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Abstract 

This study investigates the feasibility of employing near-infrared (NIR) spectroscopy with multiple linear 

regression (MLR) to estimate macronutrients in paddy soil compared with partial least squares (PLS) and principal 

component regression (PCR). Seventy-nine soil samples from West Java Province, Indonesia, are subject to 

conventional nutrient analysis and NIR spectroscopy (1000-2500 nm). The reflectance data undergoes various 

pretreatment techniques, and MLR models are calibrated using the forward method to achieve correlations exceeding 

0.90. The best model calibrations are selected based on high correlation coefficients, determination coefficients, 

RPD, and low RMSE values. Meanwhile, the comparison of performance MLR is made with the PLS and PCR 

models. Results indicate that simple MLR models perform less than PLS for all nutrients, better than PCR for 

nitrogen, and below PCR for phosphorus and potassium. However, MLR reliably estimates soil nitrogen, phosphorus, 

and potassium content with ratio of performance to deviation (RPD) exceeding 2.0. This study demonstrates the 

potential of MLR for precise macronutrient estimation in paddy soil. 
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1. Introduction 

Soil plays a crucial role in agriculture by providing the necessary nutrients for plants to grow and ultimately supporting 

human food availability. Due to the diverse soil conditions, the practices of agricultural land management must be adapted 

accordingly. Maintaining a consistent nutrient supply during the crop-growing phase maximizes crop productivity [1]. Hence, 

soil health is the continuation of the soil’s capacity to function as a vital living ecosystem that supports plants and ensures all 

essential soil functions. One of the critical aspects of soil health is soil fertility. Soil fertility is primarily determined by the 

presence of macronutrients such as nitrogen (N), phosphorus (P), and potassium (K), which are required in large quantities. 

Furthermore, soil fertility parameters reflect the soil’s ability to supply plant nutrients. 

Regular monitoring of soil nutrient levels is crucial to ensure optimal soil nutrient availability. Traditional laboratory 

methods of soil analysis are time-consuming, costly, and risky. It often requires heedful operation for hazardous chemicals 

harmful to the environment, resulting in impracticability for farmers. Therefore, developing accurate, environmentally friendly, 

time-efficient, and cost-effective soil analysis methods is imperative [2]. However, it is essential to identify various near-

infrared (NIR) wavelengths that impact nutrients through straightforward multivariate models such as multiple linear 

regression (MLR) equations in the initial phase of creating a device that is lightweight, portable, and user-friendly. 
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West Java is one of Indonesia’s provinces with the most extensive rice fields, requiring fast soil fertility monitoring to 

ensure practical support for plant growth. Earlier research has indicated significant variations in the accuracy of soil nutrient 

prediction models across different regions and soil types. Consequently, studying and exploring precision and practical 

application effects are continuously needed, particularly concerning diverse origins and types of croplands [3]. 

NIR spectroscopy is a promising alternative to traditional soil analysis methods. Specifically, NIR spectroscopy is a non-

destructive chemical content detection technology that is fast and simple in sample preparation, while chemicals are not needed, 

conducing to an environmentally friendly solution. Numerous studies have demonstrated the efficacy of NIR spectroscopy in 

soil analysis, with its ability to rapidly and accurately predict soil nutrient contents and other soil properties. Therefore, 

adopting NIR spectroscopy as a soil analysis tool can significantly benefit farmers and facilitate sustainable agriculture 

practices. Many studies have been conducted on NIR to determine property characteristics and soil fertility [4-8]. The accuracy 

of deploying NIR to estimate soil nitrogen was relatively high, with an R2 value of 0.75-0.95 [9-15]. Research on phosphorus 

estimation showed a low R2 value [16], but several other studies obtained high R2 values of 0.63-0.91 [17]. Meanwhile, 

potassium prediction obtained 0.47-0.59 for R2 value [2], and other researchers got higher R2 values standing at 0.92-0.99 [3, 

18]. 

Nitrogen prediction has been studied using Foss NIRSystems 5000 (FOSS NIRSystems, Inc, Laurel, USA) (1100-2498 

nm) and partial least squares (PLS) with reflectance (R) and first derivative (D1) pretreatment in 360 samples, resulting in an 

R2 value of 0.77 and ratio of performance to deviation (RPD) of 2.10 [9]. The study used a FieldSpec® Pro sensor (Analytical 

Spectral Devices Inc., Colorado, USA), visible-near infrared (Vis-NIR) range (350-2500 nm), and support vector machine 

(SVM) with absorbance pretreatment in a total of 210 samples, resulting in an R2 value of 0.75 [11]. Munawar et al. [12] 

employed the benchtop NIR instrument Thermo Nicolet Antaris II (Thermo Fisher Scientific Inc, Waltham, USA) range (1000-

2500 nm), principal component regression (PCR), and PLS in 40 samples, resulting in R2 values of 0.85 and 0.87, respectively. 

Regarding RPD values, they stood at 2.00 and 3.50, respectively. Pudełko and Chodak [13] used the Antaris II FT-NIR 

analyzer (Thermo Fisher Scientific Inc, Waltham, USA) range (1000-2500 nm) and PCR, PLS, artificial neural network (ANN), 

principal component analysis-artificial neural network (PCA-ANN), PLS-ANN with absorbance, baseline offset (BO), D1, 

and D1+BO pretreatments in 90 samples, resulting in R2 values of 0.90, 0.89, 0.91, 0.93, and 0.91, respectively. Reda et al. 

[14] used the NIR portable spectrometer (1100-2500 nm) and PLS with absorbance pretreatment in 400 samples, resulting in 

an R2 value of 0.80 and RPD of 2.77. They also employed back propagation neural network (BPNN), backward variable 

elimination-back propagation neural network (BVE-BPNN), and ensemble learning modeling (ELM) with multi scatter 

correction (MSC) pretreatment, resulting in R2 values of 0.93, 0.90, and 0.94, while RPD values are 3.84, 3.03, and 4.91, 

respectively. 

Ng et al. [16] used the NeoSpectra Module SWS62221 (Si-Ware Systems, Cairo, Egypt) range (1300-2600 nm) and 

Cubist Model with Savitzky-Golay (SG) second order polynomial and standard normal variate (SNV) pretreatments in 1601 

samples, resulting in R2 values of 0.52. Several studies have successfully predicted soil nitrogen content using different types 

of NIR equipment and multivariate methods, achieving R2 values ranging from 0.75 to 0.94. 

Munawar et al. [12] used a benchtop NIR instrument Thermo Nicolet Antaris II (Thermo Fisher Scientific Inc, Waltham, 

USA) for phosphorus and applied PCR and PLS, achieving R2 values of 0.93 and 0.99, respectively, with RPD values of 3.86 

and 5.41. The NeoSpectra Module SWS62221 (Si-Ware Systems, Cairo, Egypt) was used with a Cubist model, SG and second 

order polynomial, and SNV pretreatment, but the R2 value was merely 0.47. It is noteworthy that phosphorus is considered 

one of the most challenging nutrients to predict using NIR spectroscopy, as it presents in soil at low concentrations and is 

highly reactive with other soil minerals. Thus, more research is needed to improve the accuracy of phosphorus estimation using 

NIR spectroscopy [16]. 
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For potassium, Munawar et al. [12] also used a benchtop NIR instrument Thermo Nicolet Antaris II (Thermo Fisher 

Scientific Inc, Waltham, USA) with PCR and PLS multivariate methods to achieve R2 values of 0.88 and 0.90, respectively, 

with RPD values of 2.04 and 2.68. Tang et al. [19] employed the ASD AgriSpec spectrometer (Malvern Panalytical Inc. 

Boulder, Colorado, USA) range (350-2500 nm) with a Cubist model, SG, and second-order polynomial with 392 samples, but 

the R2 value merely reached 0.36. Tang et al. [19] also tried using other spectrometers, such as the Malvern Panalytical Inc. 

Boulder (Spectral Evolution Inc. Lawrence, MA, USA) range (350-3500 nm), the NeoSpectra module SWS62221 (Si-Ware 

Systems, Cairo) range (1250-2500 nm), and the NIRVascan ASP-NIR-350M-Reflect (Allied Scientific Pro., Quebec, Canada) 

range (900-1700 nm), but the R2 values were all lower than 0.40.  

Most of these studies use various mathematical models such as PLS, artificial neural networks, and machine learning, 

where the wavelengths used have a wide range between 400 to 2498 nm [20], 900-1700 nm [21], 350-2500 nm [22], and 350-

2500 nm [23], for instance. MLR is rarely used in NIR spectroscopic prediction models, whereas MLR has some virtues. One 

of the typical virtues is providing simple interpretation where regression coefficients in MLR models represent the relative 

contribution of each independent variable to the dependent variable [24]. MLR is a relatively computationally simple model 

compared to more complex models like neural networks or deep learning, enhancing the efficiency to implement in limited 

computational resources. Therefore, in this research, the MLR method was assessed to estimate macronutrients based on NIR 

spectroscopy and compared with commonly used models such as PLS and PCR. 

2. Methodology 

The implementation of the research commences with soil sampling, followed by the collection of NIR data in the form of 

reflectance spectra and conventional macro-nutrient soil data. Subsequently, data pretreatment was conducted on the 

reflectance spectra. The following steps involve the development of MLR, PLS, and PCR models through calibration between 

NIR spectra and conventional soil macro-nutrient data. Once the models were constructed, performance testing was carried 

out to verify the effectiveness and reliability of the developed models in soil analysis. 

2.1.   Soil sample collection 

Table 1 Soil type and parent material at the sampling location in West Java Province 

Districts Sub-districts Number of samples Dominant soil type Parent material 

Bogor 

Jasinga 7 Gleisol district, cambisol gleik Clay deposits 

Ciampea 6 Regosol district, latosol haplik Andesit, basalt 

Leuwiliang 7 Gleisol distrik, cambisol distrik Clay deposits 

Tenjolaya 4 District regosol, latosol haplik Andesite, basalt 

Cihoe 6 Latosol haplik, podsolik haplik Clay deposits 

Ciseeng 7 Gleisol district, cambisol district Clay deposits 

Rumpin 7 Latosol haplik, podsolik haplik Clay deposits 

Sukabumi 
Cikembar 7 Cambisol district, andosol district Andesit 

Warungkiara 7 Latosol haplik, district andosol Andesit, basalt 

Indramayu 
Patrol 7 Gleisol eutrik Clay deposits 

Anjatan 7 Gleisol eutrik, gleisol vertik Clay deposits 

Subang Pamanukan 7 Gleisol eutrik, gleisol fluvik Clay deposits 

Source: Soil type based on the National Soil Classification of Indonesia [25-28]. 

A total of 79 samples of paddy soil (500 g each) at a depth of 0-20 cm were employed in this study. The samples in this 

study came from 4 districts in West Java Province, Indonesia. When the soil samples were adopted, the weather varied between 

sunny and cloudy. Soil sampling was accomplished by randomized purposive sampling based on P and K’s soil nutrient 

availability map [25-28]. The soil sample was situated in a sealed plastic bag and brought to the laboratory. The type of soil 
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and soil parent material at the sampling locations are presented in Table 1. The sampling locations have dominant soil types 

and parent material. In general, the dominant soil types at the sampling location were Gleisol, Cambisol, Regosol, Latosol, 

Podzolic, and Andosol (based on The National Soil Classification of Indonesia), and the main material types consisted of clay, 

andesite, and basalt deposits. 

2.2.   Retrieval and pretreatment of NIR spectra data 

The samples were dried (average moisture content 8.31%, standard deviation 1.14), cleaned of foreign material, and then 

sieved with a size of 0.75 mm. After sieving, the soil sample was placed in a plastic bag, and then it was mixed and shaken for 

30 seconds to uniform the nutrient distribution in the soil sample. Subsequently, the soil sample was inserted into the petri dish 

9 cm in diameter and a height of 2 cm. Before collecting the NIR spectra, the soil in the petri dish was compacted by tapping 

until the soil surface level did not decrease any further to ensure the soil density in each petri dish was the same. Next, the soil 

was leveled using a glass spatula to level the soil surface in a petri dish. Eventually, the reflectance data was taken using the 

NIR Spectrometer NIRflex N500 Buchi in the 1000-2500 nm wavelength range with 1501 wavelength data. Reflectance data 

collection for each sample was carried out in 3 replications by rotating the petri dish position by 1/3 turn to obtain 237 

reflectance data. The reflectance data were transformed into absorbance (A = log (1/R)). Moreover, the data were pretreated 

in the form of the D1, second derivative (D2), normalized, and SNV using NIRCal software with the following formula:  
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2.3.   Conventional soil nutrient data collection 

Soil samples, for which spectral data had been collected, were analyzed for their macronutrient content using conventional 

methods. Total nitrogen was determined using the Kjeldahl method, where nitrogen compounds were oxidized in a 

concentrated sulfuric acid environment with a selenium mixture catalyst, forming (NH4)2SO4. The subsequent ammonium 

content in the extract was determined using spectrophotometry with the indophenol blue color generator. Total phosphorus 

and potassium in the soil were extracted using a wet digestion method with a mixture of concentrated HNO3 and HClO4. The 

total phosphorus in the extract was measured using a spectrophotometer, while the total potassium in the extract was measured 

using atomic absorption spectrophotometry. The water content was determined by the gravimetric method.  

2.4.   Data calibration 

Data calibration aims to adjust the NIR spectrum response to the values of macronutrient measurements, such as total 

nitrogen, total phosphorus, and total potassium, to provide accurate measurement results. This process involves measuring the 
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NIR spectrum response from samples with varying concentrations of macronutrients, and this data is evaluated to create 

mathematical models such as MLR, PLS, and PCR, 

(1) Multiple linear regression (MLR) 

NIR spectral data was calibrated with conventional nitrogen, phosphorus, and potassium (NPK) value reading data and 

used the MLR model with the step-forward method in IBM SPSS Statistics software. 150 spectra data were used as calibration 

data, and 87 spectra were used as validation data. In the step-forward method, the variable wavelength selection was carried 

out in stages where the wavelengths were entered sequentially into the model. The first wavelength variable in the equation 

contains the most significant partial correlation to the N, P, and K nutrient content variables. The following wavelength variable 

is re-selected, which gives the most significant total correlation to the NPK nutrient content to be included in the equation 

model. The selection and addition of the wavelength variable will be stopped once the total correlation of the MLR equation 

model has reached > 0.90. 

1 1
( ) ( )= + +

k k
Y a b X b X  (5) 

where Y is the estimated value of total nutrients (nitrogen, phosphorus, and potassium), a is the constant, b1 is the first 

wavelength variable coefficient, bk is the variable coefficient of the nth wavelength, X1 is the 1st wavelength NIR spectral 

intensity value, and Xk is the nth wavelength NIR spectral intensity value.   

In the calibration process, the pretreatment of spectral data was considered as input data (X) for constructing an MLR 

model using the following models: 

a. Input data is raw data as R 

b. Input data is the D1 of the reflectance spectra (Rdg1) 

c. Input data is the D2 of the reflectance spectra (Rdg2) 

d. Input data is SNV of reflectance spectra (Rsnv) 

e. Input data is a normalization of reflectance spectra (Rnorm) 

f. Input data is absorbance (A), which is the transformation of log (1/reflectance)  

g. Input data D1 of the absorbance spectra (Adg1)  

h. Input data is the D2 of the absorbance spectra (Adg2) 

i. Input data is SNV of absorbance spectra (Asnv) 

j. Input data was normalized from absorbance spectra (Anorm) 

(2) Partial least squares (PLS) and principal component regression (PCR) 

The performance of MLR in predicting soil nutrients will be compared with other commonly used methods in NIR 

spectroscopy, i.e., PLS and PCR. Besides, PLS and PCR are multivariate calibration techniques. This algorithm uses both 

spectral data and reference matrices in multivariate regression. It is achieved by projecting spectral data into a reduced-

dimensional space. They were initially designed for high-dimensional and collinear multivariate scenarios. Cross-validation 

was employed in both PLS and PCR to determine the best number of terms latent variables (LV) for PLS and principal 

component (PC) for PCR in the calibration model to prevent overfitting [13]. Cross-validation method using 237 random 

samples with 20 segments. Calibration process using The Unscrambler software.  

(3) Model performance assessment 

The best model calibrations were selected based on high correlation coefficients r, determination coefficients R2, and the 

ratio of performance deviation (RPD) values while minimizing root mean square error (RMSE) values. The stability of the 

model was determined by the RPD  
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.
=

St dev
RPD

RMSE
 (6) 

St.dev is the standard deviation of reference, and RMSE is the root mean square error between prediction and measurement. 

RPD > 2.0 indicates accurate predictions, RPD 1.4-2.0 indicates less accurate predictions and RPD < 1.4 indicates unreliable 

predictions, and the model cannot be used to predict soil properties [29]. 

3. Results and Discussion 

Observations exhibit high variation coefficients in the diversity of macronutrient content in the soil. This variability 

ensures that the model built in the calibration process can represent nutrient content over a wide range to generate a high 

generalization value for the model. Specifically, observations of soil content at sampling locations and calibration models to 

predict macronutrient content using NIR waves are explicated further. 

3.1.   Soil conditions at the soil sampling location 

The heterogeneity is desperately needed in developing soil nutrient estimation models to elicit the obtained equations 

having a wide and varied range of uses for soil types, parent material, and soil nutrient status as found at the sampling locations. 

The total nitrogen, phosphorus, and potassium of the soil samples are described in Table 2. 

Table 2 Descriptive statistics of soil nutrient content in 79 samples 

Soil nutrient content 
Mean 

(g/100 g) 

Minimum 

(g/100 g) 

Maximum 

(g/100 g) 

SD 

(g/100 g) 

CV 

(%) 

Total nitrogen 0.16 0.09 0.24 0.04 22.93 

Total phosphorus 0.07 0.01 0.36 0.07 96.34 

Total potassium 0.11 0.01 0.39 0.12 112.41 

SD is the standard deviation, and CV is the coefficient variation. 

Table 2 is drawn regarding the soil nutrient content in 79 samples. First, total nitrogen exhibits a relatively low variation, 

with a CV of 22.93%. The range between maximum and minimum is about 0.15 g/100 g. Second, conversely, total phosphorus 

evinces a larger variation with a CV of 96.34%, signifying significant differences in phosphorus content among the soil samples 

with a range between maximum and minimum of about 0.35 g/100 g. Eventually, the total potassium content demonstrates a 

high level of variation, reflected in a CV of 112.41%, with a range between a maximum and a minimum of about 0.38 g/100 

g. Heterogeneity in soil nutrient content values with a wide range of values is needed in building a soil nutrient estimation 

model using NIR waves so that the resulting model can be used in a wide range of soil nutrients according to calibration data. 

3.2.   Data calibration and validation 

The calibration and validation process aims to construct a model for estimating the total content of soil macronutrients 

based on the NIR wavelength spectrum. The results of the calibration models MLR, PLS, and PCR for estimating total nitrogen, 

total phosphorus, and total potassium using NIR wavelengths will be further elaborated. 

(1) Total nitrogen 

The selected MLR models for estimating total nitrogen are presented in Table 3. Table 3 illustrates that applying data 

pretreatments such as SNV, normalization, D1, and SNV of log(1/R) can enhance the performance of total nitrogen estimation 

in the soil compared to using only raw reflectance data. Based on the calibration results, the best performance is observed in 

Model 5, which employs normalization of the reflectance data, indicated by the highest values of r, R2, and RPD, followed by 

the smallest RMSE values of 0.93, 0.86, 2.6, and 0.014 g/100 g, respectively. Normalization helps eliminate scale differences 

among spectra affecting the MLR model. With normalization, each spectrum was transformed to have a similar standard 
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deviation, helping to overcome the non-linearity effects caused by large-scale variations among spectra. Additionally, 

normalization can improve the consistency and stability of the spectrum in MLR analysis, thereby enhancing the model’s 

ability to capture the linear relationship between spectral data and total nitrogen. 

Table 3 MLR model calibration and validation result for estimating total nitrogen with several pretreatment spectra data 

Model 
Spectra 

pretreatment data 

Number of 

wavelengths 

Calibration Validation 

r R2 RMSE (g/100 g) RPD RMSE (g/100 g) RPD 

1 R (raw data) 9 0.91 0.82 0.015 2.4 0.019 2.0 

2 Rdg1 5 0.90 0.81 0.016 2.3 0.019 1.9 

3 Rdg2 5 0.90 0.81 0.016 2.3 0.021 1.8 

4 Rsnv 7 0.92 0.84 0.014 2.5 0.017 2.1 

5 Rnorm 6 0.93 0.86 0.014 2.6 0.018 2.1 

6 A 12 0.89 0.79 0.017 2.2 0.021 1.7 

7 Adg1 7 0.91 0.83 0.015 2.4 0.019 2.0 

8 Adg2 5 0.91 0.82 0.015 2.4 0.026 1.4 

9 Asnv 5 0.91 0.83 0.015 2.5 0.018 2.1 

10 Anorm 7 0.91 0.82 0.015 2.4 0.022 2.1 

The best model is marked in bold, r: coefficient correlation, R2: coefficient determination, RMSE: root mean square error, 

RPD: ratio of performance deviation. 

A comparison of the MLR model with PLS and PCR models in estimating total nitrogen is presented in Table 4. MLR 

demonstrates good performance on the training data with an R2 of around 0.86 but experiences a decline in performance on 

the validation data with an R2 of around 0.77. This decline may indicate overfitting or the absence of the model’s generalization 

ability. PLS consistently performs well on calibration and validation data sets, with R2 values above 0.80. Hence, PLS might 

be a favorable choice, with a note to consider the optimality of the number of LV. On the other hand, PCR exhibits the lowest 

performance, with Rdg1 providing an r-value of 0.87, R2 of 0.76, and RMSE of 0.018. PCR in the validation stage shows 

consistent performance with r, R2, and RMSE values relatively similar to those in the calibration stage. The analysis results 

specify that PLS with Rsnv outperforms the other two models with r of 0.93, R2 of 0.87, and RMSE of 0.013 g/100 g. Although 

MLR with Rnorm performs well with r of 0.93 and R2 of 0.86, PLS is significantly better in more accurate predictions. PCR 

with Rdg1 shows moderate performance with r of 0.87, R2 of 0.76, and RMSE of 0.018 g/100 g. 

Table 4 Comparison of MLR model with PLS and PCR in predicting total nitrogen 

Model 
Pretreatment 

Data 
- 

Calibration Validation 

r R2 
RMSE 

(g/100 g) 
RPD r R2 

RMSE 

(g/100 g) 
RPD 

MLR Rnorm WL 6 0.93 0.86 0.014 2.6 0.87 0.77 0.018 2.1 

PLS Rsnv LV 11 0.93 0.87 0.013 2.8 0.92 0.84 0.014 2.5 

PCR Rdg1 PC 8 0.87 0.76 0.018 2.0 0.85 0.73 0.019 1.9 

WL: number of wavelengths, LV: number of latent variables, PC: number of principal components, r: coefficient 

correlation, R2: coefficient determination, RMSE: root mean square error, RPD: ratio of performance deviation. 

RPD is an indicator to understand the reliability of the model in predicting total nitrogen content. PLS with Rsnv manifests 

the highest RPD values, namely 2.8 in the calibration stage and 2.5 in the validation stage. A relatively high RPD indicates 

that the PLS model’s predictions are accurate and can provide significant predictive value compared to the natural variation in 

the data. Specifically, the high RPD in PLS may be due to its ability to extract relevant information from independent variables, 

thus improving prediction accuracy. MLR with Rnorm also shows reasonably good RPD, with values of 2.6 in the calibration 

and 2.1 in the validation. Although not as optimal as PLS, MLR still provides good prediction accuracy, especially considering 

its simplicity in interpretation. PCR with Rdg1, while having a decent RPD value, shows lower performance compared to PLS 

and MLR, with values of 2.0 in the calibration and 1.9 in the validation. This lower performance denotes that PCR may not be 

able to provide prediction accuracy as good as PLS and MLR. 
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The research conducted by Munawar et al. [12] deployed the Benchtop NIR instrument Thermo Nicolet Antaris II 

(Thermo Fisher Scientific Inc, Waltham, USA) at 1000-2500 nm and used PCR and PLS in 40 samples, resulting in R2 values 

of 0.85 and 0.87, respectively exhibited relatively similar performance to this study, achieving an R2 value of 0.86 in the MLR 

and 0.85 in PCR models, but lower than the PLS model from this study. PLS, through the partial component formation 

approach, can capture complex patterns in data and improve prediction accuracy. Given such results, PLS may be the primary 

choice for accurate predictions, while MLR remains relevant for simple model interpretation. Moreover, PCR may be an 

alternative in significant multicollinearity issues despite the disposition of lower performance. The PLS and PCR models are 

obtained by projecting spectral data into smaller dimensions, i.e., LV for PLS and PC for PCR. However, in practical terms, it 

is challenging to implement this for building portable measuring devices. On the other hand, the MLR model enables the direct 

use of spectral data as input for the portable model to be constructed. 

The specified wavelengths in Model 5 correlating highly with total nitrogen, are 1871, 2059, 1873, 1929, 2013, and 2082 

nm (Fig. 1), with a correlation coefficient of 0.93 (Table 3). Fig. 1 shows the normalized reflectance spectra from all soil 

samples in 1800-2100 nm and the contribution of each wavelength to the correlation coefficient that has been achieved. The 

wavelength of 1871 nm provides the highest contribution to the correlation coefficient of the MLR model (Model 5), amounting 

to 78.2%, following 8.6% in 1929 nm. Fig. 2 illustrates the calibration and validation results between actual total nitrogen and 

predicted total nitrogen, yielding calibration determination coefficients (R2) of 0.86, validation root mean square error (RMSEv) 

of 0.018 g/100 g, and validation ratio of performance to deviation (RPDv) of 2.1. 

 

Fig. 1 Wavelength contribution to MLR model (Model 5) for total nitrogen prediction 

 

 

Fig. 2 MLR Model (Model 5) calibration and validation for predicted total nitrogen 
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(2) Total phosphorus 

The selected MLR model for estimating total phosphorus is presented in Table 5. All data pretreatment can improve the 

performance of phosphorus estimation compared to employing only raw reflectance data. Based on the calibration results, the 

best performance is attained by model 5 with data pretreatment of normalization of reflectance, indicated by the highest values 

of r, R2, and RPD, followed by the smallest RMSE values of 0.92, 0.85, 2.6, and 0.028 g/100 g, respectively in the calibration 

data set. Similar to total nitrogen estimation, normalization in phosphorus estimation can also assist in addressing the non-

linearity effects caused by large-scale spectra variations. Normalization can improve the consistency and stability of the 

spectrum in MLR analysis, thereby enhancing the model’s ability to capture the linear relationship between spectral data and 

total phosphorus. 

Table 5 MLR model calibration and validation result for estimating total phosphorus with several pretreatment spectra data 

Model 
Spectra 

pretreatment data 

Number of 

wavelengths 

Calibration Validation 

r R2 RMSE (g/100 g) RPD RMSE (g/100 g) RPD 

1 R (raw data) 7 0.78 0.60 0.045 1.6 0.056 1.2 

2 Rdg1 13 0.91 0.82 0.030 2.3 0.056 1.2 

3 Rdg2 10 0.90 0.81 0.031 2.3 0.043 1.5 

4 Rsnv 10 0.90 0.81 0.031 2.3 0.039 1.7 

5 Rnorm 13 0.92 0.85 0.028 2.6 0.036 1.9 

6 A 7 0.79 0.63 0.043 1.6 0.050 1.3 

7 Adg1 12 0.90 0.82 0.030 2.3 0.052 1.3 

8 Adg2 11 0.91 0.82 0.030 2.4 0.055 1.2 

9 Asnv 12 0.91 0.82 0.030 2.3 0.036 1.8 

10 Anorm 10 0.91 0.83 0.030 2.4 0.034 1.9 

The best model is marked in bold, r: coefficient correlation, R2: coefficient determination, RMSE: root mean square error, 

RPD: ratio of performance deviation. 

A comparison of the MLR model with PLS and PCR models in estimating total phosphorus is presented in Table 6. MLR 

used normalized data (Rnorm) as a preprocessing method, resulting in a strong correlation between prediction and observation 

in the calibration (r = 0.92). However, in the validation, this model exhibited a significant decrease in R2 and RPD, reflecting 

the potential for overfitting or the absence of generalization to new data. Meanwhile, PLS demonstrated consistent performance 

improvement using the same pretreatment data as Rnorm in MLR. With a higher calibration correlation (r = 0.93) and an 

increased R2 of 0.86, PLS remained consistent and even enhanced predictions in the validation phase with a high R2 (0.83) and 

a relatively high RPD (2.5). These results indicate the ability of PLS to provide stable and accurate predictions. Employing 

normalization pretreatment data (Anorm), PCR showed calibration results similar to MLR. However, this model experienced 

a slight performance decrease in the validation with an RPD of 2.4. Consequently, the use of principal components as predictors 

may be less optimal in terms of generalization to new data. 

Table 6 Comparison MLR model with PLS and PCR in predicting total phosphorus 

Model 
Pretreatment 

data 
- 

Calibration Validation 

r R2 RMSE (g/100 g) RPD r R2 RMSE (g/100 g) RPD 

MLR Rnorm WL 13 0.92 0.85 0.028 2.6 0.85 0.72 0.036 1.9 

PLS Rnorm LV 11 0.93 0.86 0.026 2.6 0.91 0.83 0.028 2.5 

PCR Anorm PC 12 0.92 0.85 0.027 2.6 0.91 0.82 0.029 2.4 

WL: number of wavelengths, LV: number of latent variables, PC: number of principal components, r: coefficient correlation, R2: 

coefficient determination, RMSE: root mean square error, RPD: ratio of performance deviation. 

PLS is the most effective model in predicting total phosphorus content, especially in the calibration due to the production 

of the highest r value (0.93), high R2 (0.86), and low RMSE (0.026 g/100 g). Additionally, the high RPD (2.6) indicates the 

superiority of PLS in providing accurate and consistent predictions. Despite the decent results MLR and PCR yielded, PLS 

remains superior in most evaluation parameters. MLR and PCR perform similarly in the calibration, with r values of 0.92 and 
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R2 of 0.85. PLS maintains higher performance in the validation, while MLR and PCR experience a decline. These results 

indicate that PLS is a better choice for addressing the challenges of predicting total phosphorus content, especially in dealing 

with the complexity of relationships between variables. PLS’s ability to handle multicollinearity and produce more stable 

predictions signifies the superiority of MLR and PCR models in the context of this research. 

Despite the evident superiority of PLS in predicting total phosphorus content, particularly during the calibration, it is 

noteworthy that MLR still yields commendable accuracy. Both MLR and PCR demonstrate comparable performance in the 

calibration, with r values of 0.92 and R2 of 0.85. These metrics indicate that MLR is still a viable option concerning accuracy. 

Moreover, it is crucial to acknowledge the practicality of MLR, especially its simplicity of use. MLR’s simplicity enables users 

to implement straightforwardly, being regarded as a convenient choice for applications where simplicity and quick application 

are prioritized. The ability to easily select specific wavelengths enhances the adaptability of MLR to portable devices, which 

is a factor that might be crucial in specific practical scenarios. While PLS excels in addressing the complexity of relationships 

between variables and handling multicollinearity, MLR’s accuracy and simplicity rationalize itself in situations where 

computational simplicity and interpretability are paramount.  

 

Fig. 3 Wavelength contribution to MLR model (Model 5) for total phosphorus prediction 

 

 

Fig. 4 MLR model (Model 5) calibration and validation for predicted total phosphorus 

The selected wavelengths in Model 5, which have a high correlation with total phosphorus, are 1837, 1897, 1972, 1833, 

1904, 1862, 2220, 2189, 2498, 1276, 1774, 2203, and 2144 nm (Fig 3), with a correlation coefficient of 0.92 (Table 5). Fig. 3 

shows the normalized reflectance from all soil samples in 1200–2200 nm and the contribution of each wavelength to the 
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correlation coefficient having been achieved. The wavelength of 1837 nm provides the highest contribution to the correlation 

coefficient of the MLR model (Model 5), amounting to 32.6%, following 22.1% in 1972 nm and 16.7% in 1897 nm. Fig. 4 

illustrates the calibration and validation results between actual total phosphorus and predicted total phosphorus, yielding 

calibration determination coefficients (R2) of 0.85, RMSEv of 0.036 g/100 g, and RPDv of 1.9. 

(3) Total potassium 

The selected MLR model for estimating total potassium is depicted in Table 7. All pretreatment methods applied can 

improve the performance of MLR in predicting total potassium compared to using raw data (reflectance) alone. Based on 

calibration results, the D1 treatment applied to the raw data (reflectance) yielded the highest model performance regarding r, 

R2, and RPD, with values of 0.97, 0.94, and 4.2 g/100 g, respectively. 

NIR spectra often contain nonlinear variations that can affect the relationship between input and output variables. The D1 

can help “flatten” nonlinear changes in the spectrum, thus creating a more linear relationship between NIR spectra and total 

potassium. The D1 in potassium estimation using MLR can enhance the model’s ability to capture linear patterns in the NIR 

spectrum. The effect of D2 is also similar to that of D1 in reducing nonlinear effects. 

However, in this study, the performance of the D2 is lower than it is in the D1. This lower performance could be attributed 

to second-order derivatives being more sensitive to noise in the data. Furthermore, noise can be accentuated during the 

calculation of the D2, potentially leading to overfitting, especially if the model captures noise in the training data rather than 

the true underlying patterns. Additionally, the model may struggle to generalize to new data. Second-order derivatives, while 

capable of highlighting peaks and valleys, might also result in the loss of certain information in the original spectra. 

Table 7 MLR model calibration and validation result for estimating total potassium with several pretreatment spectra data 

Model 
Spectra 

pretreatment data 

Number of 

wavelengths 

Calibration Validation 

r R2 RMSE (g/100 g) RPD RMSE (g/100 g) RPD 

1 R (raw data) 6 0.90 0.81 0.051 2.3 0.057 2.2 

2 Rdg1 4 0.97 0.94 0.029 4.2 0.036 3.6 

3 Rdg2 4 0.97 0.93 0.031 3.8 0.037 3.4 

4 Rsnv 4 0.95 0.91 0.037 3.2 0.034 3.7 

5 Rnorm 4 0.94 0.88 0.042 2.9 0.055 2.3 

6 A 4 0.90 0.82 0.051 2.3 0.055 2.3 

7 Adg1 4 0.96 0.93 0.032 3.7 0.035 3.8 

8 Adg2 4 0.96 0.92 0.034 3.5 0.050 2.6 

9 Asnv 4 0.95 0.91 0.036 3.3 0.034 3.6 

10 Anorm 4 0.93 0.87 0.044 2.7 0.063 2.0 

The best model is written in bold, r: coefficient correlation, R2: coefficient determination, RMSE: root mean square error, 

RPD: ratio of performance deviation. 

A comparison of the MLR model with PLS and PCR models in estimating total phosphorus is depicted in Table 8. The 

MLR model, with the D1, demonstrates excellent performance in the calibration with an R2 value of 0.94 and a r of 0.97. 

Besides, the RMSE value of 0.029 g/100 g and RPD value of 4.2 indicate significant prediction accuracy. However, in the 

validation, this model experiences a slight decrease in performance with R² at 0.92 and r at 0.96. Meanwhile, with absorbance 

(log 1/R), the PLS model exhibits higher performance in calibration and validation. This model achieves high accuracy with 

R² values of 0.95 and 0.97 and r at 0.98 in the calibration. The low RMSE value (0.026 g/100 g) and high RPD (4.7) affirm 

the reliability of the PLS model’s predictions. On the other hand, the PCR model, with the normalization of absorbance, 

demonstrates performance comparable to MLR. With R² at 0.94 in the calibration and 0.93 in the validation, this model 

provides good predictions. Although slightly lower than PLS, PCR yields a low RMSE value (0.029 g/100 g) and a sufficiently 

high RPD (3.9). 
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Table 8 Comparison MLR model with PLS and PCR in predicting total potassium 

Model 
Pretreatment 

data 
- 

Calibration Validation 

r R2 RMSE (g/100 g) RPD r R2 RMSE (g/100 g) RPD 

MLR Rdg1 WL 0.97 0.94 0.029 4.2 0.96 0.92 0.036 3.6 1.9 

PLS A LV 0.98 0.95 0.026 4.7 0.97 0.95 0.028 4.3 2.5 

PCR Anorm PC 0.97 0.94 0.029 4.1 0.97 0.93 0.031 3.9 2.4 

WL: number of wavelengths, LV: number of latent variables, PC: number of principal components, r: coefficient correlation, R2: 

coefficient determination, RMSE: root mean square error, RPD: ratio of performance deviation. 

In the calibration, the PLS model r value of 0.98 is higher than MLR (0.97) and PCR (0.97). This result denotes that PLS 

can better elaborate the training data’s relationship between input variables and total potassium. Regarding the R2 calibration, 

PLS also excels with a score of 0.95, while MLR and PCR have values of 0.94 and 0.941, respectively. Therefore, PLS can 

better capture the variation in the calibration data. Furthermore, the Root Mean Square Error (RMSE) during calibration, PLS, 

has the lowest RMSE value (0.026 g/100 g), and therein lies the lower prediction error of this model compared to MLR (0.029 

g/100 g) and PCR (0.029 g/100 g). In the validation stage, the results are also noteworthy. PLS maintains good performance 

with an R2 value of 0.95, whereas MLR and PCR show a slight decrease in performance with values of 0.92 and 0.933, 

respectively.  

Regarding the RPD values in validation, both PLS (4.3) and MLR (3.6) experience a decline from the calibration RPD 

values, but PLS remains superior. Overall, the PLS model stands out in its predictive ability, both in the calibration and 

validation, with high correlation, good R2, and low prediction error. While MLR and PCR also provide good results, PLS 

might be more optimal for predicting total potassium thereon. 

 

Fig. 5 Wavelength contribution to MLR model (Model 2) for total potassium prediction 

from D1 reflectance spectra 

 

 

Fig. 6 MLR model (Model 2) calibration and validation for predicted total potassium 
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The selected wavelengths in Model 2, which correlate highly with total potassium, are 1413, 1919, 2352, and 2172 nm 

(Fig. 5), with a correlation coefficient of 0.97 (Table 7). Fig. 5 describes the D1 of reflectance from all soil samples in 1400–

2400 nm and the contribution of each wavelength to the correlation coefficient that has been achieved. The wavelength of 

1413 nm provides the highest contribution to the correlation coefficient of the MLR model (Model 5), amounting to 88.0%. 

Fig. 6 illustrates the calibration and validation results between actual total potassium and predicted total potassium, yielding 

calibration R2 of 0.94, RMSEv of 0.036 g/100 g, and RPDv of 3.6. 

4. Conclusion 

Estimating nitrogen, phosphorus, and potassium content in paddy soil using NIR at 1000-2500 nm and the MLR model 

evinced lower performance than PLS for all nutrients but better than PCR for nitrogen, and it was below PCR for phosphorus 

and potassium. However, MLR is well-performed owing to achieving a high RPD > 2.0 in the best model for each nutrient. 

The study using simple MLR induces different pretreatment data and the number of wavelengths in soil nitrogen, phosphorus, 

and potassium. 

(1) Nitrogen: the highest performance was achieved by normalization of reflectance in pretreatment data with six wavelengths 

as variables, giving results with r, R2, RMSE, and RPD values of 0.93, 0.86, 0.014 g/100 g, and 2.6, respectively. 

(2) Phosphorus: the highest performance was achieved by normalization of reflectance in pretreatment data with thirteen 

wavelengths as variables, giving results with r, R2, RMSE, and RPD values of about 0.92, 0.85, 0.028 g/100 g, and 2.6, 

respectively. 

(3) Potassium: the highest performance achieved by the D1 of reflectance in pretreatment data with four wavelengths as a 

variable, giving results with r, R2, RMSE, and RPD values is about 0.97, 0.94, 0.029 g/100 g, and 4.6, respectively. 

This research shows that all selected models provide statistically excellent correlation values (r > 0.80) for all soil nutrients. 

Likewise, the selected model provides an accurate level of prediction (RPD ≥ 2.0) for all soil nutrient estimation models using 

NIR spectra, except the validation of the PCR model for nitrogen estimation and the MLR model for phosphorus estimation 

indicating less accurate prediction (RPD < 2.0). 
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