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Abstract 

Streetlights serve as fundamental infrastructure to meet the lighting needs of people on every road. However, 

their extensive deployment often results in unnecessary energy waste, with many streetlights maintaining high 

brightness despite minimal usage during the night. This study aims to develop a smart energy-efficient streetlight 

system that automatically adjusts lighting levels based on the absence of vehicles and pedestrians, detected after a 

3-minute countdown. Specifically, the study utilizes mmWave radar to collect point cloud data, which undergoes 

denoising through Doppler, DBSCAN, and XYZ techniques. Additionally, the mmWave radar assists in training an 

LSTM model to identify pedestrian pathways. The implementation of the proposed system significantly reduces 

energy consumption and annual costs by automatically dimming or turning off streetlights in areas with minimal 

pedestrian activity during nighttime. 
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1. Introduction 

Given the need to reduce energy consumption and operating costs, the installation of smart systems has been globally 

implemented. Specifically, advanced smart operation technology is required to effectively control, manage, and communicate 

street lighting to minimize energy consumption. Hence, to expound on the technology, the following introduction will be 

divided into three parts, i.e., background, motivation, and finally, goal.  

1.1.   Background 

 
Fig. 1 The proportion and resource consumption of street light types across Taiwan 

Streetlights are the most widely installed infrastructure and are essential equipment to assure public safety. Due to their 

pervasive distribution and strict requirements for lighting direction and brightness, the power and specifications of streetlights 

are rigorously regulated. According to [1-2], as shown in Fig. 1, statistically, about 1.6 million streetlights are installed in 
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Taiwan, of which mercury streetlights account for 51.8%, high-pressure sodium lamps standing at 35.2%, metal halide lamps 

for 2.9%, fluorescent lamps for 9.3%, and LED street lights for 0.8%, respectively. Assuming all street lights are 200W 

traditional lights (non-LED) and are illuminated for 12 hours per day annually, they consume approximately 1,401,600,000 

kWh (1,401,600 MWh) of electricity per year, with an annual cost of more than NT$2.3 billion (NT$1454 per light × 1.6 

million lights).  

Despite the truth lying in the satisfaction of people’s need for lighting, the government confronts a huge financial burden, 

and reports have profusely emanated and discussed the inability of local governments to undertake the cost of streetlights. In 

addition, in recent years, the conflicts among energy supply, economy, environmental protection, and people’s livelihoods 

have continued to emerge. Despite the ostensible insignificance, the economic and energy pressures incurred by streetlights 

have osmotically impacted daily life. 

1.2.   Motivation 

Currently, despite the presence of research concerning mmWave radar [3-4], still, related products, research, and 

applications concerning energy-saving streetlights are insufficient. The recent practice is “AI Island” in Songdo, South Korea. 

However, artificial intelligence (AI) is widely applied to various products and services, and many electronic products 

increasingly seek to incorporate the internet of things (IoT). Given this trend, such a phenomenon is inevitable to develop a 

small device that can intelligently recognize and operate at the edge. 

Furthermore, in comparison, the most suitable sensor for detecting objects at night is the millimeter wave radar. Millimeter 

wave radar technology is gradually maturing and is equipped with a certain level of software and hardware knowledge. 

Millimeter wave radar remains flexible functions for college students to use various data processing techniques for object 

detection in varied circumstances, accurately recognize target objects, and ultimately achieve the desired purpose through 

controlled hardware and components. 

1.3.   Goal 

To address the issue of energy consumption of street lights in a state of being sustainably idle and illuminating at full 

brightness, this study proposes a method wherein the lights turn off after a 3-minute countdown in the absence of passing 

vehicles and pedestrians. Millimeter-wave radar will be deployed to detect specific targets, as illustrated in Fig. 2, and activate 

the lights to ensure driving safety. As a result, the project aims to achieve energy saving, carbon reduction, and cost reduction. 

 
(a) System schematic diagram 

 
(b) System schematic flowchart 

Fig. 2 Smart streetlight energy saving system schematic diagram 
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2. Research Methods 

The implementation of smart street lighting systems is pervasive in large cities. Meanwhile, the millimeter-wave radar is 

perceived to be the most suitable sensor for nocturnal detection because of its long detection range and ability to identify objects 

under any nocturnal and meteorological conditions. In this section, the project approach will be further explored as follows. 

2.1.   Research methods 

The project is mainly divided into four parts: 

(1) Collecting and building a millimeter wave radar database on the Windows 10 operating system. 

(2) Building and training a long short-term memory (LSTM) neural network model using PyTorch on the Windows 10 

operating system. 

(3) Developing a control program for HT32F52352 streetlights on the Windows 10 operating system. 

(4) Integrating the millimeter wave program in the Ubuntu system of NVIDIA Jetson Nano and communicating with 

HT32F52352 to control streetlights. 

In this project, the TI IWR6843 Single-Chip mmWave Sensor millimeter wave radar, which is mounted on the Batman 

BM501 mmWave EVM Kit [5], is used to collect multiple sets of 50-frame millimeter wave data on the Windows 10 operating 

system. Three noise reduction methods including Doppler, DBSCAN, and averaging over thousands of data points in each 

frame, are used to remove a large amount of background noise. 

Next, an LSTM neural network model is built using PyTorch, and the pre-processed multiple datasets are sent to the 

LSTM neural network for training in a concatenated matrix form. After adjusting the parameters appropriately, the trained 

module can be exported for real-time recognition on the NVIDIA Jetson Nano later. 

The streetlight control program runs on the HT32F52352 based on the ARM architecture and is developed using Keil v5. 

The main function is to use an interrupt function to calculate the time the light is on and control the brightness of the LED light 

board through pulse-width modulation (PWM). 

The final step involves integrating the PyTorch-trained LSTM model with the millimeter wave radar on the NVIDIA 

Jetson Nano hardware. This integration allows the pre-processed millimeter wave data to be analyzed in real-time by the 

trained model to identify the direction of the target’s movement. The resulting output is then sent to the GPIO on the NVIDIA 

Jetson Nano and forwarded to the HT32F52352 to activate the streetlights along the path. In cases where no target is detected, 

the lights are dimmed or turned off sequentially to conserve energy. 

2.2.   System architecture 

The steps of the system process are enumerated as follows: 

(1) The millimeter-wave radar on NVIDIA Jetson Nano receives detection data. 

(2) The data is organized and denoised on NVIDIA Jetson Nano, and the trained LSTM model is used to perform calculations. 

(3) The result is transmitted to HT32F52352 via GPIO. 

(4) HT32F52352 controls the LED lights based on the recognition result. 

The system architecture diagram is depicted in Fig. 3. The NVIDIA Jetson Nano is connected to the Batman BM501-

PCR mmWave sensor through a USB port to collect point cloud data and perform recognition using the AI model, and the 

recognition results are then transmitted to the HT32F52352 via GPIO, while the HT32F52352 utilizes PWM to control the 

brightness of street lights.  
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Fig. 3 System architecture diagram 

2.3.   TI IWR6843 single-chip mmWave sensor 

The CNN image recognition has been employed for pedestrian and vehicle detection in some studies [6-8]. However, 

given that street lights are only turned on at night, using traditional cameras under low light conditions will result in lower 

recognition rates, as shown in Table 1. Even with infrared and thermal cameras, the effective range is limited to a maximum 

of 50 meters. Therefore, the decision is made to utilize a millimeter-wave radar capable of effectively detecting objects in any 

situation, with a working range of up to 250 meters. 

Table 1 Comparison chart of common sensors [9] 

 Radar Lidar Ultrasonic Camera Laser Infrared 

Range Long Medium Short Short Short Short 

Range accuracy High High High Medium High Poor 

Angle accuracy Medium High None High High Poor 

Speed measurements Yes No No No No No 

Dust/Fog/Smoke robustness High Medium Poor Poor Poor Poor 

Dark/Light robustness High High High Medium Poor Medium 

Efforts to integrate into machines Small High Small Medium Medium Small 

Cost factor Small to medium Extremely high Small Medium to high High Small 

Stepwisely, the process can be divided into three steps. First, the millimeter-wave radar emits radio waves and receives 

the reflected signals from the target. Second, the relative distance, velocity, angle, and motion direction of the target are 

calculated. Third, the aforementioned data is returned to the computer for processing and decision-making. Currently, medium-

range radar (MRR), operating at 24 GHz, and long-range radar (LRR), operating at 77 GHz, are the main types of millimeter-

wave radar used ubiquitously, as shown in Table 2.  

Table 2 Advantages and disadvantages of millimeter-wave radars in different frequency bands 

 Advantages Disadvantages 

40 GHz Wide detection angle and cheap price. 
The maximum detection range is 

approximately 50 meters. 

60 GHz 
The radar with a detection range of about 100 

to 150 meters, with a medium price and a 
wider detection angle than 77GHz. 

The detection distance is not farther 
than that of a 77GHz radar. 

77 GHz 
The radar with the farthest detection distance 

is up to 250 meters. 
The radar with a narrow detection 
angle and is expensively priced. 

The 24 GHz millimeter-wave radar used in autonomous driving, automatic parking, and other applications can only detect 

distances of approximately 50 meters. In the case of employing the 24 GHz millimeter-wave radar for the streetlights, a false 

activation after the passage of vehicles may incur. Although the 77 GHz millimeter-wave radar can detect longer distances and 

higher speeds, it demands a relatively high price. Therefore, the decision is made to utilize the IWR6843AOP Single-Chip 60- 
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to 64-GHz mmWave Sensor-Batman BM501, which has a detection range of approximately 100 to 150 meters, a lower price 

than purchasing only a 77 GHz radar, and a wider detection angle than 77 GHz. Relevant specifications are shown in Fig. 4 

and Table 3 [5, 10]. 

 
Fig. 4 BM501 module on carrier board [5, 10] 

Table 3 Configuration parameters [5, 10] 

 Parameter Configuration 

1 Start frequency 60 GHz 

2 Stop frequency 64 GHz 

3 Bandwidth 4 GHz continuous bandwidth 

4 TX power 15 dBm 

5 RX noise figure 14 dB 

6 Phase noise at 1 MHz -92 dBc/Hz 

7 Number of transmitters 3 

8 Number of receivers 4 

9 Azimuth field of view 120° 

10 Elevation field of view 120° 

11 The heights of 3 subjects 171, 180 and 182 cm 

The output of the millimeter-wave module is segmented into Key data and Raw data. Key data has less data and uses a 

baud rate of 115200/8/n/1, while Raw data has more data and uses a baud rate of 921600/8/n/1. This project uses Raw data 

and opens the Jetson Nano’s USB-UART to read data, enabling dial-out permission. The BM501-PCR will transmit three 

packets: v6, v7, and v8, which correspond to the point cloud, target object, and target index, respectively. 

Concerning the classification and processing, the raw v6 (point cloud) data is deployed. The v6 packet contains seven 

pieces of information: frame number, type, elevation, azimuth, Doppler, range, and snr. In other words, the information 

represents frame number, data type, elevation angle, azimuth angle, velocity, distance to the radar, and signal-to-noise ratio of 

each point in the point cloud, respectively. By using the point cloud’s elevation (ψ), azimuth (θ), and range (R), the x, y, and 

z positions of each point can be calculated. Elevation, azimuth, and range are in spherical coordinates, which are nuanced from 

the commonly used x, y, and z coordinates, but they can be transformed into point cloud’s x, y, and z coordinates using a 

mathematical formula. 

A 60 GHz millimeter-wave radar is employed, commencing with the detection of individuals within a 6-meter and 120-

degree range. The team will repeatedly walk past in front of the millimeter-wave radar at the same distance and height. The 

60 GHz radar transmitter generates radio frequency signals, which are then converted to low-frequency signals by the receiver. 

The signal is subsequently transmitted to the signal processor, which extracts information such as distance, velocity, and angle, 

and eventually is returned to the Jetson Nano for processing. 

2.4.   Millimeter-wave radar data collection 

The output data of the BM501-PCR mmWave sensor can be processed into some data structures using the mmWave 

Python SDK. The v6 point cloud data is utilized to process and classify data. The data structure of v6 point cloud data is 

depicted in Fig. 5 [11]. The v6 point cloud data structure contains ten data items, from which the values of sx, sy, sz, and 

doppler can be used as input features for training the deep learning LSTM model to recognize object movement. 
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Fig. 5 Data structure of v6 point cloud [11] 

Considering the position of the radar on the road, the range of data collection, and the ease of collecting data on the target 

for students, data collection on pedestrians is conducted, as shown in Fig. 6. The radar is installed at a height of 1.5 meters 

above the ground, and the range presents rectangularly with a length of 3 meters and a width of 2 meters centered on the radar. 

The pedestrian will walk straight 1 meter away from the radar at a speed of 2 m/5s, and the direction of the movement is either 

left or right. 

 
Fig. 6 Schematic of data collection range 

 

  
(a) An originally single frame (b) Superimposed frames 

Fig. 7 Data before and after superimposing 
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It is noteworthy that partially observing point cloud data in each frame will incur the inability to target the location of the 

detected object and the inability to identify the object concerning the attributes, moving state, and additional information. 

Therefore, by superimposing multiple frames of point cloud data, as shown in Fig. 7, there will be considerable dense point 

cloud data in the detected place, which is helpful for position identification data processing and object classification. 

2.5.   Denoising 

The collected point cloud data is initially noisy, with over 10,000 point clouds containing noise and all information about 

the target objects within the detection time and range of 50 frames. Thus, to filter out all irrelevant noise and extract detailed 

data of each target object in each frame, three denoising methods are used sequentially: 

(1) Doppler filtering [12] 

The point cloud data type provides Doppler data for each point, and Doppler is exactly defined as the speed of a certain 

point. By using Doppler, many static background noises are easily filterable, and only the point cloud data of the “walking 

person” that is desired to be retained is preserved. The condition is “if |doppler| < 0.1” which is shown in Fig. 8, the data of 

that point is eliminated. 

  
(a) An original data (b) A Doppler filtered data 

Fig. 8 Data before and after Doppler filtering 

(2) DBSCAN 

 
Fig. 9 A data after DBSCAN 

Despite the addition of the Doppler filter, millimeter-wave radar is somewhat susceptible to misidentifying stationary 

noise as moving. Such misidentification is environmentally caused by diffraction and interference and subsequently generates 

an incorrect Doppler value. However, most of the remaining point cloud data is located on the target and has a high density. 
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As a solution, numerous clustering algorithms based on cluster density can be employed to further filter out noise. In this 

context, the algorithm utilized is DBSCAN (Density-Based Spatial Clustering of Applications with Noise) proposed in 1996 

[13]. Technically, DBSCAN is a density-based algorithm [14] that defines the user’s literal definition of “high density” by 

inputting two parameters: eps (the radius at which a data point looks for other points) and min_samples (the minimum number 

of points in eps to be considered non-noise). As shown in Fig. 9, the parameters are set to eps = 0.25 and min_samples = 12. 

(3) Mean filtering in x, y, z direction 

Notwithstanding undergoing two antecedent steps and the filtration of the majority of background noise, the point cloud 

data intersperses residual noise. Being cognizant of the majority of remaining points from pedestrians, their characteristic 

motion applies to further filter out noise. Specifically, a mean filter is applied in the x, y, and z directions to each frame of 

point cloud data. The result is shown in Fig. 10. This averaging process helps to highlight the distinctive features of pedestrians 

in motion. 
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Remark: n is the rest point cloud data counts of a single frame of 50 superimposed frames. 

 
Fig. 10 A mean filtered data 

By averaging all the points in this frame, the previously chaotic and noisy data will be converted into a point, which 

represents the position of the person in that frame. This also signifies the sequence information will be used later in LSTM 

deep learning. To better understand its temporal variation, Fig. 11 shows the position line chart having been averaged, and Fig. 

12 shows the averaged variation of each frame. 

  
Fig. 11 Line chart of mean position Fig. 12 Line chart of variation of the mean position 
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2.6.   LSTM deep learning 

After preprocessing the millimeter-wave radar v6 point cloud data through Doppler filtering, DBSCAN, and Mean 

filtering in x, y, and z directions to filter out all irrelevant noise and extract detailed data of each target object in each frame, 

the data is fed into an AI model. Since the point cloud data is sequential, an LSTM model is chosen for recognition. After 

multiple rounds of testing, the following neural network architecture is adopted. 

(1) Model 

As illustrated in Table 4, the first layer is constructed as LSTM, the third and fourth layers as linear layers, and the second 

layer in the middle with Relu (linear rectification function) to prevent gradient disappearance and gradient explosion. The 

input size of the LSTM input shape in the first layer is 4, which are the 4 feature values (x pos, y pos, z pos, doppler) of the 

millimeter wave radar detection [14]. The fifth layer is Softmax, which induces the sum of the two numbers in the matrix as 

1, and the output is 2 for (1, 0) and (0, 1) respectively. If the matrix is close to (1, 0) for people walking to the right, the street 

light will turn on from left to right. If the result is close to (0, 1) for people walking to the left, the streetlights will turn on from 

right to left. If neither, the street light will not make any response. 

Table 4 Layers of LSTM neural network 

Layer I/O Configuration 

LSTM 
Input (None, 50, 4) 

Output (None, 50, 16) 

Relu 
Input (None, 16) 

Output (None, 16) 

Linear 
Input (None, 16) 

Output (None, 20) 

Linear 
Input (None, 20) 

Output (None, 2) 

Softmax 
Input (None, 2) 

Output (None, 2) 

(2) Training 

 
Fig. 13 LSTM training and validation loss 

In this section, three people would pass 1.5 m-3 m in front of the millimeter wave radar for testing. Each person passed 

from left to right and right to left 110 times, with inconstant speed each time. A total of 660 records were collected. The 

learning rate is 0.001 and is inversely proportional to the change speed of the loss function. According to [15-16], 20% of the 

training data is used as validation data, and the data use “optimizer.zero_grad” to set the gradient to zero, i.e., changing the 

derivative of loss concerning weights to 0 before backpropagation. Then, “loss.backward” is called to start backpropagation, 

and, finally, “optimizer.step” is used to update the weights. A total of 100 epochs are performed, and the batch size is 20. The 

results are shown in Fig. 13 and Table 5. 



Advances in Technology Innovation, vol. 9, no. 2, 2024, pp. 116-128 125

Table 5 Confusion matrix of the proposed work 

Class 
Walk from left 

to right 
Walk from right 

to left 
Else Total 

Walk from left 
to right 

324 1 5 330 

Walk from right 
to left 

0 327 3 330 

Else 3 2 325 330 

2.7.   Streetlight controlling program 

Fig. 14 is a flowchart for streetlight control. This chart purposively visualizes the steps of streetlight control to proffer the 

reader a comprehensive insight into the overall program. Initially, the system waits for a signal from the Jetson Nano, and if 

the signal is absent, no action will be taken. Then, the Jetson Nano transmits a signal indicating the correct direction of the 

illumination, which triggers the Key Process (Interrupt function) and the sleep function. When the system receives a signal 

from the Jetson Nano, the countdown variable is incremented by five, and when it reaches zero, the system continues to wait 

for the subsequent signal. 

 
Fig. 14 The flowchart of the streetlight control program 

The Key Process function is the interrupt function area, primarily used to send signals from the Jetson Nano to the 

HT32F52352 and determine the direction of the signal source. The sleep function is mainly used to turn on the LED light. 

Table 6 shows the PWM Duty Cycle variations that control the brightness of the streetlight, for readers to refer to. 

Table 6 The duty cycle variation of PWM 

The duty cycle when PWM is 
turned on and fully bright 

100% 

The variation in duty cycle 
during the PWM off period 

75% => 50% => 25% => 0% 

3. Result and Analysis 

The model is first trained on the Windows 10 operating system using LSTM, and the ensuing trained model is deployed 

onto the NVIDIA Jetson Nano. The millimeter-wave radar is connected to perform object recognition, and the results are then 

transmitted to the HT32F52352 to control the streetlight switch. Assuming that the streetlights can halve their operating time 

every night, the analysis of power consumption and running costs of the proposed system signifies the importance of a smart 

lighting system. The results and analysis of the proposed system are demonstrated in the following sections. 
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3.1.   Result 

The results are shown in Figs. 15, 16, and 17. The trained LSTM model was saved using the torch.save and transferred 

as a path file to the Jetson Nano for loading. The weights in the file were used to compare with the data measured by the 

millimeter wave radar for recognition. The output after weight calculation is also a 1 × 2 matrix, where both values are between 

0 and 1, and the sum of the two values is 1 (due to the softmax layer). The values between 0 and 1 represent probabilities, 

where 0 represents 0% and 1 represents 100%. Therefore, the 1 × 2 matrix represents the probabilities of two possibilities. If 

the left value is larger, such as [0.8, 0.2], the system determines that there is an 80% probability of moving to the right and a 

20% probability of moving to the left. Thus, torch.max is used to select the higher value (higher probability) as the output. 

However, if both values do not exceed 0.6 (60%), such as [0.56, 0.44], the system will determine that there is no passing 

pedestrian, and the street light will not respond. 

 
Fig. 15 The smart streetlight energy-saving system 

 

  
Fig. 16 The person passing by and the light turns on Fig. 17 The light turns off after the person has gone for a while 

3.2.   Analysis 

Through the use of millimeter-wave radar recognition, the system has achieved excellent results in recognizing people, 

walking direction, and identifying the target objects. This project is planned to install one system approximately every 500 

meters. Streetlights are spaced at a distance of about 35 to 50 meters, i.e., at least 10 streetlights will be situated if this system 

is installed. The cost of this device is approximately 28,000 TWD. Each device can provide power for around 10 streetlights, 

which means the average cost per streetlight is 2,800 TWD. Table 7 presents the “device cost” of the “Smart Streetlight Energy 

Saving System” and common types of streetlights in Taiwan, along with their annual “energy consumption” and “electricity 

cost”. 
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Table 7 The device cost and the annual energy consumption and electricity cost [17] 

Name Device cost 
Power 

consumption 

Energy consumption 

(11 Hours / Day × 1 year ) 

Electricity cost (1 year) 

(3.5 TWD / kWh) 

Smart streetlight 
energy-saving system 

28,000 TWD 10W 
11 hours × 0.01 kW × 365 days 

× 10 units = 40 kWh 
40 kWh × 3.5 = 140 

TWD 

LED 
20,000 TWD × 10 

units = 200,000 TWD 
120W 

11 hours × 0.12 kW × 365 days 
× 10 units = 4,818 kWh 

4,818 kWh × 3.5 = 16,863 
TWD 

Sodium-vapor lamp 
10,000 TWD × 10 

units = 100,000 TWD 
250W 

11 hours × 0.25kW × 365 days 
× 10 units = 10,038 kWh 

10,038 kWh × 3.5 = 
35,133 TWD 

Mercury-vapor lamp 
5,000 TWD × 10 units 

= 500,000 TWD 
400W 

11 hours × 0.4kW × 365 days × 
10 units = 16,060 kWh 

16,060 kWh × 3.5 = 
56,210 TWD 

Due to the energy-saving effect of the “Smart Streetlight Energy Saving System”, the operating time of the streetlights is 

reduced from 11 hours to 5 hours per day, as shown in Table 8. If the most power-consuming mercury-vapor lamp is 

considered, the “Smart Streetlight Energy Saving System” can save approximately 8,760 kWh annually. Even if the most 

energy-saving LED is used, based on the equipment cost of the proposed system, 2,628 kWh of electricity can be saved 

annually, which is equivalent to saving at least 9,058 TWD per year. The calculated investment payback period is 28,000 / 

9,058 ≈ 3.09, and it will take approximately three years to recoup the equipment cost. Taiwan currently has about 1.6 million 

streetlights. Even if all streetlights in Taiwan were converted to LED, each group of 10 lights could save 2,628 kWh of 

electricity per year, and the total annual electricity savings for the entire country would be 2,628 kWh × 160,000 = 420,480 

MWh. 

Table 8 The energy-saving benefits and total savings after using the “Smart Streetlight Energy Saving System” [17] 

Name 
The system is 
in use or not 

Energy consumption 
Energy-saving benefits 

(1 years) 

Electricity cost (3.5 TWD / kWh) 
# 140 TWD is the annual 
electricity cost for this System. 

Total savings 

LED 

No 
11 hours × 0.12 kW 

× 365 days × 10 
units = 4,818 kWh 4,818 kWh - 2,190kWh 

= 2,628 kWh 

4,818 kWh × 3.5 = 16,863 TWD 

16,863 - 7,805 = 
9,058 TWD 

Yes 
5 hours × 0.12 kW × 
365 days × 10 units 

= 2,190 kWh 

2,190 kWh × 3.5 + 140 TWD = 
7,805 TWD 

Sodium-
vapor lamp 

No 
11 hours × 0.25 kW 

× 365 days × 10 
units = 10,038 kWh 10,038 kWh - 

4,563kWh = 5475 kWh 

10,038 kWh × 3.5 = 35,133 
TWD 

35,133 - 16,109 
= 19,024 TWD 

Yes 
5 hours × 0.25 kW × 
365 days × 10 units 

= 4,563 kWh 

4,563 kWh × 3.5 + 140 TWD = 
16109 TWD 

Mercury-
vapor lamp 

No 
11 hours × 0.4 kW × 
365 days × 10 units 

= 16,060 kWh 16,060 kWh - 
7,300kWh = 8760 kWh 

16,060 kWh × 3.5 = 56,210 
TWD 

56,210 - 25,690 
= 30,520 TWD 

Yes 
5 hours × 0.4 kW × 
365 days × 10 units 

= 7,300kWh 

7,300 kWh × 3.5 + 140 TWD = 
25690 TWD 

4. Conclusion 

This paper proposed a method that utilizes millimeter-wave radar combined with deep learning LSTM to identify targets 

for controlling the brightness of streetlights. The noticeable difference from conventional motion sensor lights lies in the 

proposed system approach of recognition rather than mere sensing. Therefore, the prerequisite of streetlight activation is the 

objects which are identified as pedestrians and vehicles. Such a function could conduce to the avoidability of frequent 

illumination of the streetlights, thereby achieving energy-saving benefits. While the system consumes power, the current 

architecture only consumes a maximum of 10W. The system is supposed to control traditional streetlights with approximately 

10,200W, which is regarded as a mere 0.5% increase in total consumption. Therefore, ideally, the energy consumption caused 
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by the system can be considered negligible. Given the aforementioned findings and the pervasive installation of streetlights, 

the system has the potential to save approximately 420,480 MWh annually, which is equivalent to around 1.5 billion New 

Taiwan Dollars. 
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