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Abstract 

This study optimizes the machining process of Inconel-800 superalloy using nanofluid minimum quantity 

lubrication (MQL) with multi-wall carbon nanotubes (MWCNTs) and biodegradable coconut oil. A Taguchi design 

with 27 trials is used to examine the effects of varying nanoparticle concentrations and machining parameters on 

surface roughness and temperature. The optimized nanofluid MQL system improves surface roughness by 26.22%, 

reduces surface roughness peak-to-valley by 12.06%, and significantly lowers temperature, demonstrating improved 

quality and thermal management. A Kriging model predicts outcomes with high accuracy (R2 > 0.9), and multi-

objective optimization using Kriging and the non-dominated sorting genetic algorithm II identifies an optimal 

balance between surface roughness and temperature. Additionally, using coconut oil as the lubricant base in the 

nanofluid MQL system promotes sustainable machining by reducing reliance on conventional lubricants and 

environmental impact. These findings validate the effectiveness of advanced optimization techniques combined with 

nanofluid MQL for superior sustainable machining of superalloys. 

Keywords: nanofluid, machining optimization, sustainable machining, super-alloy, minimum quantity lubrication  

(MQL) 

1. Introduction 

Machining is crucial for producing components with precise dimensions and superior surface quality. Technological 

advancements have led to the development of high-strength materials, which pose greater machining challenges. These 

materials include toughened steels, titanium alloys, superalloys, metal matrix composites, and ceramics. Superalloys are widely 

utilized for high-performance applications due to their exceptional mechanical strength, thermal resistance, and corrosion 

resistance, as shown in Fig. 1 [1-2]; for example, Inconel-800, a notable superalloy, is selected for its performance in extreme 

environments. However, its properties, such as high hardness, heat resistance, and work-hardening tendency pose significant 

machining challenges, including rapid tool wear, elevated cutting forces, and poor surface finish [3-4]. Therefore, the 

development of environmentally friendly and effective machining methods for these materials is essential [5-6]. 

Minimum quantity lubrication (MQL) has emerged as a potential alternative to conventional lubrication techniques in 

machining. Unlike flood cooling, which consumes a significant amount of coolant, MQL minimizes the fluid used while 

ensuring sufficient lubrication and cooling at the cutting area [7-8]. Nanofluids, which consist of suspensions of nanoparticles 

in a base fluid, have improved the effectiveness of MQL [9-12]. As previously mentioned, nanofluids exhibit  offer boosted 

thermal conductivity, superior lubricating qualities, and lower friction compared to conventional lubricants [13-14]. Coconut 

oil, renowned for its biodegradability and excellent lubricating characteristics, has received interest as an environmentally 

acceptable base fluid for nanofluids. The use of coconut oil-based nanofluids in MQL not only increases machining 

performance but also aligns with acceptable standards for sustainable manufacturing [15-16]. 
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Fig. 1 The correlation between mechanical strength and operating temperature for difficult-to-cut alloys [17]  

Despite the advantages of nanofluid MQL, optimal performance requires precise selection of nanoparticle concentration 

and machining parameters. This study employs multi-wall carbon nanotubes (MWCNTs) based nanofluids in the MQL system 

for machining Inconel-800, aiming to enhance thermal conductivity and lubrication [18-20]. A novel optimization framework 

integrating the Kriging model with non-dominated sorting genetic algorithm II (NSGA-II) balances surface quality and thermal 

management. Accurate parameter optimization is essential to prevent inadequate lubrication and minimize tool wear, 

underscoring the need for further research on nanoparticle concentration and cutting parameters in machining superalloys. 

Superalloys, particularly Inconel-800, are prized for their high-temperature strength, oxidation resistance, and durability, 

making them vital for demanding engineering applications [3]. However, these properties also render them difficult to machine. 

Traditional superalloy machining methods often lead to excessive tool wear, high cutting forces, and poor surface quality [5]. 

Advanced machining solutions such as coated tools (physical vapor deposition (PVD), chemical vapor deposition (CVD), 

atomic layer deposition (ALD)), optimized cutting parameters, and innovative cooling systems (e.g., cryogenic and high-

pressure cooling) have been explored [21-22]. Although effective, these technologies can be costly or environmentally 

challenging, emphasizing the need for more sustainable alternatives such as nanofluid MQL. 

Nanofluid MQL has transformed machining by incorporating nanoparticles (10–100 nm) into the lubrication fluid, 

enhancing thermal and frictional performance compared to traditional methods. It improves parameters like surface roughness, 

cutting force, power, energy, temperature, and material removal rate (MRR) [23-24]. 

Nanofluid MQL systems utilize lubricants, including vegetable (e.g., coconut, canola), synthetic, and mineral oils, 

combined with metallic, metal oxide, carbon-based, or ceramic nanoparticles. Each component is selected to perform specific 

lubrication functions tailored to the operational requirements of the MQL system [17, 19, 25]. Particularly, coconut oil-based 

nanofluid MQL, known for eco-friendly and effective lubrication, provides superior cooling and promotes sustainable 

machining by reducing the environmental impact of conventional lubricants [15-16]. 

MWCNT-based nanofluids in MQL machining have gained importance for improving surface roughness, cutting 

temperature, and MRR. The integration of MWCNTs into base fluids, particularly coconut oil, has demonstrated substantial 

potential for enhancing machining efficiency and product quality. Numerous studies focusing on optimizing machining 

parameters using MWCNTs nanofluids and highlighting the benefits of incorporating coconut oil into MQL systems. 

For instance, Okokpujie et al. reported a surface roughness of 1.16 µm and an MRR of 52.1 mm³/min when machining 

AL8112 using MWCNT-doped nanofluid MQL [26]. Similarly, Ali et al. demonstrated significant improvements in tool life, 

cutting force, and surface finish when employing MWCNT-based nanofluids in turning Inconel 718 under dry, MQL, and 

nanofluid MQL conditions, showcasing the lubricant's effectiveness [27]. 

Note:  

- The chart does not show the range of service temperatures, but 

the range of the maximum temperatures. 

- The temperature axis has a finer scale. 

Ceramics: The chart shows compressive strength; tensile 

strength is typically 10% of compressive strength. 

Other materials: Strength in tension/compression. 
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Optimizing machining configurations is crucial for improving performance, especially with difficult-to-machine materials 

like superalloys. The effective implementation of nanofluid MQL requires an organized framework that incorporates 

experimental design, mathematical modeling, and multi-objective optimization techniques. These methods balance lubrication, 

cooling, and cutting parameters, improving challenging machining performance in scenarios. For example, Te-Ching Hsiao et 

al. utilized a combination of the response surface methodology (RSM) model and NSGA-II optimization, achieving a reduction 

of up to 20.2% in specific cutting energy and 6.4% in overall energy consumption [28-29]. Other models, such as Kriging and 

radial basis function (RBF), have also proven effective in predicting optimal parameter combinations for machining. 

This study confirms that nanofluids significantly enhance the machining performance of superalloys like Inconel-800, 

utilizing MWCNT-based nanofluids with coconut oil, providing superior thermal conductivity and lubrication over 

conventional nanoparticles. This eco-friendly approach improves machining efficiency and promotes sustainability. For 

example, Bui et al. demonstrated that optimizing cutting parameters improved surface roughness and MRR when machining 

SKD11 with SiO₂ nanofluid [30]. Vu et al. reported a 14% reduction in cutting energy during hard milling of AISI H13 steel 

using Al₂O₃ MQL nanofluids [28]. Similarly, Perera and Wegala demonstrated that coconut oil-based nanofluids reduced 

surface roughness by 9.8–73.7% in machining SS400 and AISI 304, with optimal results at 0.3% (w/w) Al₂O₃ and graphite 

concentrations [16]. These findings highlight the benefits of optimizing machining processes with nanofluids, particularly in 

enhancing surface quality, minimizing cutting zones, and increasing MRR through advanced optimization techniques. 

Furthermore, while traditional optimization methods such as Taguchi and RSM primarily focus on single-objective 

optimization and often assume linear relationships, the Kriging-NSGA-II approach adopted in this study captures complex 

nonlinear interactions and enables multi-objective optimization. This method surpasses conventional techniques by providing 

a more precise and efficient mechanism of achieving Pareto-optimal trade-offs between conflicting objectives, such as surface 

roughness and cutting temperature. 

Developing and optimizing MWCNT-based nanofluids in coconut oil for milling present significant industrial potential. 

This study systematically investigates the influence of cutting parameters and nanoparticle concentration on machining 

performance, seeking to promote sustainable machining processes. Integrating nanotechnology into traditional manufacturing 

enhances productivity, reduces environmental impact, and improves product quality. As the field of nanofluid-assisted 

machining continues to advance, the findings of this research may serve as an essential reference for future attempts to develop 

greener and more efficient manufacturing processes. 

2. Materials and Methods 

The material utilized in this study was Inconel-800, a superalloy known for its high strength, exceptional corrosion 

resistance, and tendency for work harden, thereby incurring the challenge to machine. The mechanical properties of Inconel-800 

are detailed in Table 1, while its chemical composition is listed in Table 2. The workpiece dimensions were 210 mm in length, 

100 mm in width, and 40 mm in height, with a cutting length of 100 mm. 

Table 1 Mechanical specifications of Inconel-800 

Temperature0C Tensile strength MPa Yield Strength MPa Elongation % R.A. % 

27 448- 549 172- 226 30- 48 76 

Table 2 Chemical composition (weight percent) of Inconel-800 

Element Ni Cr Fe C Al Ti Ti+ Al Mn 

% weight 30.0-35.0 19.0-23.0 46.99 0.1 max 0.5 0.15-0.60 1.01 1.5 max 
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The slot milling operations were conducted using a computer numerical control (CNC) vertical milling machine (VCM-

2216 XV). A Sandvik CoroMill R390 square shoulder milling cutter, with a diameter of 16 mm and equipped with two flutes, 

was employed as the cutting tool. The tool inserts were Sandvik R390-11 T3, featuring a nose radius of 0.8 mm, as shown in 

Fig. 2. The cutting parameters were selected based on both the recommendations provided by the cutting tool manufacturer 

and the operators' experience. 

 

Fig. 2 Tool used in experimental cutting 

Coconut oil was utilized as the base fluid in the nanofluid MQL system, and MWCNTs were incorporated as nanoparticle 

additives. MWCNTs were selected for their superior thermal conductivity (300 W/m·K), which enhances heat dissipation 

during the machining process. The MWCNTs, with an average particle size of less than 30 nm, were dispersed into  coconut 

oil at varying concentrations (0.5%, 1.0%, and 1.5% by weight). The concentration ranges for MWCNTs were determined by 

integrating previous studies [25, 28], initial experimental trials, and the aim of enhancing machining performance while 

maintaining environmental sustainability. 

The nanoparticle dispersion process begins with the exact weighing of MWCNTs using a Kern PLJ 2000-3A precision 

balance, after which the nanoparticles were combined with coconut oil. To ensure uniform dispersion, the mixture was 

continuously stirred for 48 hours using a magnetic stirrer (Ezdo MS-11C), thereby attaining homogeneity before its application 

in the experiments. The nanofluid MQL system was configured to maintain an oil flow rate of 120 mL/h and an air pressure 

of 3.5 kg/cm², with the nozzle positioned 20 mm from the cutting zone at a 60° angle. This arrangement was consistently 

followed throughout the evaluation to maintain optimal lubrication and cooling conditions during the experiments. 

A systematic design of experiments (DOE) approach, including the orthogonal array method, was employed to investigate 

the influence of machining parameters and nanoparticle concentrations. A total of 27 experiments were undertaken, equating 

to an L9 orthogonal array, with each factor examined at three different levels. The factors considered included the cutting 

parameters such as cutting velocity (vc) (95, 125, and 155 m/min), feed per tooth (fz) (0.03, 0.06, and 0.09 mm/tooth), depth of 

cut (ap) (0.3, 0.7, and 1.1 mm), and nanoparticle concentration (% nano) (0.5%, 1%, and 1.5%). These parameter levels were 

carefully selected based on previous studies, practical expertise, personal knowledge, and recommendations from cutting tool 

manufacturers. As shown in Fig. 3, the experimental setup comprises slot milling operations on superalloy Inconel-800 

workpieces under these established machining parameters. The nanofluid, delivered through the MQL system, supplied 

constant lubrication and cooling during each test, enabling an accurate evaluation of the machining outputs under controlled 

conditions. 

Surface roughness (Arithmetic mean deviation, Ra, Peak-to-valley, Rz, and Root mean square deviation, Rq) was measured 

using a Mitutoyo SJ-301 portable surface roughness tester. Three measurements were conducted for each machined surface, 

and the average surface roughness ((Ra, Rz, Rq) value was calculated. Cutting temperatures (Tc) were monitored using a thermal 

camera (UNI-T UTi260B), which was positioned near the cutting zone to record the maximum temperature during machining. 

A Kriging model was developed to model the relationship between the cutting parameters vc, fz, ap, and % nano and output 

responses (surface roughness and cutting temperature). This model was used to predict the responses based on the experimental 

data collected from the orthogonal array design, while the NSGA-II algorithm was employed to optimize cutting parameters. 
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The NSGA-II algorithm simultaneously minimizes surface roughness and cutting temperature, ensuring an optimal balance 

between these conflicting objectives. 

Isight software was utilized to integrate the Kriging model with the NSGA-II algorithm facilitating the optimization 

process. Isight enabled the efficient coupling of the predictive model with the optimization algorithm, providing a robust 

framework for multi-objective optimization. This integration allowed for precise and reliable optimization of machining 

parameters, ensuring the best possible trade-off between surface quality and thermal control. 

The complete methodology is visually summarized in Fig. 4, which comprehensively illustrates the process flow, 

including the implementation of the Kriging model for accurate response prediction, followed by the optimization process 

using the NSGA-II algorithm within the Isight framework. 

 

Fig. 3 The structured approach to modeling and optimizing machining parameters 

 

Fig. 4 The methodology employed in the current work 

3. Results and Discussion 

This study systematically collected and analyzed experimental data to comprehensively investigate the relationship 

between process parameters and surface roughness metrics—specifically, Ra, Rz, Rq, and cutting temperature. Table 3 presents 

the results of 27 experiments conducted using the Taguchi orthogonal array method. The Kriging model was employed to 

estimate the impact of input parameters on technical responses, as detailed in the Materials and Methods section, based on the 

previously provided data. 
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Table 3 Design of Experiment and outcome of investigation 

 Input Parameters  Output parameters 

No. 
ap 

(mm) 

fz 

(mm/tooth) 

vc 

(m/min) 

% nano 

(%) 
 

Ra 

(µm) 

Rz 

(µm) 

Rq 

(µm) 

Tc 

(00) 

1 0.3 0.03 95 0.5  0.32 2.00 0.39 82.2 

2 0.3 0.03 125 1.0  0.23 1.65 0.27 87.5 

3 0.3 0.03 155 1.5  0.42 2.80 0.53 81.1 

4 0.3 0.06 125 0.5  0.35 2.38 0.44 83.2 

5 0.3 0.06 155 1.0  0.26 1.65 0.32 88.3 

6 0.3 0.06 95 1.5  0.53 3.25 0.66 90.2 

7 0.3 0.09 155 0.5  0.45 2.93 0.56 81.8 

8 0.3 0.09 95 1.0  0.29 1.78 0.36 97.2 

9 0.3 0.09 125 1.5  0.64 3.71 0.78 100.5 

10 0.7 0.03 125 0.5  0.27 1.76 0.37 78.7 

11 0.7 0.03 155 1.0  0.32 1.97 0.40 146.6 

12 0.7 0.03 95 1.5  0.30 2.13 0.37 146.1 

13 0.7 0.06 155 0.5  0.36 2.31 0.47 95.1 

14 0.7 0.06 95 1.0  0.37 2.45 0.45 109.3 

15 0.7 0.06 125 1.5  0.49 3.05 0.60 150.2 

16 0.7 0.09 95 0.5  0.39 2.68 0.48 117.6 

17 0.7 0.09 125 1.0  0.81 4.30 0.96 107.3 

18 0.7 0.09 155 1.5  0.59 3.27 0.71 143.3 

19 1.1 0.03 155 0.5  0.36 2.17 0.45 141.2 

20 1.1 0.03 95 1.0  0.32 2.31 0.41 129.9 

21 1.1 0.03 125 1.5  0.34 2.25 0.42 182 

22 1.1 0.06 95 0.5  0.42 3.01 0.54 156.1 

23 1.1 0.06 125 1.0  0.79 4.54 0.97 187.1 

24 1.1 0.06 155 1.5  0.55 2.87 0.67 183.7 

25 1.1 0.09 125 0.5  0.52 3.00 0.64 125.8 

26 1.1 0.09 155 1.0  0.81 4.70 1.00 160.5 

27 1.1 0.09 95 1.5  0.58 3.35 0.71 176.4 

The reliability and accuracy of the Kriging model in representing the experimental data are substantiated by the coefficient 

of determination (R²) derived from regression analysis. Specifically, the R² values for the surface roughness parameters Ra, Rz, 

and Rq, as well as the Tc, were determined to be 0.9215, 0.9638, 0.9379, and 0.9504, respectively. As shown in Fig. 5, these 

values are all above the criterion of 0.9,indicating a strong correlation between the predicted and observed data. The excellent 

R² values emphasize the precision and confidence of the Kriging model in precisely representing the experimental data. 

Therefore, based on these results, it can be inferred that the Kriging model is not only adequate but alsohelpful in capturing 

the complex relationship between the process variables and the related technical responses. This is further evidenced by 

previous studies that utilized the Kriging surrogate model to analyze the relationships between various cutting parameters and 

machining process outcomes [28]. 

Surface roughness plays a critical role in the performance of machined components, particularly in high-stress 

applications. As shown in Fig. 6(a)-(c) the direct correlation between the depth of cut and feed per tooth with surface roughness 

(Ra, Rz, Rq). An in-depth analysis indicates that a higher depth of cut increases chip load and tool-workpiece contact, leading 

to more significant material deformation and rougher surfaces. Similarly, higher feed rates induce more aggressive cutting 

forces and vibrations, which exacerbate surface irregularities. 

On the other hand, cutting speed exhibited an inverse trend. As shown in Fig. 6(d), at optimal cutting speeds, the heat 

generated during machining slightly softens the material, reducing cutting forces and producing a finer surface finish. However, 

excessive cutting speeds may led to tool wear and thermal damage, as evidenced by the increased in surface roughness observed 
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beyond the optimal speed range. The nanofluid MQL system, enhanced by nanoparticles, plays a crucial role by reducing 

friction and improving lubrication [3]. Specifically, the lubricant forms a thin and stable film at the tool-workpiece interface, 

effectively minimizing friction and mitigating material adhesion. Furthermore, the overall thermal management provided by 

the nanofluid MQL system helps maintain surface smoothness at higher cutting speeds, as shown in Fig. 6(e), by dissipating 

heat more efficiently and preventing excessive temperature rise. 

 

 

  

Fig. 5 R² values (>0.9) confirm the Kriging model's accuracy in representing experimental data for Ra, Rz, Rq, and Tc. 

Previous studies have demonstrated significant improvements the enhancement of surface roughness attained via 

nanofluid MQL, which may be ascribed to four primary nanoparticle mechanisms: rolling, self-repairing, tribo-film formation, 

and polishing, as shown in Fig. 7. Rolling diminishes friction by functioning as miniature ball bearings, thereby facilitating 

tool movement smoothness. Self-repairing fills the surface with minute cavities and layers, creating a protective coating to 

reduce adhesion. Polishing further enhances the surface, yielding a significantly smoother finish and illustrating the beneficial 

effect of nanofluid MQL for boosting machining quality [19]. Therefore, the synergistic effect of these mechanisms contributes 

to the superior performance of nanofluid MQL systems compared to conventional lubrication methods. Thus, the Kriging 

model demonstrates that an optimized nanofluid MQL system significantly reduces Ra, Rz, and Rq, particularly at high cutting 

speeds, highlighting the advantages of nanofluid MQL in achieving superior surface finishes when milling Inconel-800 

superalloy. 

Cutting temperature significantly affects both tool wear and workpiece integrity during machining. As shown in Fig. 6(f), 

the relationship between cutting temperature and machining parameters, revealing that depth of cut and feed per tooth are 

critical factors contributing to elevated cutting temperatures. As these parameters increase, they contribute to higher material 

removal rates and greater friction at the tool-workpiece interface, resulting in amplified temperatures. This temperature rise 

can accelerate tool wear and deteriorate the microstructure of the workpiece, leading to diminished mechanical properties and 

R2 = 96.38 % R2 = 92.15 % 

R2 = 93.79 % R2 = 95.04 % 
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potential failure in high-stress applications. This observation corresponds with fundamental cutting principles, wherein 

increased cutting forces result in a corresponding rise in temperature, as demonstrated in several previous studies [3, 28]. 

As shown in Fig. 8(a), the overall effect of input parameters on Tc, further validating these findings by presenting the 

global effects of the four input factors (ap, fz, vc, % nano) on Tc. It reveals that fz and ap exhibit the most significant influence 

on Tc. In contrast, % nan oand vc have a minor impact on temperature regulation. Although these factors contrinute to the 

machining process, their influence on Tc is relatively low compared to the primary cutting parameters (ap, fz). 

The nanofluid MQL system serves a critical function in cutting temperature management, limiting excessive heat 

accumulation. By providing efficient cooling and lubrication, the nanofluid MQL system extends tool life and preserve 

workpiece quality, particularly during the milling operations of the Inconel-800 superalloy, which is a difficult-to-cut material. 

However, the optimization of ap, fz remains critical for controlling Tc under challenging machining conditions. 

(a) Influence of depth of cut and feed per tooth on Ra 
(b) Influence of depth of cut and feed per tooth on Rz 

(c) Influence of depth of cut and feed per tooth on Rq (d) Influence of cutting speed and concentration of nano on Ra 

(e) Influence of cutting speed and concentration of nano on Rq (f) Influence of depth of cut and feed per tooth on Tc 

Fig. 6 The effect of variables on surface finish and cutting temperature 

In summary, an increase in depth of cut and feed per tooth leads to higher surface roughness, whereas greater nanoparticle 

concentrations and cutting speeds enhance surface quality and reduce cutting temperature. The Kriging model highlights the 

importance of optimizing these parameters to enhance performance when machining Inconel-800. The application of 

nanofluids proves particularly effective in improving surface finish and controlling temperature during high-speed milling. 

This finding corroborates previous studies and aligns with established cutting principles in machining processes [28]. 
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Fig. 7 Four fundamental nanoparticle mechanisms: Rolling, tribo-film, polishing, and self-repairing  

The analysis of Fig. 8(b)-(d) highlights the predominant effect of fz on surface roughness parameters (Ra, Rz, Rq). Among 

all responses, fz has the greatest inpact, aligning with established principles suggesting that elevated feed rates enhance material 

deformation and interaction at the tool-workpiece interface, leading to rougher surfaces. 

 
(a) Global effects of input parameters on Tc 

 
(b) Global effects of input parameters on Ra 

(c) Global effects of input parameters on Rz 
 

(d) Global effects of input parameters on Rq 

Fig. 8 The global effect of input parameters on response parameters 

In relationship with Ra, Fig. 8(b) indicates that fz is the primary determinant, whereas vc and nanoparticle % nano exert 

negligible influence. This signifies that feed rate optimization is essential for enhancing surface finish. In Fig. 8(c), Rz 

demonstrates that fz is the primary factor, with a slight influence from nanoparticle concentration, whereas ap exerts a negligible 

effect. This suggests that elevated feed rates result in heightened surface limitations. 

Fig. 8(d) substantiates the dominant role of fz in relation to Rq, with insignificant contributions from vc. This finding 

emphasizes the vulnerability of surface texture, highlighting the necessity for meticulous feed control during machining to 

maintain surface quality. In conclusion, fz is the most important criterion in reducing surface roughness, whereas % nano 

provides supplementary, though lesser, improvements. 
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Fig. 9 Scatter plot of multi-objective optimization for Ra and Tc using Kriging and NSGA-II (scenario 1) 

In machining, surface quality is typically assessed using Ra and Rz; however, these parameters are generally not used 

simultaneously in the same case. This study proposes two scenarios for multi-objective optimization in the machining of 

Inconel-800 using CMWNTs nanofluid MQL conditions, with the objective of enhancing the performance of machining 

difficult materials. In the first scenario, the objectives are to minimize both Ra and Tc, despite their conflicting nature. Higher 

cutting speeds tend to reduce Ra but increase Tc, while lower Tc may raise Ra due to decreased cutting efficiency. Therefore, 

balancing the simultaneous minimization of these two out parameters is crucial for optimal performance. 

The Kriging model combined with the NSGA-II algorithm was applied as a multi-objective optimization method to 

achieve the optimal values for Ra and Rz. The parameters of the NSGA-II algorithm used are as follows: Crossover Distribution 

Index = 10.0, Crossover Probability = 0.9, Mutation Distribution Index = 20.0, Number of Generations = 100, and Population 

Size = 16. The starting design points are: 

0.5 % 1.5Nano   (1) 

95.0    155.0cv   (2) 

0.3    1.1pa   (3) 

0.03    0.09zf   (4) 

Fig. 9 displays a scatter plot illustrating the multi-objective optimization for Ra and Tc using Kriging and NSGA-II. 

Feasible solutions are depicted as individual points. The Pareto front, represented by a distinct curve (also referred to as the 

Pareto line), shows the optimal trade-offs between Ra and Tc. Each point on the Pareto front signifies the best possible 

compromise between these two objectives. 

For instance, if the operator or engineer aims to maintain Tc at 80°C, the Pareto front suggests a Ra value of approximately 

0.284 µm. Without referencing the Pareto front, one might mistakenly choose a Ra value of 0.3231 µm (as indicated by a point 

in Fig. 9), which is suboptimal by around 26.22% (with the variation of Δ Ra = 0.3231 – 0.2384 = 0.0847). These optimal 

results demonstrate a notable improvement in surface quality compared to the study by Hsiao et al. (approximately 16.7% 

versus 26.22%) when machining the same steel grade and nanoparticle type. This study utilized commercially available CT232 

mineral-based cutting oil [3]. Thus, the Pareto front derived from the Kriging and NSGA-II combination not only serves as a 

robust decision-making tool but also enables precise tailoring of the machining process to achieve optimal results, enhancing 

efficiency and reducing waste when milling Inconel-800 superalloy. Based on the specific machining requirements, the 

operator or engineer can select the point that best aligns with their objectives and adjust cutting parameters accordingly. The 

multi-objective optimization process history is depicted in Fig. 10. 
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(a) History of the optimization process refining Ra trade-offs 

 

(b) History of the optimization process refining Tc trade-offs 

Fig. 10 History of the optimization process depicting the gradual refinement of trade-offs between Ra and Tc 

In the second scenario, the optimization is employed the same methodology as before: integrating the Kriging model and 

the NSGA-II approach, while maintaining constant input parameters and a dual objective of minimizing both Ra and Tc aiming 

to construct a Pareto front that maps Rz against Tc. 

Similar to the first scenario, Fig. 11 indicates an inverse relationship between Rz and Tc. When the operator maintains Tc 

at approximately 80°C, the Pareto front reveals two potential solutions: an optimized Rz of 1.4909 µm and a feasible but 

suboptimal Rz of 1.6955 µm, with a difference of Δ Rz = 0.2046 µm. This improvement of approximately 12.06% highlights 

how NSGA-II optimization combined with the Kriging model significantly enhances surface texture without compromising 

Tc. 

 
Fig. 11 Scatter plot of multi-objective optimization Rz and Tc using Kriging and NSGA-II (scenario 2) 

The trade-off between optimizing Rz and Tc presents a conflict, accentuating the Pareto front for selecting a balanced 

solution. If minimizing Rz is the primary objective, a higher Tc may need to be accommodated. Conversely, if Tc is prioritized 

to extend tool life or prevent thermal damage, careful control of Tc is crucial. This Pareto-based optimization enables decision-

makers to choose the best compromise based on specific needs, whether for to achieve superior surface finish or to maintain a 

safe and controlled cutting temperature. Fig. 12 illustrates the optimization history, depicting the algorithm’s convergence and 

the gradual refinement of trade-offs between Rz and Tc. This incremental improvement demonstrates the algorithm's efficiency 

in identifying the optimal balance, reducing both Rz and Tc over successive iterations to achieve improved machining 

performance. 

The analysis of the experimental results reveals that machining Inconel-800 with MWCNT nanofluid MQL led to 

substantial improvements in surface finish and cutting temperature. Specifically, Ra values decreased by up to 26.22%, Rz 

showed a 12.06% improvement. These results strongly support the hypothesis that integrating MWCNT nanoparticles into the 
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MQL coolant system is crucial in reducing surface roughness. Moreover, the cutting temperature (Tc) increased with higher 

feed rates and depths of cut, which is consistent with fundamental machining principles. However, the nanofluid MQL system 

effectively moderated the temperature rise, facilitating a more stable and controlled machining environment. Lowering cutting 

temperature is particularly critical in high-performance machining, as it prolongs tool life and preserves material integrity, 

especially when machining challenging materials such as Inconel-800. 

(a) Evolution of the optimization process fine-tuning Rz trade-offs (b) Evolution of the optimization process fine-tuning Tc trade-offs 

Fig. 12 History of the optimization process depicting the gradual refinement of trade-offs between Rz and Tc 

The Kriging model analysis provided valuable insights into the influence of process parameters, underscoring the pivotal 

roles of fz and ap in regulating surface roughness and cutting temperature. The model’s high predictive accuracy (with R² values 

exceeding 0.9) further reinforces the reliability of these findings. This highlights the potential of the Kriging model as an 

effective tool for optimizing machining processes, especially in complex operations such as milling Inconel-800 superalloy. 

Although the nanoparticle concentration (MWCNT) was of secondary importance relative to cutting speed and feed per 

tooth, its contribution to improving surface finish and reducing cutting temperature remains significant. The results suggest 

that future research should focus on optimizing nanoparticle concentrations to identify the ideal balance between surface 

quality and thermal management. 

4. Conclusions 

The study aims to optimize the machining process of inconel-800 superalloy by utilizing nanofluid MQL, enhanced with 

biodegradable coconut oil and MWCNTs, to achieve improved surface texture and lower cutting temperature. A systematic 

design of experiments (DOE) was conducted to highlight the role of nanofluid MQL in sustainable machining, addressing the 

challenges of processing Inconel-800 superalloy and promoting sustainable practices in modern manufacturing. The key 

findings are summarized as follows: 

(1) Utilizing nanofluid MQL with MWCNTs in coconut oil effectively improves surface texture, lowers cutting temperature, 

and enhances lubrication and cooling efficiency in machining Inconel-800 superalloy. 

(2) The Kriging model is highly effective in capturing the complex relationship between cutting parameters (ap, fz, vc, % nano) 

and response parameters (Ra, Rz, Rq, and Tc), achieving a high level of accuracy (R² > 0.9). 

(3) The combination of the Kriging model with the NSGA-II algorithm efficiently balances conflicting multi-objective 

functions related to machining performance and efficiency. The Pareto front facilitates informed decision-making, 

allowing operators and engineers to identify optimal solutions tailored to their specific requirements. 

(4) In the first scenario, a 26.22% improvement in Ra was achieved when minimizing Ra at a constant Tc. Similarly, in the 

second scenario, approximately a 12.06% improvement in Rz was observed, showcasing the effectiveness of nanofluid 

MQL in sustainable machining. 
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(5) The study emphasizes the potential of sustainable manufacturing when employing nanofluid MQL with environmentally 

friendly coconut oil, suggesting its applicability in industrial manufacturing. It provides deeper insights into the machining 

Inconel-800 and similar materials. 

Future research should investigate the long-term effects of MWCNT-enhanced nanofluid MQL on tool life and explore 

its integration into manufacturing processes to minimize reliance on conventional lubricants while maintaining machining 

efficiency. Additionally, applying the optimized nanofluid MQL system to other challenging materials, such as titanium alloys 

and harder ceramics, and incorporating the Kriging-NSGA-II optimization method into real-time adaptive machining systems 

will enhance scalability and industrial applicability. 
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