Advances in Technology Innovation, vol. 6, no.0212 pp. 213-221

Vehicle Path Planning with Multicloud Computation Services

Po-Tong Wany Shao-Yu Lif, Jia-Shing Sheu

'Department of Electrical Engineering, Lunghwa Uns$ity of Science and Technology, Taoyuan, Taiwan

Department of Computer Science, National Taipeversity of Education, Taipei, Taiwan
Received 21 February 2021; received in revised fa@rAugust 2021; accepted 10 August 2021
DOI: https://doi.org/10.46604/aiti.2021.7192

Abstract
With the development of artificial intelligence,lic cloud service platforms have begun to prowdidenmon
pretrained object recognition models for public.usethis study, a dynamic vehicle path-planningteyn is
developed, which uses several general pretrairmdichodels to detect obstacles and calculate tigataon area.
The Euclidean distance and the inequality baseti@detected marker box data are used for vehatlegdanning.
Experimental results show that the proposed methodeffectively identify the driving area and pksafe route.
The proposed method integrates the bounding baxrirdtion provided by multiple cloud object detentgervices
to detect navigable areas and plan routes. Thergogred for cloud-based obstacle identificat®2 is per frame,
and the time required for feasible area detectimmhaction planning is 0.001 s per frame. In theeexpents, the

robot that uses the proposed navigation methogbleamroutes successfully.

Keywords: computer vision, scene recognition, cloud compuytoigect detection

1. Introduction

Although humans can walk small distances, walkioggl distances is exhausting and tiomsuming. Therefore,
bicycles, motorcycles, and cars were invented tive, and their continued evolution has made movegroenvenient and
safe. The focus of vehicle development has noweghtb the production of low-pollution electric veles, such as electric
bicycles, balance bikes, and skateboards. Autonenuiving can decrease the burden on human drivetsjce road
congestion, and improve transportation safety Rlpnning a safe pathway is the focus of autononansng. The
information regarding the surrounding environmentdllected to plan the next action. To prevensiohs, the environment
and moving objects are monitored in real time fetedmining appropriate responses. However, theemphtation of
autonomous driving technologies is difficult. Curreautonomous vehicles use multiple ultrasonic ptical radars for
detecting surrounding objects to create high-gu#iitee-dimensional (3D) models at night and dutirgday; however, these

sensors are expensive. Furthermore, inclement eeséiverely affects the performance of the afor¢imeed sensors.

Machine vision technology is used in daily life &pgtions, such as the smart face unlock featussriartphones, instant
text translation, and automatic checkout in stofés. capabilities of hardware equipment, such gls-hihage-quality cameras,
vision processors, and 5G networks, are continuafyoving. Commercially available visual models @ccurately perform
face, object, and text recognition. This study izesl the recognition of different objects in raeldé images by using
application programming interfaces (APIs), i.e.,08le Cloud Vision, Amazon Rekognition, and Azuren@ater Vision.
The obtained object information is regarded ascthreent environmental conditions when determinimgwalking area. This

study uses available resources and machine vigidevtelop a low-cost and fast method for dynamtb pascrimination.
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The remainder of this study is organized as follo8&ction 2 describes the relevant literature.i®e@& describes the
system architecture. Section 4 presents a desmripfithe experiments and the experiment resuits saction 5 provides the

conclusions of this study.

2. Literature Review and Methodology

Object detection is a technique for classifyingeolg in an image, and object detection technolagyelrolved considerably.
LeCun et al. [2] proposed the LeNet image recogmitietwork, which was subsequently modified by Keizsky et al. [3] into
AlexNet. The addition of the rectified linear uaitd DropOut nonlinear activation functions to Lebesiderably improved its
image recognition rate. Thus, machine vision hasved rapidly. He et al. [4] proposed residual ratwnarchitecture to solve the
problem of overfitting. Huang et al. [5] and Wangat [6] made subtle changes and proposed DensahtbtCSPNet,
respectively. Similar concept§ CSPNet were used to design novel architecthieseffectively enhance network identification
capabilities [5-6]. Howard et al. [7] proposed tigkight network architecture to increase the precesalculation speed and

solve the problem of slow network operations in iteothevices and embedded learning.

The aforementioned network architectures can béemmgnted to obtain a backbone network for the riggiching of image
features. Many object recognition networks use dumtkbone networks for image feature extractiorriodia calculation
methods are then incorporated into the networlesonl the category and location of imatjgs Ren et al. [9] developed a
two-stage object recognition, i.e., faster regiagsdu convolutional neural networks (Faster RCNNj avhigh recognition rate
by using visual geometry group (VGG) as the backbaoatwork and the region proposal network. Theeafientioned
architecture was also used in an object recognitework [10]; however, in contrast to Faster RC¢, single-shot detector

(SSD) object recognition network performs one-sidgatification in real time.

Numerous sophisticated, fast, and automated obgtettion networks have been proposed. The ipitbposed object
detection networks such as “you only look once (Y3Ldo not use artificial anchor frames [11]. Latvak [12] proposed
CornerNet, which is a novel anchorless frame ndtwior self-learning object detection. Duan et[48] and Tian et al. [14]
subsequently improved CornerNet and achieved tine sasults as Law et al. [12] without relying omlaor frames. Tan et al.
[15] developed EfficientDet and achieved up to S8/@rage precision (AP) with current one-stageablojetectors.

Achieving simultaneous localization and mappingrigical for developing automated machinery. Liglgtection and
ranging technology can be used to sense the sulirguenvironment and dynamically avoid moving ot§esuch as crowds and
vehicles on the road [16-17]. Furthermore, RGBDeldagsual sensors were used to establish realdmaonmental images
and motion paths for augmented reality (AR), virgality (VR), and unmanned aerial vehicle (UAWsitioning [18]. A
vision-based deep learning network can be usecetectithe environment for conducting motion detectiwalkable area
detection, and motion planning [19]. Obstacle d@&aaan also performed by object detection, ardédlhnique algorithm will

be used to mark walkable areas and relative coateelirf20-21].

Avoiding obstacles is a crucial ability for autonmms mobile robots, which must plan suitable movemeutes. When
moving from the current location to a target logatithe most efficient movement route is the slsbrpath without any
restrictions. Dijkstra’s algorithm and the A* alggbm are common methods for determining the shbpesh. Dijkstra’s
algorithm is similar to the breadth-first searchtmoe; it searches for the shortest distance nodeand from the current
coordinate point and continues the search untittéinget point is found. The A* algorithm combiné tspeed priority and
Dijkstra methods. The costs from the starting ptwrthe node and from the node to the target @omtadded and used as the
node’s search cost, and the path with the lowestissearched for outward from the starting pdiising the method, the A*
algorithm can plan the optimal path while avoidafggtacles. The obstacle avoidance problem is almidhe velocity obstacle
(VO) problem. If a robot collides with another rélvehen maintaining its current speed, the setlafadlision events comprises
the VO [22].
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3. System Structure

This study proposes a real-time path-planning sydtased on neural networks for unmanned vehiclbs. iage
obtained by an embedded camera is used as the amglinultiple public pretrained neural networks ased to increase the
amount of information available on obstacle posgioThe drivable area is determined from the blardas between
multiple objects, and safe paths are planned iabte areas. Fig. 1 displays the architecture epttoposed system. Three
steps are used in this study to plan the pathseffapropelled vehicle: object detection (Fig. @ath planning (Fig. 3), and

movement control.

Camera Image Vehiclf: Path Planning With " Vehicle Path
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Image Object Detection Box Data | Plan Drivable Area Path Control and Movement Path
Al A2 A3

Fig. 1 Architecture of the proposed system
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Fig. 2 Framework of cloud object detection
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Fig. 3 Framework of path planning

3.1. Cloud object detection

The purpose of object detection is to detect tications of obstacles and avoid them. An objectaletés composed
of a backbone, neck, and head. The backbone isvriefor obtaining image features, the neck futesfeature maps from
various layers, and the head is used for classificaand localization. The model architecture ofabject detector is
displayed in Fig. 4.
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Fig. 4 Model architecture of an object detector

The pretrained networks provided by Google ClowdfBim (GCP), Microsoft Azure, and Amazon Web Ses\jAWS)
are used to detect objects in real-time imagesstore the data from each platform in the followarder: object class name,
confidence score, bounding box top boundary vdloanding box bottom boundary value, bounding bébbleundary value,

and bounding box right boundary value.
3.2. Path planning for a vehicle

3.2.1. Deletion of the overlapped box

First, the coordinates of the object bounding biex determined. Next, whether two object boundingesooverlap is
determined. If an overlap is discovered, the boumthiox with the higher bottom boundary value isoged. The left and right
boundary values of objecsandB are set asA(, Ag) and 8, Bgr), respectively. If the bounding boxesAfandB do not
overlap, they must satisfy the following Egs. (b)Y €2).

BL<Bi<A <A (1)
A <A <B <B )

3.2.2. Drivable area detection

After removing the overlapping bounding box, thartd area between any two nonoverlapping objecatsrisidered the
movement area. The distance between all objectdbearalculated from their bounding box coordinafescording to an
axiom in the Euclidean geometry system, the dig@hbetween any two poinB;(x;, y1) andPx(xs, ¥») can be calculated
using Eq. (3). The shortest distance between tli®rinoendpoints of two bounding boxes, that is, ltettom line of the

drivable area, is calculated as follows:

D=/(x - X+ (y- 1)’ 3)

3.2.3. Set destination

The drivable area should be clear and not blockadtbrmediate object#\ andB are set as nonadjacent objects, Agl
to the left ofB. The four endpoint coordinates of the bottom bauies of the two objects are denoted\aéxy, y1), ARX, ¥-),
BL(Xy, Y1), andBR(x,, y»). WhenN objects exist betweehandB, the bottom boundary endpoint coordinates of dijgai can
be denoted aSL(xy, y1) or OR(X, V»). If the area is not blocked, Egs. (4) and (5)satesfied. When the denominator in Egs. (4)
and (5) is 0, the bounding boxes of the two objeutxrlap. This overlap is eliminated using Eq.d@}2).

Ax, - B Ax- O
|Ax, - Bx| _|Ax- O 4
|AY, - By |Ay- Oy

Ax, - B Ax- O
A, - Bx| |Ax- O )
|Ay, - By |Ay- Oy
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The center point of a robotic car is set as thepwiiat of the bottom boundary of the image. The eepboint of each
drivable area can be calculated from the endpaiatdinates of the bottom line of the drivable arssuming that the two
endpoints at the bottom of the drivable areaRatey, y;) andP,(x,, ¥»), the midpoint coordinates of the drivable areamaly
Pm(Xm, Ym), can be calculated using Eq. (6). Eq. (3) is usathlculate the distance between the midpoimatladrivable areas
and the center point of the robotic car. The midpwith the shortest distance to the center psistt as the waypoint, and the
straight line from the center point to the waypagpresents the planned route.

- %l [y v

P O V) = (5= = 57) (6)

3.3. Movement control

The coordinates of the center point of the robaticand the waypoint can be used to calculateffeet@ngle between
the travel direction of the robotic car and the p@int. First, Eq. (3) is used to calculate theatise between the car and
waypoint. Then, the cosine value of the angle betwle planned path and the vertical line is catedl. The angle converted
by the cosine value is the offset angle. If theetflangle does not exceed the preset threshadwaril command is issued to
allow the car to move forward. However, if the effangle exceeds the preset threshold, a turdetirn-right command is

issued for appropriately controlling the directimicar movement.

4. Experimental Results

Table 1 lists the experimental equipment usedi;study. The Raspberry Pi is a single-chip compdéeeloped by the
Raspberry Pi foundation for improving students’ emsianding of computing science. The experimens usecker to

construct an image file with the official RaspbeRiyoperating system and the Python 3 languagesfmarch.

Table 1 Experimental equipment used in this study
Components Specification
Operating system Raspbian
Central processing unit ARM Cortex-A72
Random access memofy4 GB (LPDDR4)
Camera Logitech C310

Fig. 5 displays a self-propelled vehicle equippdthva Raspberry Pi 4 computer and complementaryaintide
semiconductor (CMOS) lens assembly for capturingrenmental images. The Raspberry Pi 4 has a 4Qupiversal input
and output that can be used for external screethsamsors. The Raspberry Pi 4 is connected to @mpsource motor for
controlling the movement of a robotic car. A LogheC310 fixed-focus lens is used to obtain a Siomitpixel image with a
size of 1280 x 960. This lens is connected to thgpRerry Pi 4 through a universal serial bus (US®)face. Raspberry Pi 4
has a rated power of 5 V/3 A. A mobile power banksed as a power source through USB-C to providexamum output of
5V/2.1 A to the Raspberry Pi 4.

(a) Front view of the vehicle (b) Top view of thehicle
Fig. 5 The robotic car equipped with Raspberry Bhd CMOS camera
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4.1. Drivable area detection

The Raspberry Pi 4 and a streaming service areedtaFhe streaming service is based on real tineausiing protocol
(RTSP). Streaming images are sent to the cloudutfireloud platforms, and APIs are used for objdeniification. The
object detection services used in this study asgiged by Google Cloud Vision, Amazon Rekognitiand Azure Computer
Vision cloud platforms to obtain the position cooates, category names, and confidence scorebdarlijects in an image.
Obstacles are identified by using multiple cloumlstrease the amount of information because it information would
have negatively affected the suitability of therplad path. Moreover, accurate object class nants@ifidence scores are
not required because the aim is to obtain inforomatin surrounding obstacles. Fig. 6 displays tkealte of object marking
when using multiple cloud platforms, and the markexrles of the same color represent the detectBuitssobtained from the

same platform. Here, the GCP vision is presentecttycolor and the Azure vision is presented by loiolor.

The program for drivable area detection is wriitethe Python 3 language. First, the overlappingcttbounding boxes
are removed. Then, the drivable area is detectédrenwaypoint is set. Fig. 7 displays the resbttimed after subjecting Fig.
6 to drivable area detection. The green lines saprethe bottom lines of multiple drivable areas.

Fig. 6 Results of the comprehensive mark bounding Fig. 7 Schematic of drivable area detection
box of cloud object detection

4.2. Results and analysis

Fig. 8 depicts the two areas used in the experintégt 8(a) displays a narrow walking passage labaratory. This
image indicates that the exit of the aisle is anlétit; therefore, the robotic car should turnhe keft at the end of this aisle to
avoid collision with the stacked boxes. Fig. 8(lgpthys a wide laboratory area with two exits. Biglisplays the legend for
the different bounding box colors in Figs. 10 addwhich depict the continuous images obtained vthemobot car moves
according to the system instructions in the narmod wide laboratory areas, respectively. In thesges, different colors are
used to represent the obstacles identified usifigrdnt platforms. The yellow lines in Figs. 10 allindicate the real-time
planned path for each image. The images in theeafentioned figures prove that visual recognitionldde used to obtain a

bounding box for path planning. Thus, cloud compgifiacilitates real-time dynamic path planning.

(a) Narrow area (b) Wide area
Fig. 8 Panoramic images of the experimental areas
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Legend

I:I Google
I:I Amazon
I:I Microsoft

Obstacles

Fig. 9 Legend of the bounding box colors

The third perspective The third perspective Thedtherspective The third perspective
The vehicle view The vehicle view The vehicle view The vehicle view
(@) At5s (b) At15 s (c)At25s (d)At35s

Fig. 10 Real-time images of the path planning anedement of the robotic car in the narrow laboratmga

The third perspective The third perspective Thedtherspective The third perspective
The vehicle view The vehicle view The vehicle view The vehicle view
(a) At5s (b) At15 s (c)At25s (d)At35s

Fig. 11 Real-time images of the path planning ansdement of the robotic car in the wide laboratagea

All the obstacles on the ground are marked withtevhounding boxes because the correct labelingeobbject category
is not crucial. Moreover, the threshold to limietbbject discrimination rate is obtained. Multiplevel zones are detected by

using a self-developed algorithm, and path planirgpmpleted rapidly by using the obtained obstamormation. Detailed
experimental data are listed in Tables 2 and 3.
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Table 2 Detailed experimental results for cloudecbfetection

_ Path Cloud Det_ection Left Right Top Bottom
Figure p_Iannlng platform Class name | confidence| boundary| boundary | boundary| boundary
time (s) score value value value value
GCP Packaged goods 0.76 60 259 0 109
AWS Box 0.95 66 345 139 444
10(a) 0.001 GCP Packaged goods 0.69 67 261 64 171
GCP Shipping box 0.61 79 340 150 432
Azure Wall 0.35 656 878 0 391
GCP Shipping box 0.76 0 230 85 511
10(b) 0.02 AWS Box 0.56 0 232 103 500
Azure Box 0.68 0 238 0 549
10(c) 0.001 GCP Shipping box 0.71 2 221 0 489
Azure Wall 0.56 896 1280 10 503
GCP Shoe 0.62 765 1004 285 344
10(d) 0.001 Azure Cabinet 0.36 1118 1272 0 468
GCP Furniture 0.59 3 538 0 386
1) 0.001 Azure Chair 0.38 628 1073 0 249
GCP Person 0.73 2 243 2 427
AWS High heel 0.55 5 240 133 418
11(b) 0.001 GCP Person 0.71 10 254 1 434
Azure Chair 0.51 829 1253 74 292
Azure Wall 0.36 862 1216 20 216
Azure Chair 0.45 2 94 274 481
11 0.001 Azure Chair 0.44 916 1280 78 267
Azure Chair 0.38 124 323 0 387
AWS Airplane 0.82 497 1248 0 288
11(d) 0.001 GCP Person 0.69 787 1105 0 264
GCP Home appliance  0.54 791 1121 0 266

5. Conclusions

This study developed a method in which the boundiog information returned by multiple cloud objetdtection
services is integrated to detect the drivable arehplan a movement rouf€he experimental results reveal that robotic cars
can perform appropriate path planning by usingdinecloped method. The obtained images indicatethigaplanned route
using the developed method is safe. The goalsisfréisearch were to reduce the cost of developicgllsion-avoidance
system, the cost of computing, and the dependeme@ @bject sensor. Cloud vision models are usegdoce the amount of
computing in the designed system. The designedsyistsimple, has low cost, and contains only ens.IRoutes are planned
through simple mathematical operations that ddonotlen the developed real-time path-planning systatency is a critical
real-time problem that should be considered whémusdoud computing local area network signals heeat affects system
operation. The delay problem can be solved usinttgeneration high-speed networks that provide liighsmission speeds

with novel visual recognition models.
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