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Abstract  

This research proposes a predictive model to identify changes in the mechanical and geometrical properties 

of composite plates with eccentric cutouts based on natural frequency. Finite elements (FE) and neural networks 

are used to develop the model based on machine learning. First, the numerical analysis of free vibration is 

performed by the FE model on the laminated composite plates with a stacking sequence [0/90]2s under a 

clamped-free (CFFF) boundary condition. The outputs of the FE model (520 configurations) are then utilized to 

train the artificial neural network (ANN) model through the Levenberg-Marquardt method, and the developed 

ANN model is then used to evaluate the influence of various parameters on the natural frequency. The results 

show that the changes in the mechanical and geometrical properties of composite plates have impacts on the 

natural frequency. Furthermore, the findings of the ANN model are substantially identical to those of the 

numerical model, with a small margin of error. 
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1. Introduction 

Laminated composite plates have been widely used in structural engineering due to their reduced weight, extended 

durability, and fatigue resistance. Because of these qualities, they are gaining attention in other engineering fields. Cutouts are 

generally used for ventilation, i.e., the passages for cables and fluids. They can have different shapes, e.g., square, circular, oval, 

or triangular shapes. However, their existence can have a major impact on the vibratory [1-3], static [4-6], and buckling [7-9] 

behavior of structures. 

Concerning the vibration behavior of structures, Pham et al. [10] considered plates that are completely or partially in 

contact with fluid and analyzed them with isogeometric analysis (IGA) for free vibration. Pham et al. [11-12] used the finite 

element (FE) method to investigate the hygro-thermo-mechanical vibration of double-curved and functionally graded porous 

(FGP) sandwich plates as well as nanoplates made of functionally graded materials (FGM). Pham et al. [13] employed the 

ES-MITC3 element to analyze the free vibration of FGP annular-nanoplates with non-uniform thickness. In addition, Nguyen 

et al. [14] used the ES-MITC3 element to investigate the free vibration of FGP plates positioned on partially supported elastic 

foundations (PSEF). Rai [15] also used FE to examine the nonlinear behavior of reinforced concrete (RC) deep beams. Pham et 

al. [16] conducted a Monte Carlo simulation using FE analysis to evaluate the natural frequency of RC beams. The free 

vibration of FGP nanoplates lying on a two-parameter elastic media foundation was explored by Pham et al. [17].  
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Recently, vibration response has emerged as an essential technique in structural health monitoring (SHM) [18]. A change 

in a structure’s natural frequency is one of the indicators of a change in its mechanical or geometrical properties or of the 

presence of damage. Several researchers have investigated natural frequency to detect composite plate defects, such as 

delamination [19-20] and cracks [21-22].   

Nowadays, the influence of cutouts on composite laminates is studied mainly using numerical analysis, with the FE 

analysis more specifically. Sivakumar et al. [23] presented a Ritz FE model to analyze the free vibration of laminates with 

cutouts. Ovesy and Fazilati [24] proposed two variants of the finite strip method (FSM) for analyzing the free vibration of 

composite plates with cutouts. Venkatachari et al. [25] used the extended FE technique to investigate the impact of 

environmental factors on the free vibration of structures. Boay [1] developed an FE method for calculating the free vibration of 

symmetric laminated composite plates with a central hole.  

Artificial neural network (ANN) is an artificial intelligence technology widely used for prediction in a variety of 

engineering fields. Several studies in different fields are presented here. Truong et al. [26] integrated ANN with differential 

evolution (DE) to optimize the material distribution of bidirectional functionally graded (BFG) beams in free vibration. 

Yildirim [27] investigated the free vibration of axially functionally graded (AFG) and transversely functionally graded (TFG) 

beams using the ANN model. Furthermore, for FGM beams with varied gradation orientations and layer counts, the natural 

frequency was estimated using the FE approach. To analyze functionally graded annular plates under various boundary 

conditions, Jodaei et al. [28] applied both the differential quadrature and ANN techniques. Tran et al. [29] developed an ANN 

model to forecast the fundamental frequency of FGM plates by FE in a thermal environment using the ES-MITC3 element. 

Due to the intricacy of laminated composites with cutouts, artificial intelligence was introduced to detect changes in 

natural frequency (i.e., mechanical and geometrical changes in the structures). Reddy [30] proposed a method for predicting 

the natural frequency of laminated composite plates using ANN under clamped boundary conditions. Altabey [31] predicted 

changes in the natural frequency of plates supported elastically. Timchenko and Osetrov [32] proposed convolutional neural 

networks (CNN) for predicting the natural frequency of composite plates. ANN was also used to evaluate the environmental 

effect on the vibrational response of a skew composite laminated sandwich plate [33]. 

Based on the findings of previous studies, this work aims to expand the use of the FE model to analyze the free vibration 

of nonlinear layered plates with eccentric square cutouts under clamped-free (CFFF) boundary conditions. The study of several 

parameters, such as cutout size ratio (d/a), number of cutouts, modular ratio (E1/E2), length-to-width ratio (a/b), and thickness 

ratio (h/a), is carried out using the FE software. The results of the FE model are used to develop an ANN model to predict 

natural frequency. The strategy is to use 240 data points to train, test, and validate the developed model. The study is limited to 

the first two modes of vibration. The influence of cutout size, number, and modular ratio on the natural frequency is then 

studied in a more general scope. 

2. The FE Model 

2.1.   Free vibration analysis 

The free vibration analysis of structures requires the solution of the following equation, called the eigenvalue problem. 

The frequency of plates can be obtained easily by the solution of the standard characteristic equation: 

2[ ]{ } [ ]{ } {0}K M∏ − ∏ =ω  (1) 

where �∏� denotes the transverse displacement vector, K is the stiffness matrix, and M is the mass matrix. The formula can be 

directly used to calculate the natural frequency of the plates under free vibration. 
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2.2.   Material 

The model developed for this study, as shown in Fig. 1, is inspired by the elastic composite stacking sequence [0/90]2s 

considered by Sinha et al. [34]. The composite laminate square model is modified by introducing a group of eccentric cutouts. 

The sizes and number of cutouts, in addition to the dimensions and the modular ratios of composite plates, are all considered 

parameters. The properties of the material used in this study are listed in Table 1. The position of the cutouts according to the 

x-axis is considered ex/a = 0.125 for all the scenarios.  

 
 

Table 1 Mechanical properties of the  

material used in this study 

 

 

Material 
Glass fiber-reinforced  

polymer (GFRP) [34] 

 

E1 (N/m
2
) 16.07 × 10

9
  

E2 (N/m
2
) 16.07 × 10

9
  

G1 (N/m
2
) 2.81 × 10

9
  

v12 0.25  

Density � 

(kg/m
3
) 

1664 
 

Fig. 1 Laminated composite plate with dimensions 
 

2.3.   FE simulations 

The simulations are undertaken using ABAQUS. To determine the natural frequency, the FE method analysis is 

performed in a CFFF configuration on several specimens of laminated plates with cutouts. The size, number, length, thickness, 

and modular ratios of specimens are all different from one another.  

2.4.   Convergence 

As a starting point, the simulation convergence with respect to different mesh sizes is verified by calculating the natural 

frequency for two mode shapes under boundary conditions (CFFF), as shown in Table 2. The result in terms of mesh density 

and mode shapes with respect to the chosen mesh size of 2 is represented in Fig. 2.  

Table 2 Natural frequency in two mode shapes versus mesh size 

Size 

Natural frequency (Hz) for laminated  

composite plates with cutouts [0/90]2s 

First mode  

shape 

Second mode  

shape 

4 69.605 26.187 

3.5 62.817 26.168 

3 56.777 26.156 

2.5 52.696 26.145 

2 50.318 26.140 

1.5 49.119 26.137 

 

   

(a) Mesh density (b) First mode shape of the plate (c) Second mode shape of the plate 

Fig. 2 Models of FE and mode shapes for laminated composite plates 
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2.5.   Validation of the FE model 

The numerical model is validated by comparing the natural frequency in Hz for CFFF plates that have the length of 0.235 

m corresponding to the first mode predicted by this study to those provided by Sinha et al. [34] with the same parameters. As 

shown in Table 3, the parameters used in this study, especially the size and position of the cutouts, are same as those in the 

work of Sinha et al. [34].  

Table 3 Comparison of the parameters used in this study and in the work of Sinha et al. [34] 

 

 

 

 

 
 

3. Development of the ANN Model 

3.1.   Artificial intelligence 

Artificial intelligence is considered one of the most important and fastest developing fields in scientific research. This is 

due to the difficulty of finding solutions to many problems using conventional methods. ANNs are preferred among all the 

artificial intelligence types due to many characteristics: good data security throughout the whole network, the ability to 

function with less information, excellent fault tolerance, and the ability to train a machine using distributed memory and 

parallel processing capability. 

3.2.   Parameters and numerical data  

The numerical model built in the previous section is used to acquire a dataset of 260 natural frequency values in each 

vibration mode. The feed-forward backpropagation network is implemented using MATLAB. The following entry variables are 

fed to the input layer: the size ratio (d/a), number of cutouts, modular ratio (E1/E2), length-to-width ratio (a/b), and thickness ratio 

(h/a) of the plates. The neurons are in the hidden layer, whereas the number of neurons is in the output layer. The number of 

neurons in the last layer is two, which represents the number of vibration modes. The input and hidden layers are served by 

tan-sigmoid transfer functions, while the output layer is served by a linear transfer function. Table 4 lists the parameters used to 

construct the dataset. The neural network is designed, developed, and deployed using the neural network toolbox in MATLAB. 

Table 4 Simulation parameters 

Size ratio (d/a) 0.1/0.2/0.3 

Number of cutouts 1/2/4 

Modular ratio (E1/E2) 1/2/3/4 

Length-to-width ratio (a/b) 1/2/1.5 

Thickness ratio (h/a) 0.012/0.018/0.024 
 

In this study, a multilayer feed-forward neural network (FFNN) is used to determine the natural frequency. It consists of a 

single input layer, one or more hidden layers, and a single output layer. A neural network with a single hidden layer can handle 

the most complicated functions. The basic neural network model is denoted by:  

( )ij i j

i

j w x b= +∑ρ ψ  (2) 

Fig. 3 depicts a neuron’s schematic structure. 

Parameter [34] 
This study Error 

Position of cutout Size of cutout Experimental FE model 

ex/a = ey/b = 0.25 
d/a = 0.1 28 26.2 26.13 1.87 

d/a = 0.2 32 26.8 26.76 5.24 

ex/a = 0.25 and ey/b = 0 
d/a = 0.1 24 26.2 26.14 2.14 

d/a = 0.2 20 26.9 26.8 6.8 
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Fig. 3 Structure of a neuron 

�� denotes the set of inputs for every neuron. The collection of outputs for each neuron is indicated by ��, while the bias 

set for each neuron is given by ��. The weight coefficient 	��  is multiplied by every input and then summed with a bias b of 

neurons to generate the net input n, which may be written as:  

1

k

j

j jn w x b

=

= +∑  (3) 

The mathematical notation ji corresponds to the input I in neuron j. The net input n is then sent via an active function 
, which 

gives the neuron output 	�. 

( )ρ = f n  (4) 

The hyperbolic tangent sigmoid activation function is used in this investigation. The following formula may be used to express it: 

ψ
−

−
−=
+

n n

n n

e e

e e
 (5) 

As a result, FNNN with a single input layer and one hidden layer in Fig. 4 implements the equation below:  

2 2 2 1 1 1 2

1 1

1 )(

N k

i j

ij j iia w w x b b

= =

= +
 
 

 

+

∑ ∑ψ ψ  (6) 

where �
 signifies the entire network output. The activation functions of the hidden layer and output layer, accordingly, are 

represented by 
� and 

. k and N denote the number of inputs and neurons in the hidden layer, respectively. �
 is the 

neuron’s bias within the output layer. 	��  is the weight that connects the ith hidden layer resource to the output layer neuron. 

Fig. 4 depicts the conceptual architecture of the model. 

 

Fig. 4 Architecture of the proposed ANN predictive model 
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3.3.   Levenberg-Marquardt algorithm  

Training neural networks are basically nonlinear least-squares problems that can be solved using a class of nonlinear 

least-squares algorithms. Among them, the Levenberg-Marquardt approach is regarded as the most efficient algorithm for 

training ANNs. It is based on Newton’s approach, which was developed for minimizing sums of squares error functions, such 

as the form below:  

1

2
1

( ) ( ) ( ) ( )
2

T

i

N

jF x u u x u xx
=

= =∑  (7) 

where �� is the error in the N
th

 pattern, u is the vector with elements ��, and � = (	�, 	
, 	�, …… ,	�)
�  contains all of the 

network’s weights. The sum of squared errors function is denoted as: 

1
( ) ( ) ( )

2

T
F w u w u w=  (8) 

Newton’s approach is used to maximize a performance index �(	): 

1
1N N N Nw w A g−

+ = −  (9) 

2 ( )
N

N
w w

A F w
=

≡∇  (10) 

( )
N

N w w
g F w =≡∇  (11) 

where �
�(	) is the Hessian matrix and ��(	) is the gradient obtained as follows. 

( ) 2 ( ) ( )T
F w J w u w=∇  (12) 

2 ( ) 2 ( ) ( ) 2 ( )T
F w J w J w S w= +∇  (13) 

J(w) represents the Jacobian matrix: 

11 11 11

1 2
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 (14) 

where P stands for the number of training patterns and M defines the number of output patterns.  
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2

1

( ) ( ) ( )

N

i

i iS w v w v w

=

=∑ ∇  (15) 

The Hessian matrix can be estimated as follows if S(x) is considered to be small.  

2 ( ) 2 ( ) ( )T
F w J w J w=∇  (16) 

Substituting Eqs. (11) and (15) into Eq. (8), the Gauss-Newton method can be obtained as: 

1

)∆ ( ( ()( ) )T T
k k k k kw J w J w J w u w

−
 = −    (17) 

The Gauss-Newton method has a problem in that the matrix may not be invertible. This may be avoided by making the 

following changes to approximate the Hessian matrix: 

G H I= + µ  (18) 

As a result, the Levenberg-Marquardt algorithm is expressed as: 

1

∆ ( ( )() ) )(T T
k k k k k kw J w J w I J w u w

−
 = − + µ  (19) 

where I is the identity matrix and the amount � is referred to as the learning parameter in neural computing. The learning 

parameter is reduced as the iterative procedure nears its end. The Levenberg-Marquardt algorithm is used in this study, as in the 

work of Hagan et al. [35] and Lv et al. [36]. 

3.4.   Validation of the ANN model 

The development of an ANN model begins by feeding all the captured data as “given” inputs and “desired” outputs. The data 

is then divided into three sets: training, validation, and test sets, with the proportions 70%, 15%, and 15%, respectively. The 

regression coefficient (R) and the mean squared error (MSE) are used to validate the generated model’s appropriateness. For all 

the data, R and MSE are 0.99995 and 0.143, respectively. As the optimum network, a hidden layer with eleven neurons is chosen 

to minimize MSE. Table 5 shows the findings. The results predicted by the ANN model are extremely close to the numerical ones. 

This proves that ANN can successfully forecast the natural frequency of laminated composite plates with a cutout.  

To examine the performance of the proposed model even more deeply, a regression analysis of the predicted as well as the 

numerical results is illustrated in Fig. 5. The regression coefficients (R) are calculated to determine the correlation between the 

ANN predicted values and those obtained from the FE model, as shown in Fig. 6. They are divided into three sets: the training, 

validation, and test data sets. The value of the coefficient R is between zero and one. The degree of correlation increases as R 

tends toward one. The ANN structure (5-11-2) is the best one in Table 5. 

The convergence tests of ANN results are done with MSE and the regression correlation coefficient (R): 

2

1

1
ˆ( )

N

i

i

MSE y y
N =

= −∑  (20) 

2 2

1

2

1 1

ˆ1 ( ) ( )
n n

i i i
i i

R y y y y
= =

   = − − −  
   

∑ ∑  (21) 

where y is the actual value, �� is the predicted value of y, and �� is the mean value of y. 
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Fig. 5 Performance of ANN training 

 

  

(a)Training results of a neural network regression (b) Validation results of a neural network regression 

  

(c) Test results of a neural network regression (d) Neural network regression in all data sets 

Fig. 6 Correlation between the values predicted by the ANN model with structure (5-11-2) and by the FE model 

 

Table 5 MSE and regression coefficient according to the number of hidden layer neurons 

ANN structure 
The performance  

of training 
Training: R Validation: R Test: R 

Mean squared  

error (MSE) 

5-1-2 40.2782 0.98244 0.98178 0.98124 49.157 

5-2-2 11.8044 0.99125 0.99529 0.98987 24.133 

5-3-2 11.8873 0.99421 0.99661 0.99225 16.094 

5-4-2 12.9589 0.99613 0.99452 0.99575 11..775 

5-5-2 6.0636 0.99802 0.99788 0.99750 6.028 

5-6-2 8.8178 0.99376 0.99785 0.99353 15.627 

5-7-2 9.9689 0.99729 0.99736 0.99609 8.449 

5-8-2 0.8028 0.99974 0.99968 0.9990 7.940 

5-9-2 1.6912 0.99951 0.99953 0.99905 1.588 

5-10-2 0.5544 0.99985 0.99980 0.99988 0.433 

5-11-2 0.1218 0.99995 0.99995 0.99995 0.12 

5-12-2 0.5212 0.99989 0.99980 0.99967 0.424 

5-13-2 0.3645 0.99996 0.99987 0.99979 0.294 

5-14-2 0.3186 0.99994 0.99990 0.99982 0.244 

5-15-2 0.5560 0.99993 0.99982 0.99981 0.298 

138 



Advances in Technology Innovation, vol. 7, no. 2, 2022, pp. 131-142 

 

3.5.   Comparison between the numerical and predicted natural frequency for all data sets 

Figs. 7(a)-(b) provide a comparison between the numerical and the ANN-predicted natural frequency of the first mode 

shapes. In terms of absolute error (AE), the highest values are 2.94% and 1.58% for each mode shape, while the lowest values 

are 0.03% and 0%. Overall, the error is close to zero, which proves the validity and the accuracy of the ANN model. It is 

noteworthy that AE is determined using the following relation to the positive value.  

ˆAE y y= −  (22) 

where y is the actual value, and �� is the predicted value of y. 

The proposed ANN model is then used to investigate the effect of several variables on the natural frequency as a function 

of both geometrical and mechanical parameters. Only one parameter is changed at a time, while all others are maintained 

constant. The sensitivity of the composite plate characteristics with respect to the cutout parameters is investigated in the 

following sections. 

  

(a) The values of natural frequency in the first mode shape (b) The values of natural frequency in the second mode shape 

Fig. 7 Comparison of the natural frequency values between the numerical model and  

the ANN model with structure (5-11-2) in two mode shapes 
 

4. Analysis of Parameters’ Effect  

4.1.   Effect of the modular ratio (E1/E2) 

The influence of the modular ratio on the natural frequency of the CFFF laminate composite plate [0/90]2s is studied with 

the following characteristics: length-to-width ratio = 1, thickness ratio = 0.012, and the square cutout with a size ratio d/a = 0.1. 

The change in natural frequency of the two vibration modes is predicted for the following combinations: E1/E2 = 1, 2, 3, and 4. 

Table 6 shows that, for the two mode shapes, the value of the frequency decreases as the modular ratio increases. It is 

worth noticing that the natural frequency corresponding to the modular ratio of 2 and the ones corresponding to 3 and 4 are 

very close. The lowest natural frequencies are 20.36 Hz and 46.37 Hz for each mode, and the highest ones are 26.140 Hz and 

50.316 Hz. 

Table 6 Natural frequencies of the laminated square plate with different parameters (the modular ratio,  

cutout size ratio, and number of cutouts) 

- 
Modular ratio (E1/E2) Cutout size ratio (d/a) Number of cutouts 

1 2 3 4 0.1 0.2 0.3 1 2 4 

Natural frequency of the  

first mode vibration 
26.14 22.41 21.06 20.36 26.14 26.80 27.98 36.06 37.92 39.46 

Natural frequency of the  

second mode vibration 
50.31 47.78 46.66 46.37 50.31 49.49 48.16 73.16 73.21 73.66 

 

139 



Advances in Technology Innovation, vol. 7, no. 2, 2022, pp. 131-142 

 

4.2.   Effect of the cutout size  

Table 6 also shows the variation in the first two natural frequencies with respect to three different cutout size ratios: d/a = 

0.1, 0.2, and 0.3 in the same laminated plate having length-to-width ratio a/b = 1 and thickness ratio h/b = 0.012. It is obvious 

that the size of the cutout affects the natural frequencies of the composite plate.  

According to the results, the natural frequency of the specimen and the size of the cutout are proportional. For the first two 

modes, when the size of the cutout d/a changes from 0.1 to 0.2, 0.1 to 0.3, and 0.2 to 0.3, the natural frequency increases by 

2.54%, 1.64%, and 2.23%, then by 7.03%, 4.26%, and 5.53%. 

4.3.   Effect of the cutout number 

In this part, the effect of the number of cutouts on natural frequency is investigated. The laminated square plate is 

composed of eight elastic layers [0/90]2S with CFFF support in the borders. The natural frequency of the first two mode shapes 

of the composite plate is determined using a frequency response study. The square laminate utilized has a length-to-width ratio 

of a/b = 1 and a thickness ratio of h/b = 0.01, whereas the cutout size ratio equals d/a = 0.1 in all three configurations. The 

results are displayed in Table 6.  

For both the vibration modes, the number of cutouts has an inverse effect on the natural frequency of the laminated 

composite plates. According to the results, as the number of cutouts increases, the specimen’s natural frequency decreases by a 

modest amount. The change does not exceed 0.7% for the second vibration mode.  

5. Conclusions 

In this study, a neural-network-based approach is proposed to assess changes in the geometrical and mechanical 

properties of composite plates through the prediction of natural frequency. The main idea is to simulate the composite model 

numerically with the FE method and use its output to construct and train a successful ANN predictive model. The model uses 

natural frequency as an indicator. After validation, the ANN model is used to identify the changes in structures by the 

prediction of natural frequency. The effects of the main geometrical and mechanical characteristics (e.g., the cutout size ratio 

(d/a), the number of cutouts, and the modular ratio (E1/E2)) on the natural frequency were investigated. The findings of this 

study can be summarized as follows: 

(1)  The constructed ANN model agrees with the FE model, indicated by a mean squared error near zero. The greatest AE 

between the numerical model and the ANN forecasting model was found to be 4.92% and 1.75% for the first and the 

second vibration modes, respectively. 

(2)  The natural frequency of the laminate plates is inversely proportional to the E1/E2 ratio. 

(3)  The natural frequency is inversely proportional to the number of cutouts. 

(4)  The natural frequency increases with the increase in the size of the cutouts. 
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