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Abstract 

This paper investigates the performance of a new predict ive control approach used to improve the energy 

efficiency and effluent quality of a conventional Wastewater Treatment Plant (WWTP). A modified variant of the 

well-known Generalized Predictive Control (GPC) method has been applied to control the dissolved oxygen 

concentration in the aerobic bioreactor of a WWTP. The quadratic cost function was modified to a positional 

implementation that considers control signal weighting and not its increments, in ord er to minimize the control 

energy. The Activated Sludge Process (ASP) optimizat ion using the proposed variant of the GPC algorithm provides 

an improved aeration system efficiency to reduce energy costs. The control strategy is investigated and evaluated by 

performing simulations and analyzing the results. Both the set point tracking and the regulatory performances have 

been tested. Moreover, the effects of some tuning parameters are also investigated. The results show that this control 

strategy can be efficiently used for dissolved oxygen control in WWTP. 

 

Keywords: predict ive control, process optimization, process model, wastewater treatment plant, activated  sludge 

treatment 

 

1. Introduction 

Wastewater treatment plants are key infrastructures for ensuring a proper protection of our environment. Biological 

treatment is an important and integral part of any WWTP. The Activated Sludge Process is the most commonly used 

technology to treat sewage and industrial wastewaters due to its flexibility, high reliability and cost-effectiveness, as well as its 

capacity of producing high quality effluent. An overv iew of the activated sludge wastewater treatment process mathemat ical 

modeling is presented in [1] and application of ASP models can be found in  [2]. The ASPs are d ifficult  to be controlled because 

of their complex and nonlinear behavior. However, the optimal control of the biological reactors plays an important role in t he 

operation of a WWTP and the efficiency of most WWTP is an important issue still to be improved . 

A good control of WWTP processes could lead to better water quality  and to an efficient use of energy [3-4]. This research 

area is a key part of keeping the environment clean and nowadays has received great emphasis due to the strict regulations fo r 

the discharged water. Many of the WWTP are operated in a less -than-optimal manner with  respect to both treatment and 

energy efficiency, causing high costs and inefficient operation in order to meet the regulations.  
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The dissolved oxygen concentration has a major impact in the activated sludge process. To control the dissolved oxygen 

concentration, the amount of air provided by the blowers in the aeration tank is modified. The activated sludge process is the 

most energy consuming processes in the whole WWTP, nearly half of the energy consumed in a WWTP being used in the 

aeration tank. An over dosage of aeration is unwanted because it brings increased costs and just little or even no gain in the 

quality of water. For values of dissolved  oxygen concentration  in the aeration tank above 2 mg/l, the increase of the aeration 

flow begins to have a lower effect in the quality of effluent and at values of 4-6 mg/ l  doesn’t have any effect. In the absence of 

adequate control systems, to reduce the effect o f disturbances on the flow or load of the effluent, it is sometimes preferred to 

operate at high concentrations of dissolved oxygen in  the aerat ion tank. Using the blowers in  manual operation at  constant flow 

rates during the periods of reduced wastewater intake will produce a loss of energy. Thus, optimizing the aerat ion process 

defines an important objective to reduce energy consumption and improve energy efficiency. Several strategies have been 

proposed for controlling the dissolved oxygen concentration. Some researchers have focused on the importance of well -tuned 

models and simulation p latforms in the process of designing the controllers for the dissolved oxygen concentration [5-6]. Other 

researchers have focused on designing multip le model controllers instead of nonlinear complex ones [7]. Nevertheless, 

because of the high nonlinearit ies of the process, robust controllers are required to maintain an optimum setpoint, regardless of 

the changes in the operating point. Such control strategies have also been proposed, including adaptive [8-9], predict ive 

[10-11], fuzzy [12] or fractional order PIμDλ control [13].  

Optimizing and maintaining the dissolved oxygen set point define important objectives for researchers in WWTP c ontrol. 

Optimization of the dissolved oxygen set point is not the purpose of this paper. In practice, an appropriate dissolved oxygen set 

point is determined either manually by experienced operators or automatically through optimization algorithms. In this  paper, 

we assume the appropriate set point is prescribed by the optimizing part  of a mult ilayer hierarchical control structure and the 

proposed control system will be responsible for forcing the plant to follow this set -point. A modified variant of the well-known 

Generalized Predict ive Control method [14] has been applied  to control the d issolved oxygen concentration in the aeration tank 

of an activated sludge process . The ASP process optimization using the proposed variant of the GPC algorithm provides an 

improved aeration system efficiency to reduce energy costs. The GPC algorithm is well known and consists of applying a 

control sequence that minimizes a quadratic cost function defined over a prediction horizon. The consideration of weighting o f 

control increments in the cost function in GPC allows an  incremental implementation which  ensures offset-free reference 

tracking and disturbance rejection but does not provide minimizat ion of the control energy. To alleviate the above  mentioned 

limitat ion, the aim of this paper is to propose a different variant of the quadratic cost function. In order to minimize the control 

energy, the quadratic cost function was modified  to a positional implementation that considers control signal weighting and n ot 

its increments. To evaluate the performance of the proposed design for ASP process optimizat ion, simulat ion results are 

presented and discussed in detail. The ASP process was first modeled and the models were calibrated and validated based on a 

combination of laboratory tests and plant operating measured data. The proposed control strategy is investigated and evaluated 

by performing simulations and analyzing the results. Both the set poin t tracking and the regulatory performances have been 

tested. Moreover, the effects of some tuning parameters are also investigated. The results show that this control strategy ca n be 

efficiently used for dissolved oxygen control in WWTP. 

2.  Process Description and Modeling 

The activated sludge wastewater treatment processes are very complex, with large, uncontrollable input disturbances, 

significant nonlinearities and characterized by uncertainties regarding their parameters. The most widely used models to 

describe these processes is the Activated Sludge Model Nr.1 (ASM1) proposed by the International Water Association (IWA) 

[15]. Having thirteen state variables and eight dynamic processes, this model is highly complex, but it provides deep insight  in 
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the behavior of the process. Since the model also contains a large number of b iokinetic and stoichiometries parameters, for 

control purposes it is necessary to simplify it into a simpler model, especially if a hierarchical control structure is used.  

The modelling process and the model calibration are made based on data obtained from a conventional activated sludge 

system operating under aerobic conditions and whose main purpose is to ensure the removal o f colloidal and dissolved 

carbonaceous organic matter. The res idual water that needs to be treated is coming from a factory that processes and is painted 

cotton, a milk factory and from domestic households. 

 
Fig. 1. WWTP's biological treatment process schematic configuration. 

The wastewater first enters the aerated bioreactor where the treatment based on ASP takes place. The clear water and the 

sludge are separated due to gravity in the secondary settler. In order to keep b iological sustainability, the act ive sludge is 

recirculated and the bioreactor is aerated using an aeration network where air is being blown with fine bubbles.  

In our previous work [16-17] we have developed a reduced model to the ASP based wastewater treatment process where 

the simplest possible case was taken into consideration. Only the removal of organic matter is considered, while bio logical 

phosphorus and nitrogen removal is neglected. The following components are treated in the model: one organic matter 

component, one microorganism component and dissolved oxygen. For the model used in  this paper, two processes are 

considered to take place in  the aeration tank: the reduction of organic  substance in  heterotrophic aerobic bacteria and the 

reduction of ammonia n itrogen with autotrophic aerobic bacteria. The carbonaceous conversion is integrated in a consistent 

manner with the transformations of nitrogen. The following components are treat ed in the model: one organic matter 

component, two nitrogen components, two microorganism components and dissolved oxygen.  

The developed model is based on the following assumptions: the content of the aeration tank is considered perfect stirred; 

there are no d irections in  the secondary settler; the biomass concentration in the effluent is negligible;  the oxygen concentration 

and substrate are neglected in the recycled sludge; the active sludge is the only recycled component into the aeration tank.  

In this case, there are 6 equations. that can be written for the aeration tank considered as a completely mixed reactor. Eqs. 

(1-6) correspond to the mass balance Eqs. for:heterotrophic (1) and autotrophic (2) b iomass, biodegradable substrate (3), 

ammonia nitrogen (4), nitrite and nitrate nitrogen (5) and dissolved oxygen(6) concentration. 

( )
( ) ( ) ( )(1 ) ( ) [ ( ) ( ) ] ( )B,H

r B,H B,H H Ha H B,H

dX t
= r D t X t D t +r X t + m t +m t b X t
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( )
( ) ( ) ( )(1 ) ( ) [ ( ) ] ( )B,A

r B,A B,A A A B,A

dX t
= r D t X t D t +r X t + m t b X t

dt
    (2) 

( ) ( ) ( )
( ) ( )[( ) ( ) ( )]S H Ha

B,H S Sin

H

dS t m t +m t
= X t D t 1+r S t +S t

dt Y
   

(3) 

Bioreactor, S,X,DO Settler, Xr 

Recycled sludge, Xr, rD Waste sludge, X, βD 

Aeration,W 

Influent, Sin, D, DOin 
Effluent 

 

Se, (1-β)D 



Advances in Technology Innovation, vol. 3, no. 2, 2018, pp. 59 - 69 

Copyright ©  TAETI 

62 

, ,

( ) 1 1
= ( ) ( ) ( ) ( ) ( )[(1 ) ( ) ( )]

2.86

NO
Ha B H A B A NO NOin

H A

dS t YH
m t X t m t X t D t r S t S t

dt Y Y


      

(4) 

( ) 1
[ ( ) ( )] ( ) ( ) ( ) ( ) ( )[(1 ) ( ) ( )]NH

XB H Ha BH XB A BA NH NHin

A

dS t
= -i m t +m t X t - i + m t X t - D t +r S t +S t

dt Y

 
(5) 

1( )
( ) ( ) (1 ) ( ) ( ) ( )[(1 ) ( ) ( )] [ ( )]H

in maxH B,H A B,A

H A

YdDO t 4.57
= m t X t  m t X t D t +r DO t +DO t ++aW DO DO t

dt Y Y


    

 
(6) 

The mass balance equations for the recycled biomass are: 
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dt
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HrB
   (7) 

,

, ,

( )
( )(1 ) ( ) ( )( ) ( )
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Under steady state conditions, from mass balance equations in the settling tank the resulting concentrations in the effluent SSef, 

SNHef and SNOef are: 

( ) (1 ) ( )Sef SS t = +r  S t
 

(9) 

( ) (1 ) ( )NHef NHS t = +r  S t
 

(10) 

(t)S r)+(1(t)S NONOef 
 

(11) 

The equations for the heterotrophic growth of the biomass in aerobic (µH) and anoxic (µHa) conditions are:  
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(13) 

While the equation for the growth of autotrophic mass µA is:  
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
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 (14) 

where XB,H and XB,A represent the active heterotrophic and  autotrophic biomass concentration, SS, SNH, SNO, and DO - 

concentration of b iodegradable organic matter, ammonia nitrogen, n itrite -n itrate, and dissolved oxygen in  the aerated 

bioreactor, SSin, SNHin, and SNOin - concentrations in the influent, XrB,H and XrB,A - recycled heterotrophic and autotrophic biomass 

concentrations, D and DS - dilution rates (ratio  of influent flow to volume of the aerated bioreactor and settler),  W - aeration rate, 

α - oxygen transfer rate, r - the ratio  of recycled sludge flow to influent flow, β - the ratio of waste flow to influent flow, YA - 

autotrophic biomass yield factor, YH - heterotrophic biomass yield factor, iXB - conversion coefficient for the nitrogen mass, 

KOH and KOA - oxygen saturation coefficients at half for heterotrophic/autotrophic biomass, KNH and KNO - ammonia and nitrate 

saturation coefficients at half for autotrophic biomass, KS  - organic substrate saturation coefficient, ηg - correct ion coefficient 

for µH in anoxic conditions. This model has 8 state variables: XB,H, XB,A, XrB,H, XrB,A, SS, SNH, SNO, and DO. The kinetic and 

stoichiometric parameters values obtained after the model calibrat ion are: bH=0.034; bA=0.002; YH=0.54; YA=0.13; iXB=0.068; α  

=0.016; DOmax=10; ηg =0.8; µHmax=0.127; µAmax=0.02; KOH=0.2, KOA=0.4; KS=130; KNO=0.9; KNH=1; β =0.015. 
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3.  Control Strategy 

The aeration system, the b lower and p iping model and the proportional–integral–derivative (PID) control of the air flow is 

presented in [18-19]. Following this work, this paper investigates the performance of a modified variant of the well-known 

Generalized Pred ictive Control (GPC) method to control the dissolved oxygen concentration (DO) in the aerated bioreactor of 

an activated sludge process , considered as process output variable (Fig. 2). We assume that the appropriate set point for the 

dissolved oxygen concentration is given and the predict ive control system is used to maintain  this set  point. The aeration air 

flow (W) is considered as manipulated variable. 

 

Fig. 2 Predictive control schemes 

The Generalized Predictive Controller is one of the most relevant design methods of Model-Based Pred ictive Control 

(MBPC). The standard GPC synthesis is based on a linear p rocess model, CARIMA - Controlled Auto-Regressive Integrated 

Moving-Average, a quadratic cost function and a control law, both using an incremental structure (the actual control signal 

increment - Δu- is computed) [14]. Th is incremental implementation ensures offset-free behavior in closed loop control 

systems.   

The activated sludge process is the most energy consuming processes in the whole WWTP, nearly half of the energy 

consumed in a WWTP being used for the aeration. An important step in developing the proposed control strategy is the 

reparametrizat ion of the cost function in the pred ictive algorithm to contain a measure of energy consumed by aeration process. 

This could exploit the fluctuation of operating conditions by realizing significant energy savings. Since the aeration air flow W 

is the manipulated variable resulted from the controller output u, to minimize the aeration flow and not its variations the 

reparametrized cost function of the predictive algorithm has to contain the controller output u, instead of the control output 

increment Δu. This will lead to a positional implementation based on a positional form for the process model and controller 

cost function. 

Consider the following modified MBPC cost function: 

2

1

2 2

1 2

1

( , , ) [ ( ) ( )] [ [ ( 1)]
uNN

u r

j N j

J N N N E y t j y t j u t j
 

  
       

  
   (15) 

where: y r is the future reference sequence, N1 is the minimum costing horizon, N2 is the maximum costing horizon, Nu is the 

control horizon,and ρ is a control-weighting  coefficient.  

The use of the CARMA process model instead of the CARIMA model : 

1 1 1( ) ( ) ( ) ( ) ( ) ( )A q y t B q u t k C q e t      (16) 

will lead to a positional form for the controller and therefore the controller will not have an integrator.  

For simplicity, in this development C (q
-1

)=1 is chosen. To derive a j step ahead predictor of the process output y(t+j), on 

considers the polynomial identity:`  
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1 1 11 ( ) ( ) ( )j

j jE q A q q F q      (17) 

where Ej(q
-1

) and Fj(q
-1

) are polynomials uniquely defined, given A(q
-1

) and the prediction interval j, o f degree j and 

respectively n (n - the process order). 

Based on Eq. (16) and Eq. (17) we obtain: 

1 1 1 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )j j jy t j E q B q u t j k F q y t E q e t j           (18) 

The optimal predictor, given measured data up to time t (including t) is written as: 

1 1 1( | ) ( ) ( ) ( ) ( ) ( ) ( )j j jy t j t G q u t j k F q y t E q e t j          (19) 

where 

)()()( 111   qBqEqG jj  
(20) 

For simplicity, in the derivation below, N1 is set to 1, N2 to N, Nu to N and k to 1. For j = 1,...,N, the optimal predictor Eq. (18) 

can be written:: 

1
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                ( ) ( ) ( ) ( )
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

 

             

  
 (23) 

On observe that the predictor y (t+j), consists of three terms: one including the past known control actions and the filtered 

measured process outputs, the second depending on future control actions which must be determined and the third, depending 

on the future noise signals. Let f( t+j) be the component of y (t+j), which includes all the known terms at a timely moment: 

1

1 0 11 ( ) ( )f(t ) [G (q ) g ]u t F y t     (24) 

1 1 1

2 1 0 2( 2) [ ( ) ] ( 1) ( ) ( )f t G q q g g u t F q y t         (25) 

1 ( 1)

1 0( ) [ ( ) ... ] ( 1) ( ) ( )N 1

N N Nf t N G q q g g u t N F q y t   

         (26) 

Then Eq. (19) can be rewritten in the vectorial form: 

efuGy   (27) 

where y, u, f and e are vectors of the form: 

[ ( 1), ..., ( )] ,      x 1Ty y t y t N N     (28) 

[ ( ), ..., ( 1)] ,       x 1Tu u t u t N N    (29) 

[ ( 1), ..., ( )] ,      x 1Tf f t f t N N     (30) 

1 1

1[ ( ) ( 1), ..., ( ) ( )] ,    x 1  T

Ne E q e t E q e t N N
 

    (31) 

And the matrix G is then lower triangular of dimension N  x N : 
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For  N u < N  the matrix G is then of dimension N   x N u: 


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And y, u, f and e are vectors of the form: 

[ ( 1), ..., ( )] ,      x1Ty y t y t N N    (34) 

[ ( ), ..., ( 1)] ,      x1T

u uu u t u t N N    (35) 

[ ( 1), ..., ( )] ,      x1Tf f t f t N N    (36) 

1 1

1[ ( ) ( 1), ..., ( ) ( )] , x1  T

Ne E q e t E q e t N N
 

    (37) 

The cost function becomes: 

( ) [( ( ) ] [( ( ) ]) )
T TT T

u r r r r
J 1,N,N  = E y - y -  + u  =  E Gu+ f +e- Gu+F +e- + uy y y yu u 

 (38) 

Assuming that E[e
T
u]=0, E[e]=0, and E[e

T
e] is not affected by u, the first derivative of the previous equation gives: 

[ ( ) ] [( ) ( )]  T T T

r r

J
 = 2E Gu+ f +e - + Iu = 2E G+ I u+ f -     y yG G G

u
 



  
(39) 

For the first derivatal ive equate zero the control vector u is obtained: 

1( ) ( )T T

ru G G I G y f     (40) 

Only the first element of u vector, u(t), must be determined and this value represents the current controller output: 

)()( fytu r

T   (41) 

where α
 T

 = [α
 
1... α

 
N] is the first row of the (G

 T
G+ρI)

 ­1
G

 T
 matrix. Note that if the equation for the calculation of the controller 

output (u) has the same form as that for the incremental GPC algorithm (Δu), the diophantine equation form and calculat ion of 

polynomials Ej and Gj is different. 

4. Simulation Results 

The assessment of the developed control system is done through numerical simulation in Matlab/SIMULINK 

environment. The nonlinear model of the activated sludge wastewater treatment process  given by Eqs. (1)-(14) was used to 

simulate the process dynamics. In the GPC algorithm the pred iction of the process output is based on a linear process model. 

To obtain the linear state space model and the transfer function from W to DO the model was linearized aroun d an operating 

point. An eighth order transfer function was obtained. To reduce its order to two, from the linear state space model a balanc ed 



Advances in Technology Innovation, vol. 3, no. 2, 2018, pp. 59 - 69 

Copyright ©  TAETI 

66 

state-space realizat ion was first computed and then the smallest 6 diagonal entries of the balanced grammians were eliminated 

using modred. Similar results were obtained using the input and output data obtained during simulat ions of the nonlinear model 

dynamics for small variations around the considered operating point and a Recursive Least Square algorithm to estimate a 

second order discrete transfer function. 

The steady state values of the input variables are: DO=0.064[h
-1

]; DOin0=0.5[mg/l]; Sin0=765[mg/l]; W0=100[m
3
/h] and 

r0=0.8. The steady state value for the considered process output is DO0 =1.36 mg/ l. The aeration air flow (W) is considered as 

the manipulated input, the other inputs being considered as disturbances. The air flow values were limited between Wmin = 

50m
3
/h and W max =210m

3
/h. The controller design parameters are: N=6, Nu=1, sampling period ts= 0.01 h. Different aspects, 

such as setpoint changes and effects of load disturbances , have been analyzed.  

In Fig. 3 the setpoint tracking for a step from DO0 =1.36 mg/l to DO1 = 2mg/l in DO setpoint at the time moment t=1h is 

presented. All the process inputs excepting the manipulated input have been considered as constants and equal to their steady 

state values. Using the original GPC control algorithm that has an incremental form there is no steady s tate error between the 

process output (continuous line) and the setpoint. The developed GPC control algorithm has a positional form and the steady 

state error is increasing with the value o f the control-weighting coefficient, ρ( dotted line). However, it  can be observed that 

with the increasing value of this coefficient, the aeration air flow W is decreasing and also the total amount of air consume d to 

reach the new setpoint.  

  
Fig. 3 Setpoint tracking performances for process output (DO) and contro l output (W). Incremental GPC - continuous 

line, positional GPC for different values of the control-weighting coefficient (ρ) - dotted line 

For the next  simulation scenarios a constant setpoint is considered and the regulatory performance during a simulation test 

when the disturbances presented in Fig. 4 (a step disturbance with an amplitude equal to 10% of the steady state value Sin0, from 

t=10h to t=20h) and Fig. 5 (random d isturbances for a large simulation time) are applied on the most significant input for the 

process output: influent organic matter concentration SSin. 

  
Fig. 4 Regulatory performances. Step SSin input 

disturbances 

Fig. 5 Regulatory performances. Random SSin input 

disturbances 
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Fig. 6 shows the regulatory performance during simulat ion test when the disturbances presented in Fig. 4 are applied. 

Using the incremental GPC control algorithm, there is no steady state error between the process output (continuous line) and 

the setpoint. Using the positional GPC control algorithm the steady state error in the process output is increasing with the value 

of the control-weighting coefficient, ρ (only the case ρ=0.002 is shown by dotted line in the figure). With the increasing value 

of this coefficient, the aeration air flow W is decreasing and also the total amount of air consumed to reject the disturbance. As 

can be seen in the figure representing the control output W, the surplus of air needed to reject the disturbance using a positional 

GPC control algorithm (dotted line) represents 72% of the surplus of air needed to reject the disturbance using incremental 

GPC (continuous line). Of course it needs to consider the disadvantage of the steady state error and of the response time. 

  
Fig. 6 Regulatory  performances fo r step disturbances presented in Fig . 4, process,output (DO) and control output (W). 

Incremental GPC - continuous line, positional GPC with ρ=0.002 - dotted line, no control - dashed line. 

Fig. 7 shows the regulatory performance during simulat ion test when the disturbances presented in Fig. 5 are applied. 

Three cases are presented: (i) control using positional GPC (dotted line), (ii) control using incremental GPC (continuous line) 

and (iii) no control (dashed line). The DO setpoint is fixed at 2 mg/l and is kept constant during the simulation. The 

disadvantage of using the positional GPC is the steady state error and the advantage is a low power consumption. Therefore, 

choosing the control-weighting coefficient value will be based on compromise between performance and power consumption. 

In the case of Fig. 7, the average amount of air necessary for aeration is 2647 cubic meters daily if incremental GPC control is 

used. Positional GPC with a value ρ=0.002 leads to an average amount of air necessary for aeration of 2348 cubic meters daily. 

Considering the percentage, this means 88% of the average amount of air necessary for aeration using incremental GPC, i.e. a  

12% reduction in air flow. The blowers operate under a predictable set of laws concerning speed, power and pressure. In 

accordance with affinity laws, flow is proportional to motor speed; and power is proportional to the cube of motor speed. This 

means that already min imal reductions in blower air flow can provide savings in energy consumption. Reducing the blower air 

flow by 12% decreases the power requirement by 32%. 

  
Fig. 7 Regulatory performances for load disturbances presented in Fig . 5, process output (DO) and control output (W). 

Incremental GPC - continuous line, positional GPC with ρ=0.002 - dotted line, no control - dashed line. 
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5. Conclusions 

The wastewater treatment plants are considered complex processes due to the strong nonlinearit ies, large variable time 

constants and continuous perturbations present in the influent. This study evaluates the performance of a positional GPC 

control algorithm for the dissolved oxygen concentration in the activated sludge process of a WWTP. Both the setpoint 

tracking and the regulatory performances have been tested and compared with those obtained using the incremental GPC. The 

design parameters for both controllers are the same and the simulations provide information on the compromise between 

control performances (steady state error and response time) and savings in energy consumption. The aerat ion flow and, by 

default, the b lower’s speed is allowed  to be lowered  when  the operating conditions of the WWTP permit. The power consumed 

by blowers is proportional to the cube of air flow. This means that already min imal reductions in blo wer air flow can provide 

savings in energy consumption.  

Since the presented control system is responsible for forcing the plant to follow the setpoint prescribed by the optimizing 

part of a mult ilayer hierarchical control structure, it remains to be analyzed in what degree the overall performances of the 

hierarchical control system will be affected by the steady state error of this control loop. 
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