) module, the images in the data set need to be 

pre-processed, including resizing and converting the image to grayscale for subsequent feature extraction and model training. 

Fig. 7 presents a diagram of the image processing and result presentation component, and Fig. 8 displays the modified 

YOLOv4-tiny architecture. 

 

Fig. 6 IDEF0 for the image detection and information display system 

 

 

Fig. 7 IDEF0 for image processing 

 

 

Fig. 8 IDEF0 for the improved YOLOv4-tiny network architecture 

In summary, some CBL modules in YOLOv4-tiny were replaced with Fire modules to reduce their size and computational 

complexity; SPP was then incorporated to improve accuracy when training on images of different sizes. The IDEF0 diagram 

visually representing the image processing and information presentation components comprising the system architecture was 

also presented. 

4. Experimental Results 

This section presents the experiments’ results to evaluate the proposed approach. The experiments were performed using 

an RTX 3060 Ti GPU with CUDA 11.3, significantly accelerating the training process. Detailed system configurations used 

in the experiments are provided in Table 2.  
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Table 2 Experiment types of equipment and system configurations 

Components Specification 

Operating system Windows 10 

GPU Nvidia GeForce RTX 3060 Ti 

CPU AMD Ryzen 9 5900X 12-Core 

Memory 32GB 

Cuda 11.3 

The metrics for evaluating image recognition performance were precision, recall, and F1-score; these can be calculated 

from the confusion matrix. The confusion matrix is a representation of the correspondence between the actual and predicted 

labels of the input data as shown in Table 3. 

Table 3 Confusion matrix 

 True False 

True True positive (TP) False negative (FN) 

False False positive (FP) True negative (TN) 

The other metrics can be calculated from the confusion matrix, 

Precission
+

=
TP

TP FP
 (3) 

Recall =
+

TP

TP FN
 (4) 

2 precission recall
F1-score

precission recall

× ×
=

+
 (5) 

Eqs. (3)-(5) were applied to evaluate the performance of the modified and unmodified models. The modified model was called 

YOLOv4-tinyX1. The models were trained on the PASCAL VOC 2012 dataset, which has 20 object categories. YOLOv4-

tinyX1 achieved higher precision than YOLOv4-tiny in each category presented in Table 4 but generally low recall presented 

in Table 5. 

Table 4 Precision of YOLOv4-tiny and YOLOv4-tinyX1 

 YOLOv4-tinyX1 YOLOv4-tiny 

Aeroplane 95.77% 90.48% 

Bicycle 74.42% 71.74% 

Bird 82.50% 72.86% 

Boat 78.38% 77.42% 

Bottle 63.64% 72.73% 

Bus 90.48% 81.63% 

Car 81.36% 81.30% 

Cat 82.18% 79.63% 

Chair 64.29% 60.00% 

Cow 73.08% 65.62% 

Dining table 94.12% 73.91% 

Dog 77.24% 71.97% 

Horse 70.27% 68.57% 

Motorbike 76.32% 75.68% 

Person 82.33% 81.43% 

Pottedplant 67.86% 64.29% 

Sheep 78.43% 78.00% 

Sofa 78.95% 75.00% 

Train 91.11% 86.96% 
 

Table 5 Recall of YOLOv4-tiny and YOLOv4-tinyX1 

 YOLOv4-tinyX1 YOLOv4-tiny 

Aeroplane 66.02% 73.79% 

Bicycle 43.24% 44.59% 

Bird 43.14% 33.33% 

Boat 30.85% 25.53% 

Bottle 11.97% 13.68% 

Bus 70.37% 74.07% 

Car 45.28% 47.17% 

Cat 61.03% 63.24% 

Chair 23.38% 22.08% 

Cow 38.78% 42.86% 

Dining table 21.62% 22.97% 

Dog 62.91% 62.91% 

Horse 35.14% 32.43% 

Motorbike 50.88% 49.12% 

Person 58.30% 60.08% 

Pottedplant 20.43% 19.35% 

Sheep 57.97% 56.52% 

Sofa 29.41% 23.53% 

Train 60.29% 58.82% 
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The YOLOv4-tinyX1 also outperforms YOLOv4-tiny in terms of F1-score in several categories presented in Table 6. The 

mean AP (mAP) of the models was also compared with an intersection over the union threshold of 0.5. Table 7 reveals that 

the training mAP of the YOLOv4-tinyX1 (57.03%) was superior to that of YOLOv4-tiny (52.93%); its testing mAP was also 

approximately 1.59% higher. The proposed model also achieved a lower giga floating point operations (GFLOPs) score, 

parameter count, and total size than YOLOv4-tiny, indicating that it was more efficient in terms of every metric. 

Table 6 F1-Score of YOLOv4-tiny and YOLOv4-tinyX1 

 YOLOv4-tinyX1 YOLOv4-tiny 

Aeroplane 78% 81% 

Bicycle 55% 55% 

Bird 57% 46% 

Boat 44% 38% 

Bottle 20% 23% 

Bus 79% 78% 

Car 58% 60% 

Cat 70% 70% 

Chair 34% 32% 

Cow 51% 52% 

Dining table 35% 35% 

Dog 69% 67% 

Horse 47% 44% 

Motorbike 61% 60% 

Person 68% 69% 

Potted plant 31% 30% 

Sheep 67% 66% 

Sofa 43% 36% 

Train 73% 70% 
 

Table 7 Overall results of YOLOv4-tiny and 

YOLOv4-tinyX1 

 YOLOv4-tinyX1 YOLOv4-tiny 

Train mAP 57.03% 52.93% 

Test mAP 57.73% 56.14% 

GFLOPs (G) 4.770 6.836 

Total params (M) 2.107 5.876 

Params size (MB) 8.04 22.42 
 

 

These experimental results validate the effectiveness of the proposed modified architecture; it not only achieved higher 

precision, recall, and F1 scores in many or all categories but also higher mAP. It also had lower overall computational 

requirements and fewer parameters in every performance metric. Hence, despite its simpler architecture, the model was 

competitive with YOLOv4-tiny. 

In summary, the experimental results substantiate the efficacy of the proposed modifications to YOLOv4-tiny. The 

achieved precision, recall, and mAP improvements highlight the proposed model’s enhanced object detection capabilities. The 

reduction in computational costs, parameter size, and GFLOPs demonstrate the efficiency of the modified architecture. 

5. Conclusions 

A modified YOLOv4-tiny architecture was developed by incorporating Fire and SPP modules to replace some CBL 

modules, greatly reducing the parameter count while maintaining competitive performance. Including the SPP module 

enhanced feature extraction across different scales. In experiments, the modified architecture achieved training and testing 

mAPs that were 4.1% and 1.59% higher, respectively, than the unmodified YOLOv4-tiny architecture. These findings indicate 

that the proposed approach can achieve a superior trade-off between accuracy and computational cost relative to the original 

network; hence, it is a compelling solution for efficient object detection on resource-constrained devices, such as autonomous 

driving, surveillance systems, and other mobile applications with edge devices.  

Future studies could further optimize the network by integrating additional lightweight modules or investigating 

alternative techniques to enhance computational efficiency while preserving accuracy. Additionally, the performance of the 

modified model could be evaluated on diverse datasets, and its scalability for larger applications could be assessed. 
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