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Abstract 

This study aims to minimize the root mean square error for stock return by optimizing lags and hidden layers 

in a hybrid model. The model combines the autoregressive integrated moving average with the exogenous variables 

model as linear components. The residuals derived from linear components are used in artificial neural networks and 

Elman recurrent neural networks as non-linear components. A key feature of this approach is optimizing the selection 

of hidden layers and lags within the neural network, improving forecasting accuracy. The minimum mean square 

error forecast expression is derived, and the model is tested on stock price data during the COVID-19 period, marked 

by significant market shocks. The root mean square error results for the proposed model, traditional hybrid model, 

and traditional time series model range from 0.0004 to 0.01, 0.0006 to 0.01, and 0.006 to 0.03, respectively. The 

results show that the proposed model outperforms both traditional models. 
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1. Introduction 

In recent years, the financial industry has recognized the paramount importance of forecasting stock market trends. 

However, the task of predicting stock market movements has become increasingly complex due to the influence of exogenous 

variables. External events, ranging from geopolitical developments to unforeseen global crises, introduce significant volatility 

and unpredictability, presenting a formidable challenge to traditional forecasting models. 

In response to these challenges, this paper introduces an innovative approach that amalgamates time series analysis with 

neural network methodologies. By hybridizing these techniques, the study aims to enhance the predictive accuracy of stock 

market forecasts in the presence of exogenous variables. Central to the approach, the application of the autoregressive 

integrated moving average (ARIMA) model symbolizes a cornerstone of time series analysis known for its efficacy in capturing 

temporal dynamics in financial data. To account for the impact of external events, the ARIMA model is extended to an 

autoregressive integrated moving average with exogenous variables (ARIMAX) framework, which incorporates exogenous 

variables into the forecasting equation, thereby enriching contextual understanding and predictive capability of the model [1]. 

Furthermore, the study delves into the realm of neural networks, exploring two pivotal architectures: the artificial neural 

network (ANN) and the Elman recurrent neural network (ERNN) [2]. These models are celebrated for their ability to learn 

complex patterns and dependencies from data, enabling these models to render them ideally suitable for forecasting tasks 
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where non-linear relationships are prevalent. The research investigates further by optimizing these neural networks, focusing 

on the identification of the optimal number of lags and the determination of the appropriate number of hidden layers. This 

optimization process is crucial for developing a hybrid model that synergizes the strengths of time series analysis and neural 

network architectures, proffering superior forecasting performance by comparing minimum mean square error (MMSE) 

between the models. 

This paper is organized into five main sections. Section 2 is a literature review. Section 3 details the methodology, 

including descriptions of the data, the experimental environment, and statistical methods. Section 4 reveals the empirical results 

of each model. The last section, Section 5, concludes with remarks that reflect on the findings and highlight the contributions 

of the study. 

2. Literature Reviews 

The application of forecasting models is a crucial aspect of decision-making in diverse fields such as public health, finance, 

energy, agriculture, and electricity. This section discusses several studies that have employed different forecasting methods to 

address specific challenges in these areas. The review provides insights into the performance and applicability of various 

forecasting models including a hybrid ARIMA model and neural network model, in different contexts. 

Studies on electrical consumption forecasting have highlighted the effectiveness of hybrid approaches combining 

traditional time series models with advanced machine learning techniques. Almaleck et al. [3] using a hybrid method 

combining ANN and ARIMAX models, achieved superior performance in 24-hour-ahead forecasting for sports venues with a 

mean absolute percentage error (MAPE) of around 9%, outperforming standard machine learning techniques. Pierre et al. [4] 

employed a combination of ARIMA for trend modeling and deep learning methods (long short-term memory (LSTM) and 

Gated recurrent unit (GRU)) for capturing fluctuations. Their ARIMA-LSTM hybrid approach outperformed standalone 

models in predicting peak energy consumption, reaching the root mean square error (RMSE) of 7.35. 

Management of natural resources has made significant strides in the use of hybrid forecasting models in recent years. Xu 

et al. [5] demonstrated that a hybrid ARIMA-LSTM model, based on the standardized precipitation evapotranspiration index, 

outperforms the conventional ARIMA model, attaining the highest prediction accuracy at 6-month, 12-month, and 24-month 

scales, indicating the suitability for the forecasting of long-term drought in China. Azad et al. [6] a seasonal autoregressive 

integrated moving average (SARIMA)-ANN model was applied to predict water levels in India’s Red Hills Reservoir, and it 

was confirmed that the hybrid model outperformed the SARIMA model. In Thailand, Nualtong et al. [7] demonstrated that a 

SARIMA-ANN model yielded better results than either the SARIMA or standalone ANN model, especially during the wet 

season. 

Furthermore, a study by Shahriar et al. [8] on PM2.5 forecasting in Bangladesh demonstrated that hybrid models such as 

ARIMA-ANN significantly outperform ARIMA by offering substantial improvements in prediction accuracy. These cases 

collectively highlight the robust capability of hybrid models to significantly enhance predictive outcomes in managing natural 

resources, surpassing traditional forecasting approaches. Recent studies highlight the superiority of hybrid forecasting models 

over conventional methods in various sectors. Fan et al. [9] demonstrated that a hybrid ARIMA-LSTM model significantly 

improved production forecasting by incorporating the effects of manual operations outperforming the traditional ARIMA 

model. Similarly, Wang et al. [10] showed that an ARIMA-ERNN model for predicting pertussis in China provided lower 

error rates than its ARIMA model. 

In the financial sector, hybrid forecasting models have demonstrated marked superiority over traditional models in 

predicting stock market trends. For instance, Shetty and Ismail [2] propose a hybrid non-stationary model using ERNN to 

predict stock market price indices. This model combines linear and non-linear structures to capture market dynamics 
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effectively. Besides, this study demonstrates superior forecasting accuracy, emphasizing the potential of neural network-based 

models in enhancing financial market predictions. Furthermore, Sharma et al. [11] illustrated that integrating LSTM and 

ARIMAX into forecasting improves accuracy beyond the conventional ARIMA model, which adeptly accommodates external 

market influences. 

Lv et al. [12] advanced this research by integrating complete ensemble empirical mode decomposition with adaptive noise 

and a hybrid model combining the autoregressive moving average (ARMA) and LSTM models. This approach effectively 

decomposes the stock index into intrinsic mode functions and applies the ARMA model to stationary series and LSTM to 

unstable series, refining the prediction process through time series decomposition, and the results exhibit that the prediction of 

the proposed model is closer to the real value than that of a standalone model like ARIMA, LSTM, GRU models. Alshawarbeh 

et al. [13] aimed to predict stock market indices using an ARIMA-ANN hybrid model, combining ARIMA and ANN to address 

the volatility and noise in financial data. By applying this approach to the Nasdaq, Nikkei, and CAC 40 indices, the study finds 

that the ARIMA-ANN model renders more accurate forecasts than traditional ARIMA and conventional ANN models. Lastly, 

Singh et al. [14] emphasized the efficacy of combining LSTM methods with ARIMA for forecasting stock prices with high 

precision, highlighting the robustness of hybrid models in financial forecasting. 

The literature review highlights the diverse applications of forecasting models in various fields. These studies collectively 

provided valuable insights into the evolving landscape of forecasting methods and their impact on decision-making in different 

sectors. 

3. Methodology 

The methodology of this study is structured to integrate both linear and nonlinear modeling approaches to enhance the 

accuracy of stock market forecasting. By focusing on optimizing lags and hidden layers, the hybrid model combines ARIMAX 

as a linear component and neural networks (ANN/ERNN) as nonlinear components. This section details the experimental 

environment, the data used, and the statistical methods applied to test the efficacy of the hybrid model. 

3.1.   Experimental environment 

All experiments were conducted on a Microsoft Surface Pro (5th Generation) equipped with an Intel Core i5-7200U 

processor, 8 GB of RAM, and a 256 GB SSD. The device operates on Windows 10 Pro. The software environment comprises 

R version 4.4.1, which runs on RStudio version 2024.04.2+764. The instruments utilized in this section are listed as follows. 

R packages were employed to conduct the analysis. The tseries package was used for time series modeling and statistical tests. 

The neural networks in R using the Stuttgart Neural Network Simulator (RSSNS) was utilized to implement ERNN, and the 

neuralnet package was applied to implement ANN. To ensure consistency and reproducibility of the neural network models, a 

fixed random seed (set.seed(51237)) was used in all relevant experiments. 

3.2.   Data description 

This research considers secondary data, including the Stock Exchange of Thailand (SET) index across eight industries, 

as shown in Table 1. These industries encompass the Agro and Food Industry (SETA), Consumer Products (SETC), Financials 

(SETF), Industrials (SETI), Property and Construction (SETP), Resources (SETR), Services (SETS), and Technology (SETT) 

[15].  

Table 1 The list of industry groups and sectors in the Stock Exchange of Thailand (SET) 

Industry Abbreviation Sector 

Agro and Food Industry SETA Agribusiness, Food and Beverage 

Consumer Products SETC Fashion, Home and Office Products, Personal Products and Pharmaceuticals 
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Table 1 The list of industry groups and sectors in the Stock Exchange of Thailand (SET) (continued) 

Industry Abbreviation Sector 

Financials SETF Banking, Finance and Securities, Insurance 

Industrials SETI 
Automotive, Industrial Materials and Machinery, Paper and Printing 

Materials, Petrochemicals and Chemicals, Packaging, Steel 

Property and 

Construction 
SETP 

Construction Materials, Construction Services, Property Fund and Real Estate 

Investment Trusts, Property Development 

Resources SETR Energy and Utilities, Mining 

Services SETS 
Commerce, Health Care Services, Media and Publishing, Professional 

Services, Tourism and Leisure, Transportation and Logistics 

Technology SETT Electronic Components, Information and Communication Technology 

The study also examined the Google Trends (GGT) index and the exchange rate between the Thai Baht (THB) and the 

US Dollar. It should be noted that the idea of this section is oriented by Napon’s work [16]. The collected data was divided 

into four periods. The first period is from 2 January 2020 to 1 June 2020. Regarding the second period, it is from 2 November 

2020 to 1 March 2021. The third period started from 1 March 2021 to 15 June 2021, and the fourth period is from 16 June 

2021 to 30 December 2021. All variables will be converted to the growth rate and return by using the conventional formula. 
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where �� is the return of the index, ��  is the data for today, ���� is the data for yesterday. To ensure the robustness of the 

analysis, all variables underwent stationarity testing utilizing the Phillips-Perron (PP) test. The PP test, introduced by Phillips 

and Perron (1988), is used to determine whether a time series is stationary. The null hypothesis (H₀) of the PP test states that 

the time series has a unit root, implying it is non-stationary. The alternative hypothesis (H₁) states that the time series is 

stationary. Concerning this study, a significant threshold was set at a p-value of less than 0.05, ensuring that the variables are 

appropriately stationary for accurate modeling and analysis [17]. 

3.3.   Cross-correlation function (CCF) 

To detect the relationship between the two series, a cross-correlation function (CCF) is conducted to verify the 

relationships of the series [18]. The CCF is defined as follows: 
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where ���(0) and ���(0) are the sample variances of �
�� and ����. The CCF calculates the linear correlation between the 

series. This study focuses on lag 0 to determine the cross-correlation between the series. 

3.4.   Hybrid modeling 

A hybrid model separating linear and non-linear components is a sophisticated method used to capture complex 

relationships in a dataset by individually addressing the linear and non-linear aspects. This approach enhances the ability to 

handle data nuances by combining the strengths of both linear and non-linear techniques [19]. The model was expressed as: 

= +t t ty L N  (4) 
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where �� is the original time series, �� is the linear term, and �� is the non-linear term. The linear component is estimated 

using the ARIMAX model, and the residuals are obtained from this model. Given that the linear term is obtained from the 

following formula, the residual series �� from the ARIMAX model is expressed as follows: 

ˆ= −t t tN y L  (5) 

where ��� denotes the forecasting value for time t of the time series ��  by ARIMAX, �� represents the non-linear term of the 

model. Subsequently, the neural network is used to estimate �� with m input nodes, the neural network (ANN/ERNN) model 

for the residuals can be formulated as follows: 

( ) *

1 2, , , ε−− −= +…t t m tt tN f N N N  (6) 

where �(. ) represents a non-linear function determined by the neural network (ANN/ERNN), ��
∗ is the residual. 

3.5.   Auto regressive integrated moving average with exogenous variables 

The ARIMAX model, with an exogenous variable as an additional predictor, can be used to predict the demand for a 

product based on its demand and some external factors such as advertising or competitors’ prices [20]. The ARIMAX model 

can be expressed as follows: 
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where ∇� is the degree of differencing, �� is the time series data at time t, �� is a constant value, �� is a residual, ���� is the 

autoregressive, ���� is the moving average, 
� is the exogenous variable, ��, ��, and � are the coefficients of ����, ����, and 


�, respectively. 

3.6.   Artificial neural network (ANN) 

 

Fig. 1 Structure of an ANN model (modified from [22]) 

In recent years, neural networks have gained significant attention and are being effectively applied in a wide variety of 

fields. Neural networks are increasingly used in areas involving prediction, classification, or control tasks. In addition, neural 

networks can be defined as a network of interconnected simple processing units, modeled after the biological neuron. A 
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biological neuron is a specialized unit that carries information or knowledge and transmits it to other neurons within the 

network. Artificial neurons are organized in layers and interconnected, resembling synapses in the brain. The internal layers, 

called hidden layers, consist of varying numbers of neurons. The final layer, known as the output layer, has several neurons 

that match the number of outputs. Expanding the number of neurons and layers improves the learning ability of ANN, enabling 

them to handle more complex data [21]. A single hidden layer feedforward network is the most widely used model form for 

time series modeling and forecasting. The model is characterized by a network of three layers of simple processing units 

connected by acyclic links [22]. Fig. 1 shows the structure of an ANN model. 

The relationship between the output, ��, and the inputs, ����, ����, ⋯, ���! can be mathematical represented as: 
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where �� indicates the predicted output of the network at time t, "# symbolizes the bias term for the output layer, "� signifies 

the weights connecting the hidden layer to the output layer where j = 1, 2, ⋯, q, in this case, the logistic function, $#� are the 

bias terms for each of the hidden nodes  j = 1, 2, ⋯, q, $�� are the weights connecting the input layer to the hidden layer where 

i = 1, 2, ⋯, p; j = 1, 2, ⋯, q, ���� are the input values at previous time steps (lags in time series terms) i = 1, 2, ⋯, p, �� is the 

error term for the prediction at time t. When %& is the linear function in the hidden layer which is selected as the activation 

function defined by: 

( ) =
H

g v v  (9) 

where v is the input value. 

3.7.   The Elman recurrent neural network (ERNN) 

 

Fig. 2 Structure of an ERNN model (modified from [2]) 

ERNN, also referred to as a simple recurrent network, is a form of feedforward ANN that incorporates feedback 

connections, enabling it to handle sequential data and time series [2] which are comprised of input, hidden, output, and 

recurrent layers [23-24]. In the ERNN, the recurrent layer receives feedback from outputs of the hidden layer, empowering the 

network to learn, identify, and generate both spatial and temporal patterns. Each neuron in the hidden layer connects to a 
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corresponding neuron in the recurrent layer with a fixed weight of one. This structure makes the recurrent layer function as a 

memory of the hidden layer’s previous state. The number of neurons in the recurrent layer matches that of the hidden layer. 

Neurons pass information to subsequent layers by applying a nonlinear function to the weighted sum of their inputs. This 

design enables the ERNN to effectively analyze and respond to complex patterns [23]. Fig. 2 shows the structure of an ERNN 

model. 

The inputs of the hidden layer are given by the following formula, 
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where '()�� denote network at time t, m is the number of neurons in the inputs layer, u is the number of neurons in the hidden 

layer, (�� is the set of an input vector of neurons at the time t where i = 1, 2, ⋯, m, ℎ�� is the output of hidden layer neurons at 

time t where j = 1, 2, ⋯, u, +�� is the context layer neuron at time t where j = 1, 2, ⋯, u, "�� is the weight that connects the node 

i in the input layer neurons to the node j in the hidden layer, $� are the weights that connect the node j in the context layer 

neurons to the node in the hidden layers, and k is the maximum training iteration number and initial connective weights. 

Additionally, the topology of the network architecture is determined by the number of neural nodes in the hidden layer. As a 

result of the hidden neurons, the output is as follows: 
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where the linear function �& in the hidden layer is selected as the activation function based on the following equation: 

( ) =
H

f v v  (13) 

where v is the input value. 

The output of the hidden layer is given as follows:  
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where �� is the output of the network at time t, ,� are the weights that connect the node j, in the hidden layer neurons to the 

node in the output layers, and �-(. ) is an identity map as the activation function. 

3.8.   The general framework of the hybrid model 

The estimation of �� will result in the estimation of the non-linear component in the time series �.�. The estimated values 

of the time series are obtained as follows: 

ˆ ˆˆ = +t t ty L N  (15) 

The neural network (ANN/ERNN) can effectively capture the non-linear patterns present in the residuals obtained from the 

ARIMAX model. By incorporating neural network (ANN/ERNN) into a hybrid model, forecasting that performance can be 

significantly enhanced [10]. Hence, the problem of spurious regression can be addressed by using hybrid ARIMAX models 

with neural network (ANN/ERNN) to account for linear and non-linear terms in time series data. These methods furnish a 
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powerful tool for accurately modeling time series data and can help overcome the limitations of traditional regression models 

in the presence of spurious regression. Traditionally, the number of hidden layers is selected based on minimizing the MMSE 

[25]. 
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3.9.   Optimization of the hybrid model 

The approach extends this methodology by systematically optimizing both the number of lagged inputs ((��) and the 

number of hidden layers (denoted as ℎ��). The optimization is conducted through a hybrid model that aims to minimize the 

mean squared error, as detailed in the following equation: 
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Fig. 3 depicts the enhanced process flow of the hybrid model featuring alternative optimization. The sequence initiates 

with the input �� , /� which enters the ARIMAX model, functioning as the linear estimator to generate ���. The residuals from 

this model are fed into a neural network (ANN/ERNN) thereafter, serving as the nonlinear estimator to compute �0�. The system 

subsequently assesses if the combination of ��� and �0� satisfies the MMSE threshold. If the MMSE criteria are not fulfilled, 

the process iteratively refines the lags and hidden layers within the neural network to optimize �0�, thereby enhancing the 

predictive accuracy. Upon meeting the MMSE threshold, the final output �.� is produced. 

 

Fig. 3 Conceptual framework of alternative optimization of hybrid model 

4. Results and Discussion 

This section presents the findings from the CCF analysis, and the statistical tests conducted to evaluate its performance. 

The results comprise a detailed comparison of model performance and highlight key findings from the analysis across each 

period. 

4.1   Result from cross-correlation function (CCF) 

This section presents the results of the CCF analysis, a crucial tool for detecting relationships between two-time series. 

The analysis focuses on the correlations between various indices of the SET as endogenous variables with GGT and the THB 

across four distinct periods from Table 2 to Table 5. 

Table 2 Cross-correlation analysis for the first period 

Variable SETA SETC SETF SETI SETP SETR SETS SETT 

GGT −0.2957* −0.3769* −0.3041* −0.3056 * −0.3289* −0.2268* −0.2846* −0.2456* 

THB −0.2609* −0.2384* −0.2161* −0.1970* −0.2429* −0.1721 −0.2790* −0.2228* 

*95% significant level at confidence interval between [-0.1803, 0.1803] 
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Table 3 Cross-correlation analysis for the second period 

Variable SETA SETC SETF SETI SETP SETR SETS SETT 

GGT 0.0519 0.1187 −0.0901 −0.0798 0.0270 −0.0353 −0.0439 0.0108 

THB −0.2422* 0.1656 −0.3154* −0.2757* −0.3241* −0.3106* −0.3262* −0.1332 

*95% significant level at confidence interval between [-0.1825, 0.1825] 

Table 4 Cross-correlation analysis for the third period 

Variable SETA SETC SETF SETI SETP SETR SETS SETT 

GGT 0.0120 0.1542 −0.2905* −0.0019 −0.2717* −0.0575 −0.2533* −0.1090 

THB −0.1063 −0.0282 0.0357 0.0775 0.0112 −0.0612 −0.0275 −0.0926 

*95% significant level at confidence interval between [-0.2340, 0.2340] 

Table 5 Cross-correlation analysis for the fourth period 

Variable SETA SETC SETF SETI SETP SETR SETS SETT 

GGT −0.0243 −0.0669 0.0369 −0.0458 0.0092 0.0251 0.0399 −0.1299 

THB −0.1446 0.008 −0.2250* −0.1362 −0.2671* −0.2166* −0.2699* −0.0260 

*95% significant level at confidence interval between [-0.1543, 0.1543] 

The CCF analysis presented in the tables reveals significant insights into the relationships between indices of the SET 

with GGT and the THB across four distinct periods. During the first period, GGT and THB exhibited significant negative 

correlations with all sectors except for the relationship between THB and SETR. In the second period, significant correlations 

of GGT were absent, while THB demonstrated significant negative correlations with all sectors except for SETC and SETT. 

The third-period analysis indicated that GGT had significant negative correlations with SETF, SETP, and SETS, while THB 

did not show significant correlations during this period. Finally, in the fourth period, GGT did not exhibit significant 

correlations, while THB exhibited significant negative correlations with SETF, SETP, SETR, and SETS. 

4.2.  Empirical application 

This section evaluates the performance of the optimized hybrid ARIMAX models with neural network (ANN/ERNN) by 

applying the SET index data across each sector with exogenous variables for each period. The performance of the optimized 

ARIMAX models with neural network (ANN/ERNN) is benchmarked against traditional ARIMAX models and traditional 

ARIMAX models with neural network (ANN/ERNN), thereby highlighting keys from the analysis. 

4.2.1   Result from the first period with GGT 

Table 6 presents evidence that the ARIMAX model from the first period with GGT as an exogenous variable exhibits 

significant results in all sectors including negative coefficients. Furthermore, Table 7 displays the lowest Akaike Information 

Criterion (AIC) values and p-value of the Ljung-Box test supporting the null hypothesis and implying that residuals of the 

model are white noise. Table 8 details the chosen lag and hidden layer of each model. Fig. 4 presents the RMSE value for each 

model demonstrating that the hybrid model outperforms the ARIMAX model. Moreover, every optimized hybrid model yields 

better performance compared to both the traditional hybrid model and the traditional ARIMAX model. 

Table 6 Coefficients and p-values of the first period ARIMAX model with Google Trends index 

Variable SETA SETC SETF SETI SETP SETR SETS SETT 

AR1 0.8771* 0.7522* 1.3238* 0.7791* 1.4713* −0.5070 −1.2318* −0.7022* 

AR2 −0.9002* - −0.58801* - −0.8341* 0.3895 −0.3124* −0.8062* 

AR3 - - - - - 0.2865* - - 

MA1 −1.0171* −0.9111* −1.5068* −0.9304* −1.6086* - 0.9999* 0.6983* 

MA2 0.9999* 0.2680 0.8323* 0.2153* 0.9999* 0.3859 - 0.8503* 

MA3 - - - - - −0.4460 - −0.1719 

GGT −0.0307* −0.0165* −0.0388* −0.0385* −0.0348* −0.0319* −0.0316* −0.0189* 

*Significant at 0.05 
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Table 7 Akaike Information Criterion (AIC) values and Ljung-Box test p-values for ARIMAX models with 

Google Trends index in the first period 

Technique SETA SETC SETF SETI SETP SETR SETS SETT 

AIC −590.294 −777.892 −540.771 −522.827 −591.543 −506.495 −593.228 −629.452 

Ljung-Box 0.2553 0.84331 0.9837 0.9813 0.462 0.9996 0.9707 0.8894 

Table 8 Configuration of lags and hidden layers in neural network models with Google Trends index for the first period 

Technique Lags and hidden layers SETA SETC SETF SETI SETP SETR SETS SETT 

Traditional ANN 
Lags 1 1 1 1 1 1 1 1 

Hidden layers 23 7 32 17 5 17 91 7 

Optimized ANN 
Lags 4 1 1 4 1 3 2 3 

Hidden layers 6 71 70 30 45 52 10 42 

Traditional ERNN 
Lags 1 1 1 1 1 1 1 1 

Hidden layers 59 88 93 90 80 82 93 59 

Optimized ERNN 
Lags 1 1 2 1 4 5 2 2 

Hidden layers 46 40 63 52 97 58 43 89 

 

 

Fig. 4 Performance comparison of models using the Google Trends index as an exogenous variable in the first period 

4.2.2   Result from the first period with THB 

Table 9 shows that except for SETR the ARIMAX model in the first period with THB as an exogenous variable is 

significant across all sectors. Table 10 highlights the model with the lowest AIC, along with the p-value of the Ljung-Box test, 

confirming white noise in the residuals. Table 11 presents the hybrid ARIMAX-ERNN model for SETA and SETP, which has 

identical lag and hidden layer configurations in both traditional and optimized modes. The results in Fig. 5 demonstrate that 

the ARIMAX-ERNN model for SETA and SETP yields identical performance in both traditional and optimized configurations. 

Additionally, the hybrid model consistently outperforms the ARIMAX model. The optimized hybrid model surpasses both the 

traditional hybrid model and the traditional ARIMAX model in all optimized configurations. 
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Table 9 Coefficients and p-values of the first period ARIMAX model with Thai Bath (THB) 

Variable SETA SETC SETF SETI SETP SETS SETT 

AR1 −0.9607* 1.0241* 0.6415* −1.2464* −1.7152* −1.1349* −0.9164* 

AR2 −0.1618 −0.7139* 0.1651* −0.9359* −0.8275* −0.2893* −0.8016* 

MA1 0.8590* −1.1832* −0.7330* 1.1882* 1.6998* 0.9230* 0.9902* 

MA2 - 0.9999* - 0.9999* 0.7553* - 0.9999* 

THB −1.6612* −0.5689* −1.4272* −1.4624* −1.6896* −1.8257* −1.1215* 

*95% significant level 

Table 10 Akaike Information Criterion (AIC) values and Ljung-Box test p-values for ARIMAX 

models with Thai Bath in the first period 

Technique SETA SETC SETF SETI SETP SETS SETT 

AIC −584.175 −770.001 −529.157 −523.496 −588.622 −590.41 −628.809 

Ljung-Box 0.874535 0.791028 0.915481 0.271637 0.981394 0.782526 0.696605 

Table 11 Configuration of lags and hidden layers in neural network models with Thai Bath for the first period  

Technique Lags and hidden layers SETA SETC SETF SETI SETP SETS SETT 

Traditional ANN 
Lags 1 1 1 1 1 1 1 

Hidden layers 8 16 7 47 5 91 7 

Optimized ANN 
Lags 1 4 2 2 1 3 2 

Hidden layers 17 61 10 85 51 75 96 

Traditional ERNN 
Lags 1 1 1 1 1 1 1 

Hidden layers 59 88 95 85 59 93 59 

Optimized ERNN 
Lags 1 3 1 2 1 1 2 

Hidden layers 59 95 52 63 59 94 89 

 

 

Fig. 5 Performance comparison of models using Thai Bath as an exogenous variable in the first period 
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4.2.3   Result from the second period with THB 

Table 12 depicts that all sectors, except SETC and SETT, have negative coefficients in the ARIMAX model during the 

second period with THB as an exogenous variable. Table 13 supports the null hypothesis that the residuals are white noise and 

highlights the models with the lowest AIC values. Table 14 lists the opted hidden layers and lag configurations, with the hybrid 

ARIMAX-ERNN model for SETF denoting identical setups in both traditional and optimized models. Fig. 6 indicates that the 

ARIMAX-ERNN model for SETF yields identical results in both traditional and optimized models. The optimized hybrid 

model outperforms both the traditional hybrid and ARIMAX models. 

 

Fig. 6 Performance comparison of models using Thai Bath as an exogenous variable in the second period 

Table 12 Coefficients and p-values of the second period ARIMAX model with Thai Bath (THB) 

Variable SETA SETF SETI SETP SETR SETS 

AR1 0.9561* −0.8463* −0.1079 0.8856* 1.4443* −0.8714* 

AR2 - −0.1112* −0.7787* - −0.6594* −0.9951* 

AR3 - - - - −0.2047* - 

MA1 −1.1374* 0.7463* −0.0188 −0.8402* −1.6374* 0.8762* 

MA2 0.1374 - 0.9999* - 0.9994* 0.9771* 

MA3 - - -0.0217 - - - 

THB −0.8201* −1.5790* −1.1882* −1.1531* −1.85461* −1.3732* 

*Significant at 0.05 

Table 13 Akaike Information Criterion (AIC) values and Ljung-Box test p-values for ARIMAX 

models with Thai Bath in the second period 

Technique SETA SETF SETI SETP SETR SETS 

AIC −728.935 −659.234 −671.951 −727.489 −657.02 −699.31 

Ljung-Box 0.9661 0.9995 0.8892 0.32160 0.9164 0.9556 
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Table 14 Configuration of lags and hidden layers in neural network models with Thai Bath for the second period 

Technique Lags and hidden layers SETA SETF SETI SETP SETR SETS 

Traditional ANN 
Lags 1 1 1 1 1 1 

Hidden layers 26 80 30 7 47 21 

Optimized ANN 
Lags 5 2 3 5 5 4 

Hidden layers 52 73 87 11 79 75 

Traditional ERNN 
Lags 1 1 1 1 1 1 

Hidden layers 40 85 85 40 46 40 

Optimized ERNN 
Lags 2 1 1 4 3 1 

Hidden layers 46 85 40 86 89 85 

4.2.4   Result from the third period with GGT index 

Table 15 indicates that SETF and SETP have negative and significant coefficients in the ARIMAX model with GGT as 

an exogenous variable during the third period. Table 16 highlights the model with the lowest AIC and a p-value from the 

Ljung-Box test, supporting the null hypothesis and suggesting that the residuals are noise. Table 17 outlines the opted hidden 

layers and lag configurations, indicating that the hybrid ARIMAX-ERNN model for SETF offers the same configurations in 

both traditional and optimized modes. Fig. 7 shows that the ARIMAX-ERNN model for SETF produces the same results in 

both traditional and optimized modes. Moreover, such a finding confirms that the optimized hybrid model outperforms both 

the traditional hybrid and ARIMAX models. 

 

Fig. 7 Performance comparison of models using the Google Trends index as an exogenous variable in the third period 

 

Table 15 Coefficients and p-values of the third period 

ARIMAX model with Google Trends (GGT) 

index 

Variable SETF SETP 

AR1 −0.56539 0.99661* 

MA1 0.715767* −0.92404* 

MA2 - −0.06181 

GGT −0.01542* −0.01042* 

*Significant at 0.05 

Table 16 Akaike Information Criterion (AIC) values and 

Ljung-Box test p-values for ARIMAX models 

with Google Trends Index in the third period 

Technique SETF SETP 

AIC −431.606 −493.575 

Ljung-Box 0.775444 0.857292 
 

Table 17 Configuration of lags and hidden layers in neural network models 

with Google Trends Index for the third period 

Technique Lags and hidden layers SETF SETP 

Traditional ANN 
Lags 1 1 

Hidden layers 62 30 

Optimized ANN 
Lags 2 2 

Hidden layers 32 35 



98  Advances in Technology Innovation, vol. 10, no. 2, 2025, pp. 85-101 

Table 17 Configuration of lags and hidden layers in neural network models 

with Google Trends Index for the third period (continued) 

Technique Lags and hidden layers SETF SETP 

Traditional ERNN 
Lags 1 2 

Hidden layers 57 46 

Optimized ERNN 
Lags 1 1 

Hidden layers 57 72 

4.2.5   Result from the fourth period with THB 

Table 18 demonstrates that the ARIMAX model with THB as an exogenous variable in the fourth period is statistically 

significant for SETF, SETP, SETR, and SETS with all models exhibiting negative coefficients. In Table 19, the ARIMAX 

model is selected by its lowest AIC values while p-values of the Ljung-Box test confirm that the residuals are white noise 

supporting the null hypothesis. Table 20 renders a detailed comparison of the selected lags and hidden layers for each model. 

Notably, SETP and SETS exhibit identical lags and hidden layers in their traditional and optimized ARIMAX-ERNN models. 

The performance presented in Fig. 8 reveals that the ARIMAX-ERNN model yields consistent results for SETP and SETS in 

both traditional and optimized approaches. The optimized hybrid model excels both the traditional hybrid and ARIMAX 

models in performance. 

 

Fig. 8 Performance comparison of models using Thai Bath as an exogenous variable in the fourth period 

Table 18 Coefficients and p-values of the fourth period ARIMAX model 

with Thai Bath (THB) 

Variable SETF SETP SETR SETS 

AR1 0.5920* −0.5989* −0.6401* −0.4478 

AR2 - - - −0.1642* 

MA1 −0.6814* 0.6631* 0.7828* 0.4225 

THB −0.7917* −0.4754* −0.3997* −0.6529 

*Significant at 0.05 
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Table 19 Akaike Information Criterion (AIC) values and Ljung-Box test p-values 

for ARIMAX models with Thai Bath in the fourth period 

Technique SETF SETP SETR SETS 

AIC −1016.12650 −1193.54 −1121.17 −1153.28 

Ljung-Box 0.638347241 0.379886 0.5806 0.978849 

Table 20 Configuration of lags and hidden layers in neural network models with Thai Bath 

for the fourth period 

Technique Lags and hidden layers SETF SETP SETR SETS 

Traditional ANN 
Lags 1 1 1 1 

Hidden layers 7 30 34 30 

Optimized ANN 
Lags 5 3 4 5 

Hidden layers 19 47 85 53 

Traditional ERNN 
Lags 1 1 1 1 

Hidden layers 80 40 46 99 

Optimized ERNN 
Lags 1 1 1 1 

Hidden layers 46 40 57 99 
 

5. Conclusion 

This study has developed a hybrid forecasting model that integrates ARIMAX with neural networks (ANN/ERNN) using 

an alternative optimization process. In contrast to the traditional hybrid approach, where the RMSE of the nonlinear component 

is calculated iteratively until the lowest value is obtained and subsequently added to the linear component, the proposed method 

calculates the RMSE after both linear and nonlinear components are combined. This RMSE is subsequently refined through 

iterative looping until the least RMSE is achieved, ensuring a more accurate optimization process for the hybrid model. 

The proposed methodology demonstrates significant improvements in predictive accuracy by effectively capturing both 

linear and nonlinear components in the SET index across eight industries during the COVID-19 period. According to the 

results, the optimized hybrid models achieved the lowest RMSE. These findings confirm that the proposed optimization 

process in hybrid ARIMAX-ANN and ARIMAX-ERNN models outperforms the traditional hybrid model and traditional 

ARIMAX model, showing its effectiveness in enhancing forecasting model accuracy.  
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Appendix 

Abbreviation Definition 

ANN Artificial neural network 

ARIMAX Autoregressive integrated moving average with exogenous variables 
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ERNN Elman recurrent neural network 

ARIMA Autoregressive integrated moving average 

MAPE Mean absolute percentage error 

LSTM Long short-term memory 

GRU Gated recurrent unit 

RMSE Root mean square error 

SARIMA Seasonal autoregressive integrated moving average 

ARMA Autoregressive moving average 

SET Stock Exchange of Thailand 

SETA Stock Exchange of Thailand in Agro and Food Industry Sector 

SETC Stock Exchange of Thailand in Consumer Products Sector 

SETF Stock Exchange of Thailand in Financials Sector 

SETI Stock Exchange of Thailand in Industrials Sector 

SETP Stock Exchange of Thailand in Property and Construction Sector 

SETR Stock Exchange of Thailand in Resources Sector 

SETS Stock Exchange of Thailand in Services Sector 

SETT Stock Exchange of Thailand in Technology Sector 

THB Thai Baht 

GGT Google Trends 

PP Phillips-Perron 

CCF Cross-correlation function 

MMSE Minimum mean square error 

AIC Akaike Information Criterion 

 


