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Abstract 

Free and forced vibration analysis of two-directional functionally graded sandwich (2D-FGSW) beams using a 

shear deformable finite element formulation is presented. The beams considered in this paper consists of three layers, 

a homogeneous ceramic core, and two functionally graded skin layers. Material properties of the skin layers are 

supposed to vary in both the thickness and length directions by power gradation laws. Based on a refined shear 

deformation beam theory, in which the transverse displacement is split into bending and shear parts, a novel finite 

element formulation is derived and employed in the analysis. Natural frequencies and dynamic response to a 

harmonic load of the beams with various boundary conditions are computed, and the influence of the material 

distribution and the layer thickness ratio on the vibration characteristics of the beams is highlighted. Numerical 

results reveal that the variation of the material properties in the longitudinal direction has a significant influence on 

the vibration behavior of the beams, and FGSW beams can be designed to achieve desired vibration characteristics 

by appropriate selection of material grading indexes. 
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1. Introduction 

Sandwich structures with high strength-to-weight ratio are widely used to fabricate structural elements in aerospace 

engineering. In order to improve the mechanical performance of these structures under complex loadings, Functionally Graded 

Materials (FGMs), a new type of composite materials initiated by Japanese researchers in 1984 [1], have been incorporated in 

the sandwich construction in recent years. Understanding the mechanical behavior of Functionally Graded Sandwich (FGSW) 

structures in general, and vibration of FGSW beams, in particular, is crucial for using this new composite material effectively. 

Investigations on the vibration of FGSW beams, the topic discussed in this paper, are briefly discussed below.  

Pradhan and Murmu [2] used the modified differential quadrature method to compute natural frequencies of FGSW 

beams resting on an elastic foundation. The dependence of material properties upon temperature was considered in 

The work. Based on the element free Galerkin method, Amirani et al. [3] studied free vibration of an FGSW beam with an 

FGM core. The authors employed two micromechanics models, Voigt and Mori-Tanaka models, to evaluate the effective 

material properties of the beams, and they showed that the natural frequencies based on Mori-Tanaka scheme are slightly lower 

than that using Voigt model. Adopting a hierarchical displacement field, Mashat et al. [4] derived a finite element formulation 
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for evaluating natural frequencies of laminated and sandwich beams with material properties varying by a power gradation law. 

Free vibration and buckling of FGSW beams were considered by Bennai et al. [5] by using a new refined hyperbolic shear 

deformation beam theory.  In [6, 7], Vo et al. presented a refined shear deformation theory and then improved it to form the 

quasi-3D theory by taking thickness stretching effect into account for studying free vibration and buckling of FGSW beams. 

Recently, Su et al. [8] employed the modified Fourier series to compute fundamental frequencies of FGSW beams resting on 

an elastic foundation.  

In many practical circumstances, the unidirectional FGM in the above-cited papers may not be so appropriate to resist 

multi-directional variations of mechanical and thermal loadings, and development of FGM with material properties varying in 

two or three spatial directions is necessary. Several investigations on vibration analysis of FGM beams with material gradation 

in both the thickness and length directions have been reported in recent years [9-12]. Investigation on the mechanical behavior 

of 2D-FGSW beams, however, is still very limited. To the authors’ best knowledge, there is only a study by Karamanli in [13], 

where static bending of FGSW beams with material properties varying in both the thickness and length directions by power 

gradation laws under uniform distributed load was studied by the symmetric smoothed particle hydrodynamics method. In 

order to explore the behavior of this new type of structure in some further, a finite beam element is formulated in this paper for 

studying free and forced vibration of two-directional functionally graded sandwich (2D-FGSW) beams. The beams are 

considered to be formed from three layers, a homogeneous isotropic ceramic core and two FGM skin layers with material 

properties varying in both the thickness and length directions by power gradation laws. A refined shear deformation beam 

theory, in which the transverse displacement is split into bending and shear parts, is adopted to derive the element stiffness and 

mass matrices of the beam element. Thus, in addition to the vibration of the 2D-FGSW beams considered herein for the first 

time, the refined theory which allows to include the shear and rotary inertia effects by dividing the transverse displacement into 

bending and shear parts is also a new feature of this paper. The theory with the parabolic distribution of shear deformation in 

the beam thickness does not require a shear correction factor, and with the mentioned advantages, it has been widely adopted in 

vibration and buckling analysis of FGSW plates [14-17]. Using the derived formulation, natural frequencies and dynamic 

response of the beams with various boundary conditions to a harmonic load are computed, and the effects of material 

distribution, the layer thickness ratio and the aspect ratio on the vibration behavior of the beams are examined and highlighted. 

2. 2D-FGSW Beam Model 

A 2D-FGSW beam with a rectangular cross-section (bxh) as depicted in Fig. 1 is considered. The beam is assumed to 

form from three layers, namely a core of pure ceramic and two skin layers made of ceramic-metal FGM. In the figure, the  

x-axis is chosen on the mid-plane, and the z-axis is perpendicular to the mid-plane and directs upward. Denoting z0, z1, z2, and 

z3 as the vertical coordinates of the bottom layer, layer interfaces, and the top layer, respectively. 

Layer 1: 2D-FGM

Layer 3: 2D-FGM

Layer 2: ceramic

b
0z =-h/2

3z =h/2
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z y
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Fig. 1 Geometry of 2D-FGSW beam 

The beam is considered to be made of ceramic and metal whose volume fraction varies in the thickness and length 

directions by power gradation laws as [13] 
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where Vc and Vm are, respectively, the volume fraction of ceramic and metal; nx and nz are the grading indexes, defining 

variations of the constituent materials in the x- and z-directions, respectively. Noting that when nx=0 the beam deduces to the 

conventional 1D-FGSW beam with the material properties vary in the thickness direction only. 

The effective property such as Young’s modulus and mass density, P(x,z), evaluated by the Voigt model is of the forms 
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where Pm and Pc are the properties of the metal and ceramic, respectively. 

Based on the refined third-order shear deformation beam theory [6], the displacements in x- and z-directions, u1(x,z,t) and 

u3(x,z,t), at any point of the beam are respectively given by 
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(3) 

where u, wb, ws are the axial displacement, transverse bending and shear displacements of a point on the x-axis, respectively.  In 

Eq. (3) and hereafter, a subscript comma is used to denote the derivative with respect to the followed variable, e.g. 

, /s xw w x   . The strains resulted from Eq. (3) are of the forms 
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Assuming linearly elastic behavior, the constitutive equations for the beam are of the form 

2
,
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(5) 

where  is Poisson’s ratio, assumed to be unchanged. 

The strain energy (U) resulted from Eqs. (4) and (5) is 
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(6) 

where A11, A12 …, A66, B11, B22, B44 are the beam rigidities, defined as 
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and 

1

3
2 4 2 4

11 22 44

1

( , , ) ( , , ) (1, , )
2(1 ) 2(1 )

i

i

z

iA z

E bE
B B B z z z dA z z dz

 




 
 

 
 

(8) 

In Eqs. (6-8), V and A denote the volume and cross-sectional area of the beam, respectively.  Because the effective Young 

modulus E varies in both the thickness and length directions, the rigidities in Eqs. (7) and (8) are functions of x. 

The kinetic energy (T) of the beam resulted from the displacement field in Eq. (3) is as follows 
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in which I11, I12, I22, I34, I44, and I66 are the mass moments, defined as 
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The above mass moments, as the beam rigidities, also are functions of x.  The potential (V) of a harmonic load, 

F=F0cos(Ωt), considered herein has a simple form 

0 |cos( )( )
Fb s x xV F t w w      (11) 

In the above equation, the subscript x=xF  means that the bending and shear transverse displacements are evaluated at the 

abscissa of the load F. 

Equations of motion for the beam can be obtained by applying Hamilton’s principle to Eqs. (6), (9) and (11). However, 

due to the rigidities and mass moment are functions of longitudinal coordinate x, the coefficients of such equation are 

dependent on x,  and thus a closed-form solution is very difficult to obtain.  A finite element formulation is developed below for 

computing the vibration characteristics of the beam. 

3. Finite element formulation 

A two-node beam element with length l is considered in this section.  The element contains six degrees of freedom per 

node, and the vector of nodal displacements is given by 

{ }T

u wb wsd d d d
 

(12) 

where  

1 2 1 , 1 2 , 2 1 , 1 2 , 2{ }, { }, { }u wb b b x b b x ws s s x s s xu u w w w w w w w w  d d d
 

(13) 

are, respectively, the vectors of axial displacements, bending and shear transverse displacements at node 1 and node 2.  In 

Eq. (12) and hereafter, a superscript “T” is used to denote the transpose of a vector or a matrix. It should be noted 

that the order of the nodal displacements is not necessary as in Eq. (12), but it is convenient to split the displacements into axial, 

bending and shear parts. 
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The displacements inside the element are interpolated from their nodal values according to 
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where Nu, Nwb and Nws are the matrices of shape functions for u, wb and ws, respectively.  In the present work, the linear 

function is used for the axial displacement, while the Hermite cubic polynomials are employed for wb and ws. In this regard, we 

can write  
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Using the above interpolation scheme, one can write the strain energy for the beam in the form 
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where NE  is the total number of elements, and k is the element stiffness matrix, which can be split into the sub-matrices as  
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In the above, aak , bbk , ssk , abk , ask , bsk are the stiffness matrices stemming from axial stretching, transverse 

bending, transverse shear and couplings of these terms. These sub-matrices can be obtained by twice differentiation of the 

strain energy U with respect the nodal displacements, for example 
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Eq. (20) gives the sub-matrices in the following forms 
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Similarly, the kinetic energy of the beam can also be written in the form 
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where / t  d d is the element nodal velocity, and m is the element mass matrix which can be written in sub-matrices as  
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The mass sub-matrices in the above equation are obtained by twice differentiation of the kinetic energy with respect to the 

associated nodal velocities and they have the following forms 
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Due to the rigidities and mass moments are functions of x, the integrals in Eqs. (21) and (24) are hardly computed 

explicitly. Gauss quadrature is employed herein to compute the stiffness and mass matrices. 

With the introduced interpolations, the vector of nodal external load given by Eq. (11) can be written in the form 

0
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cos( ) 0 0 0..... 0 0 0 0...0 0 0
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The matrix of the shape functions in the above equation is evaluated at x=xF, the abscissa measured from the load to the 

left end of the element. 

The equations of motion for the beam in term of finite element analysis can be written in the form [18]  

ex  MD CD KD F  (26) 

where D, D , D  are, respectively, the structural vectors of nodal displacements, velocities and accelerations; K, M, and C are 

structural stiffness, mass and damping matrices, respectively. Rayleigh damping, in which the damping matrix C is 

proportional to a linear combination of mass and stiffness, is employed herein 

  C K M  (27) 

where α and β are, respectively, the mass and stiffness proportional Rayleigh damping coefficient, which are calculated from 

the critical damping ratio and the natural frequencies as 

1 2
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In the above,   is the damping ratio, taken by 5% for all numerical computation below. 
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4. Results and discussion 

Using the derived finite element formulation, natural frequencies and dynamic response of the 2D-FGSW beam are 

computed, and numerical results are reported in this section. To this end, an FGSW beam formed from alumina (ceramic) and 

aluminum (metal) is considered. The material properties of the constituents are as follows [7]: 

(1) Ec=380 MPa, ρc=3800 kg/m
3
,
 

0.3c   for alumina 

(2) Em=70 MPa, ρm=2702 kg/m
3
, 0.3m   for aluminum 

For the convenience of discussion, the three numbers as proposed in [6] are used to indicate the layer thickness ratio, for 

example (2-1-2) means the thickness ratio of the bottom, core, and top layers is 2:1:2. Fig. 2 shows the variation of the effective 

Young’s modulus and mass density in the thickness and length directions for (1-1-1) beam made of alumina and aluminum 

with nx=nz=0.5 according to Eq. (2). It can be seen that Young’s modulus and mass density continuously vary in both the 

thickness and length directions of the beam. 

  

(a) Young’s modulus  (b) Mass density 

Fig. 2 Variation of Young’s modulus and mass density for (1-1-1) beam with  nx=nz=0.5 

4.1.   Formulation verification 

Before computing vibration characteristics of the beam, the derived formulation is necessary to confirm.  Since there is no 

data on the vibration of the 2D-FGSW beam considered herein available in the literature, the comparison is carried out for the 

static bending of the beam as reported in [13]. Table 1 compares the maximum dimensionless deflection of the simply 

supported beam (SS beam) under uniform distributed load q0 obtained by the present finite element formulation with that of 

Karamanli [13] using the symmetric smoothed particle hydrodynamics method. Regardless of the grading indexes, the layer 

thickness ratio and the aspect ratio, the maximum deflection of the beam obtained in the present paper is in good agreement 

with that of Ref. [13]. The dimensionless deflection in Table 1 is defined as follows [13] 

 
3

*
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100
max ( )mE bh

w w x
q L
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(29) 

where Em is Young’s modulus of metal. 
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Table 1 Comparison of maximum dimensionless deflection (
*w ) of SS beam under static uniform load 

nx nz Source 
L/h = 5 L/h=20 

1-1-1 1-8-1 2-2-1 1-1-1 1-8-1 2-2-1 

0.1 

0.1 
Ref. [13] 10.7054 4.7401 10.9470 10.3994 4.4818 9.1047 

Present 10.8634 4.8064 9.4128 10.4116 4.4848 9.1096 

0.5 
Ref. [13] 7.5039 4.2112 9.5412 7.2199 3.9561 6.5597 

Present 7.6124 4.2698 6.8473 7.2273 3.9586 6.5680 

1 
Ref. [13] 6.0343 3.9030 6.9428 5.7613 3.6501 5.3608 

Present 6.1185 3.9570 5.6327 5.7667 3.6525 5.3658 

2 
Ref. [13] 4.8871 3.6275 4.6673 4.6274 3.3772 4.4070 

Present 4.9572 3.6775 4.7321 4.6313 3.3793 4.4101 

0.5 

0.1 
Ref. [13] 8.4793 4.4862 5.7112 8.1706 4.4143 7.3680 

Present 8.6148 4.5492 7.6764 8.1964 4.2298 7.3839 

0.5 
Ref. [13] 6.5069 4.0580 7.7882 6.2253 4.2331 5.7569 

Present 6.6011 4.1143 6.0408 6.2338 3.8040 5.7660 

1 
Ref. [13] 5.4735 3.8004 6.1257 5.2055 3.8068 4.9004 

Present 5.5523 3.8534 5.1692 5.2114 3.5490 4.9064 

2 
Ref. [13] 4.6040 3.5666 4.4251 4.3451 3.3169 4.1669 

Present 4.6689 3.6155 4.4873 4.3491 3.3190 4.1706 

1 

0.1 
Ref. [13] 6.9827 4.2462 6.4602 6.6753 3.5515 6.1562 

Present 7.0975 4.3050 6.5600 6.7054 3.9922 6.1781 

0.5 
Ref. [13] 5.7178 3.9088 5.3861 5.4388 3.9943 5.1050 

Present 5.8019 3.9608 5.4616 5.4499 3.6551 5.1153 

1 
Ref. [13] 4.9904 3.6976 4.7624 4.7252 3.6570 4.4948 

Present 5.0598 3.7487 4.8272 4.7288 3.4477 4.5000 

2 
Ref. [13] 4.3387 3.5031 4.1978 4.0816 3.2549 3.9396 

Present 4.3982 3.5514 4.2549 4.0843 3.2566 3.9434 

4.2.   Free vibration 

The fundamental frequency parameters of the SS beam are listed in Tables 2 and 3 for various values of the grading 

indexes and the layer thickness ratio and two value of the aspect ratio, L/h=5 and L/h=20, respectively. The frequency 

parameters in the tables (and below) are defined as follows 

2
i m

i
m

L

h E

 
 

 

(30) 

where ωi is the i
th

 natural frequency of the beam. 

Table 2 Fundamental frequency parameter (μ1) of SS beam with L/h = 5  

nx nz 1-0-1 2-1-2 1-1-1 1-2-1 1-8-1 2-2-1 

0 

0.5 3.2500 3.3728 3.5186 3.7904 4.5227 3.7057 

1 3.5735 3.7297 3.8755 4.1105 4.6795 4.0189 

5 4.4615 4.5756 4.6582 4.7690 4.9899 4.7106 

0.5 

0.5 3.6300 3.7134 3.8194 4.0263 4.6176 3.9640 

1 3.8648 3.9816 4.0942 4.2804 4.7489 4.2086 

5 4.5673 4.6620 4.7311 4.8245 5.0125 4.7753 

1 

0.5 3.8922 3.9549 4.0378 4.2037 4.6942 4.1548 

1 4.0761 4.1687 4.2596 4.4123 4.8056 4.3538 

5 4.6520 4.7319 4.7906 4.8701 5.0315 4.8282 

2 

0.5 4.2427 4.2840 4.3402 4.4556 4.8093 4.4223 

1 4.3679 4.4318 4.4956 4.6043 4.8918 4.5629 

5 4.7785 4.8373 4.8807 4.9398 5.0609 4.9087 

5 

0.5 4.2427 4.2840 4.3402 4.4556 4.8093 4.4223 

1 4.3679 4.4318 4.4956 4.6043 4.8918 4.5629 

5 4.7785 4.8373 4.8807 4.9398 5.0609 4.9087 

The effects of the grading indexes and the layer thickness ratio on the frequency of the beam are clearly seen from Tables 

2 and 3. For a given value of the layer thickness ratio, the frequency parameter of the beam increases by the increase of the 
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material grading indexes, regardless of the aspect ratio. This can be explained by the fact that the volume fraction of the metal, 

as seen from Eq. (1), is lower, and thus the ceramic percentage is larger for the beam associated with higher indexes nx and nz. 

Since Young’s modulus of the ceramic is much higher than that of the metal, the rigidities of the beam with higher ceramic 

content are higher. The mass density of the beam with a  higher ceramic content also larger, but for the constituent materials 

considered in this paper, the increase of the rigidities by increasing nx and nz is much faster than that of the mass moments. This 

explains the increase of the frequency when increasing the grading indexes. The layer thickness ratio, as seen from Table 2 and 

3, also influences the increase of the frequency. For example, for the SS beam with L/h=20 and a length index nx=0.5, the 

frequency parameter μ1 of the (1-0-1) beam increases 21.02% when increasing nz from 0.5 to 5, but the corresponding value is 

20.24%, 7.51%, and 8.44% for the (1-1-1), (1-2-1), and (1-8-1) beams, respectively. A careful examination of Table 2 and 3 

shows that the increase of the frequency by increasing nz depends upon the value of nx also. For example, as seen from Table 2, 

the frequency parameter increases 20.35% when increasing nz from 0.5 to 5 for (1-1-1) beam with nx=0.5, but the 

corresponding value for the (1-1-1) beam with nx=5 is just 11.44%.  In other words, the increase of the fundamental frequency 

by increasing the thickness index is smaller for the beam associated with a higher length index. 

Table 3 Fundamental frequency parameter (μ1) of SS beam with L/h = 20  

nx nz 1-0-1 2-1-2 1-1-1 1-2-1 1-8-1 2-2-1 

0 

0.5 3.3781 3.4953 3.6472 3.9387 4.7473 3.8512 

1 3.7147 3.8768 4.0328 4.2889 4.9233 4.1906 

5 4.6783 4.8058 4.8987 5.0239 5.2748 4.9578 

0.5 

0.5 3.7880 3.8629 3.9727 4.1958 4.8533 4.1320 

1 4.0307 4.1510 4.2717 4.4760 5.0012 4.3988 

5 4.7962 4.9026 4.9806 5.0864 5.3005 5.0306 

1 

0.5 4.0732 4.1260 4.2112 4.3907 4.9391 4.3413 

1 4.2617 4.3563 4.4539 4.6222 5.0651 4.5594 

5 4.8911 4.9812 5.0476 5.1380 5.3220 5.0903 

2 

0.5 4.4581 4.4884 4.5450 4.6700 5.0686 4.6374 

1 4.5838 4.6477 4.7160 4.8365 5.1623 4.7923 

5 5.0334 5.1000 5.1494 5.2169 5.3554 5.1813 

5 

0.5 5.0070 5.0168 5.0398 5.0940 5.2756 5.0808 

1 5.0587 5.0853 5.1151 5.1690 5.3194 5.1496 

5 5.2595 5.2904 5.3134 5.3450 5.4104 5.3284 

 

  

(a) The first parameter μ1 (b) The second parameter μ2 

  

(c) The third parameter μ3 (d) The fourth parameter μ4 

Fig. 3 Variation of the first four frequency parameters with grading indexes of (1-1-1) SS beam with L/h = 20 
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The aspect ratio L/h also slightly influences the change of the frequency parameter and the change in the frequency 

parameter is not significant for the beam with a lower aspect ratio L/h. For example, the fundamental frequency parameter 

increases 17.17% for the (2-1-2) beam with nx=1 having L/h=20 when increasing nz from 0.5 to 5, but this increase reduces to 

16.42% for the beam with L/h=5. Thus, the material gradation, the layer thickness ratio, and the aspect ratio are all important 

parameters which should be considered in designing the 2D-FGSW beam depends in order to achieve a beam with desired 

natural frequencies. 

The effect of the grading indexes on the higher frequency parameters is illustrated in Fig. 3-5, where the variation of the 

first four natural frequency parameters with the grading indexes nx and nx is depicted for the SS, Clamped (CC) and Cantilever 

(CF) beams with a layer thickness ratio of (1-1-1) and an aspect ratio L/h=20, respectively. Similar to the fundamental 

frequency, the higher frequencies also increase by increasing the grading indexes nx and nz, regardless of the boundary 

conditions. The boundary conditions may affect the amplitude of the natural frequencies, but it hardly influences the 

dependence of the frequency parameters upon the material grading indexes. 

  
(a) The first parameter μ1 (b) The second parameter μ2 

  
(c) The third parameter μ3 (d) The fourth parameter μ4 

Fig. 4 Variation of the first four frequency parameters with grading indexes of (1-1-1) CC beam with L/h = 20  

  
(a) The first parameter μ1 (b) The second parameter μ2 

  
(c) The third parameter μ3 (d) The fourth parameter μ4 

Fig. 5 Variation of the first four frequency parameters with grading indexes of (1-1-1) CF beam with L/h = 20  
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4.3.   Dynamic response 

The dynamic response of the 2D-FGSW beam to a harmonic load P=P0cos(Ωt) is investigated in this sub-section. In order 

to calculate the response of the beam, the average acceleration Newmark method is employed to solve Eq. (26). The beam with 

two types of boundary conditions, namely SS and CF beams, with a harmonic load acting at the mid-span and free and, 

respectively are considered herein. The variation of the dimensionless deflections with the time at the loaded points of the SS 

and CF beams with an aspect ratio L/h=20 and a layer thickness ratio of (2-1-2) is illustrated in Fig. 6 and 7 for an excitation 

frequency Ω=10 rad/s, respectively.  The deflections w* in the figures are normalized by the static bending transverse 

displacements of the ceramic beam, that are 

3

48
* ( / 2) for SS beamc

b

E I
w w L

PL


 
(31) 

3

3
* ( ) for CF beamc

b

E I
w w L

PL


 

(32) 

 

  

(a) nx=1, nz is variable (b) nz=1, nx is variable 

Fig. 6 Variation of mid-span dimensionless deflection with the time of SS (2-1-2)  

beam under harmonic load with Ω=10 rad/s acting at mid-span 

  

(a) nx=1, nz is variable (b) nz=1, nx is variable 

Fig. 7 Variation of dimensionless deflection at the free end with a time of CF (2-1-2) 

 beam under harmonic load with Ω=10 rad/s acting at the free end 

The effect of the grading indexes on the harmonic response of the beams can be seen from the figures, where the dynamic 

deflections are clearly decreased by increasing the material grading indexes nx and nz , regardless of the boundary conditions. 
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This effect can also be explained by the increase of ceramic content for the beam associated with the higher indexes, and this 

leads to higher rigidities for the beam associated with higher grading indexes, as explained above. As a result, the dynamic 

deflection of the beam is decreased by increasing the material grading indexes. 

5. Conclusions 

In this paper, a finite element formulation was developed for analyzing the free and forced vibration of  2D-FGSW beams. 

The beams were considered to be formed from three layers, a homogeneous ceramic core and two functionally graded skin 

layers with material properties varying in both the thickness and length directions by power gradation laws. Based on the 

refined third-order shear deformation theory, in which the transverse displacement is split into bending and shear parts, 

expressions for stiffness and mass matrices of a two-node beam element were derived and employed in computing natural 

frequencies and dynamic response of the beams. Numerical results obtained by using the formulation was compared with the 

published data to confirm the accuracy of the proposed formulation. A parametric study has been carried to highlight the 

effects of the material distribution, the layer thickness ratio and the aspect ratio on the vibration characteristics of the beams. 

The obtained results reveal that the material distribution and the layer thickness ratio of the beams play an important role on the 

vibration response of the 2D-FGSW beams. The numerical results of the present paper guide to design 2D-FDSW beams to 

achieve desired vibration characteristics. Though the paper examined only harmonic response of the beam, the finite element 

formulation developed herein can be employed to compute dynamic response of 2D-FGSW beams subjected to other types of 

dynamic loads as well. 
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