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Abstract 

This study proposes a method for designing observer-based quadratic guaranteed cost controllers for linear 

uncertain systems with control gain variations. In the proposed approach, an observer is designed, and then a feedback 

controller that ensures the upper bound on the given quadratic cost function is derived. This study shows that sufficient 

conditions for the existence of the observer-based quadratic guaranteed cost controller are given in terms of linear 

matrix inequalities. A sub-optimal quadratic guaranteed cost control strategy is also discussed. Finally, the 

effectiveness of the proposed controller is illustrated by a numerical example. The result shows that the proposed 

controller is more effective than conventional methods even if system uncertainties and control gain variations exist. 

 
Keywords: polytopic uncertainty, quadratic guaranteed cost control, observer-based controller,  
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1. Introduction 

In the design of control systems for dynamical systems, it is necessary to derive a mathematical model for the controlled 

system. If the mathematical model represents the control system precisely, then the desired control system can be designed by 

various control design strategies. However, it is unavoidable that there are some gaps between an original controlled system 

and its mathematical model, and these gaps are known as “uncertainty.” Therefore, robust controller design methods that can 

explicitly deal with uncertainties have been well studied. A large number of robust control strategies have been proposed [1-3]. 

Most conventional robust controllers have been designed by solving linear matrix inequalities (LMIs) and have fixed gains that 

are designed by considering the worst-case variation for uncertainties.  

In fact, it is desirable to design robust control systems with not only robust stability but also satisfactory control 

performance. To achieve this, Chang and Peng [4] proposed guaranteed cost control. In this design method, there is an upper 

bound on a given performance index. The degradation of the system performance caused by uncertainties is guaranteed to be 

below this bound. Many studies have adopted this concept [5-7]. In the work of Moheimani and Peterson [6], the Riccati 

equation approach [5] was extended to uncertain time-delay systems, and a guaranteed cost controller design method that 

solves a certain parameter-dependent Riccati equation was proposed. Yu and Chu [7] proposed a design method for guaranteed 

cost controllers for linear uncertain time-delay systems that uses the LMI approach.  

Studies on robust control generally assume that the full state of the controlled systems can be measured. However, in 

practice, the full state of systems cannot be obtained due to practical constraints. To overcome this problem, some 

observer-based quadratic stabilizing controllers have been presented [8-11]. For example, Oya and Hagino [10] proposed an 

observer-based guaranteed cost controller for polytopic uncertain systems. The polytopic representation allows the structure of 

uncertainties to be directly represented. 
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On the other hand, Keel and Bhattacharyya [12] pointed out that it is necessary for a controller to tolerate some 

uncertainty when the control input is implemented. Controller implementation involves the uncertainties inherent in 

analog-to-digital and digital-to-analog conversion and roundoff errors in numerical computations. Thus, a nonzero margin of 

tolerance is required for the controller design. Many design methods that consider control gain variation have been proposed 

[13-16]. Yang et al. [13] proposed a design method for �� control for linear systems with addition control gain variation. 

Famularo et al. [14] considered not only control gain variations but also the uncertainty of the system matrix. Oya et al. [15] 

proposed a design method for a robust controller for linear uncertain systems with control gain perturbation. However, the 

problem of observer-based quadratic guaranteed cost control for linear uncertain systems with control gain variation has not 

been discussed. 

This study proposes a method for designing an observer-based guaranteed cost controller for linear uncertain systems 

with control gain variation. In this study, the design approach is separated into two steps [10, 17]. In the first step, an observer 

is designed; in the second step, a feedback controller that guarantees the upper bound on the given quadratic cost function is 

derived. Sufficient conditions for the existence of the proposed controller are given in terms of LMIs. The proposed control 

system can thus be designed using software such as MATLAB’s LMI Control Toolbox and Scilab’s LMITOOL. 

2. Preliminaries 

This section presents two lemmas that are used in this study. Lemma 1 shows the relation between matrices and a positive 

constant. Lemma 2 is the Schur complement formula. 

Lemma 1 [16]: For matrices P and H that have appropriate dimensions, the following formula is obtained. 

1T T T T
PH H P PP H H+ ≤ +γ

γ  (1) 

where � is a positive constant. 

Lemma 2 (Schur complement formula [16]): For a given constant real symmetric matrix Ξ, the following items are 

equivalent. 

11 12

12 22

(i) 0
T

Ξ Ξ 
Ξ = >  Ξ Ξ   

(2) 

1
11 22 12 11 12(ii) 0 and 0T −Ξ > Ξ − Ξ Ξ Ξ >

 
(3) 

1
22 11 12 22 12(iii) 0 and 0T−Ξ > Ξ − Ξ Ξ Ξ >

 
(4) 

3. Problem Formulation 

This study considers the linear uncertain system described by the following: 

( ) ( ) ( ) ( )x t A x t B u t= +ɺ θ
 (5) 

( ) ( )y t Cx t=
 (6) 

where � ∈ ℝ�×
  and � ∈ ℝ�×�  denote the known nominal matrices, and 
(�) ∈ ℝ� , �(�) ∈ ℝ
 , and �(�) ∈ ℝ�  are the 

vectors of the state, control input, and output, respectively. The full state cannot be measured. In Eq. (5), �(�) is supposed to 

have appropriate dimensions and the following structure: 
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1

( )
N

k k

k

A A A
=

= +∑θ θ
 

(7) 

In Eq. (7), the matrix � ∈ ℝ�×� represents the known nominal value for system parameters, and the matrix Ak, k = 1, 2, ……, 

N, denotes the structure of the uncertainties. The parameter � � (��, …… , ��)� represents unknown parameters that belong to 

the following parameter set: 

1

| 1, 0 for 1, ,
N

N
k k

k

k Nθ θ θ
=

  ∆ ∈ = ≥ = 
  

∑≜ ℝ …
 (8) 

Furthermore, for ∀� ∈ ∆, it is assumed that the pair (�(�), �) and (�, �(�)) are controllable and observable respectively. 

Now the following full-state observer is introduced: 

ˆ ˆ ˆ( ) ( ) ( ) ( )( ( ) ( ))x t Ax t Bu t G t y t Cx t= + + −ɺ
 

(9) 

where �(�) ∈ ℝ�×� is the observer gain matrix which is described as: 

( ) ( )G t G G t= + ∆
 

(10) 

( ) GG t∆ ≤ε
 

(11) 

In Eqs. (10) and (11), �(�) ∈ ℝ�×�  shows the uncertainty for the observer gain matrix, and ��  is a known constant that 

represents the upper bound for ∆�(�). In other words, ∆�(�) fluctuates in the range given in Eq. (11). The actual control input 

�(�) is defined as: 

ˆ( ) ( ) ( )u t K t x t−≜
 

(12) 

where  (�) ∈ ℝ
×� is the control gain matrix which satisfies the following relation: 

( ) ( )K t K K t= + ∆
 

(13) 

( ) KK t∆ ≤ ε
 

(14) 

In Eq. (14),  (�) ∈ ℝ
×� represents the uncertainty of the controller gain matrix, and the known constant �! is the upper 

bound for ∆ (�). In this study, the control input with ∆ (�) is considered so as to design the observer-based quadratic 

guaranteed cost controller under control gain variation. Namely, the manipulated control input for the uncertain linear system 

in Eqs. (5) and (6) is �(�) ≜ # 
$(�). Fig. 1 shows the configuration of the proposed control system. 

 
Fig. 1 Configuration of the proposed control system 
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For the linear uncertain system given in Eqs. (5) and (6), the following quadratic cost function is defined: 

{ }
0

( ) ( ) ( ) ( )T TJ x t Q x t u t R u t d t
∞

= +∫
 

(15) 

where the weighting matrices % ∈ ℝ�×� and & ∈ ℝ
×
 are positive definite and can be selected by designers. By introducing 

an estimation error vector '(�) ≜ 
(�) # 
$(�), from Eqs. (5) and (9), the following estimation error system is obtained: 

ˆ( ) ( ( ) ( ) ) ( ) ( ) ( )ee t A G t C e t A x t= − +ɺ θ θ
 (16) 

where �((�) is the matrix given by �((�) ≜ �(�) # �. Moreover, an augmented vector 
((�) ≜ (
$(�)	'(�))� is introduced. 

Then, from Eqs. (5), (6), (9), (13), and (16), the following augmented system is derived: 

( ) ( ) ( )e ex t x t= Ωɺ θ
 

(17) 

( ) ( )
( )

( ) ( ) ( )e

A BK t G t C

A A G t C

− 
Ω =  − 

θ
θ θ  (18) 

Moreover, by using the estimated error vector '(�), the control input in Eq. (12), and the augmented vector 
((�), the 

quadratic cost function in Eq. (15) can be rewritten as follows: 

0
( ) ( ) ( )

e

T
x e eJ x t t x t d t

∞
= Γ∫

 
(19) 

( ) ( )
( )

TQ K t R K t Q
t

Q Q

 +Γ =   
   

(20) 

Note that because the weighting matrices % ∈ ℝ�×� and & ∈ ℝ
×
 in Eq. (18) are positive definite, the matrix Γ(�) in 

Eq. (20) is semi-positive definite. Applying Lemma 2 to Eq. (20), the semi-positive definiteness of the matrix Γ(�) can be 

obtained as follows: 

1( ) ( ) ( ) ( )T T
Q K t RK t QQ Q K t RK t

−+ − =
 

(21) 

The definition of an observer-based quadratic guaranteed cost control is as follows. 

Definition: The control input in Eq. (12) is an observer-based quadratic guaranteed cost control for the linear uncertain system 

in Eqs. (5) and (6) and the quadratic cost function in Eq. (19) provided that the closed-loop system in Eq. (17) is asymptotically 

stable for ∀� ∈ ∆ and there exists a positive constant +∗(
((0)) that satisfies ./0 	≤ +∗(
((0)). 

From the above discussion, the objective of this study is to design the observer gain matrix and the control gain matrix that 

guarantee the upper bound on the quadratic cost function in Eq. (19). 

4. Main Results 

This section shows an LMI-based design method for the observer gain matrix � ∈ ℝ�×� and the control gain matrix 

 ∈ ℝ
×�  that ensures the upper bound of the quadratic cost function. It is difficult to design both gain matrices 

simultaneously because of the uncertainty parameters. Thus, the observer gain matrix � is first designed, and then the control 

gain matrix   is determined. 
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4.1.   Design of observer gain matrix 

This study considers the design of the observer gain matrix � that stabilizes the following system obtained by ignoring the 

estimate 
$(�) in Eq. (16): 

( ) ( ( ) ( ) ) ( )e t A G t C e t= −ɺ θ
 

(22) 

Now, let 2�('̅) ≜ '̅�(�)4('̅(�) be a Lyapunov function candidate. 4( ∈ ℝ�×� is a symmetric positive definite matrix. From 

Lemma 1, Lemma 2, and a previously reported result [1], a sufficient condition for the asymptotical stability of the system in 

Eq. (22) is obtained as follows: 

vex

( ) ( )
0,

T T T T
e e e e G e

G e n

Y A A Y H C C H C C Y

Y I

θ θ γ ε θ
ε γ

 + − − + < ∀ ∈ ∆  − 
 (23) 

From Eq. (23), the observer gain matrix � can be easily designed as follows: 

1
e eG Y H
−=

 
(24) 

4.2.   Design of control gain matrix 

In this section, the control gain matrix   that minimizes the upper bound on the quadratic cost function in Eq. (19) is 

designed. The following quadratic function is introduced as a Lyapunov function candidate: 

( ) ( ) ( )T
K e e ex x t x tΛ≜V

 
(25) 

where Λ ∈ ℝ6�×6� is a symmetric positive definite matrix. The time derivative of the quadratic function 2!(
() along the 

trajectory of the augmented system in Eq. (17) can be computed as: 

( ) ( )( ( ) ( )) ( )T T
K e e ex x t x t= Ω Λ + ΛΩɺ θ θV

 
(26) 

Because the matrix Γ(�) in Eq. (20) is semi positive definite, the following inequality is considered: 

vex( ) ( ) ( ) 0 ,T
tΩ Λ + Λ Ω + Γ < ∀ ∈ ∆θ θ θ

 
(27) 

If a symmetric positive definite matrix Λ and a control gain matrix   that satisfy the matrix inequality in Eq. (27) exist, then 

the following relation holds: 

( ) ( ) ( ) ( ) 0T
K e e ex x t t x t< − Γ <ɺV

 
(28) 

Namely, the augmented system in Eq. (17) is quadratically stable and 
((∞) � 0 holds. From '(�) ≜ 
(�) # 
$(�), the 

asymptotical stability of the linear uncertain system in Eqs. (5) and (6) is ensured. Furthermore, by integrating both sides of the 

inequality in Eq. (27) from 0 to ∞, the following equation can be obtained: 

*

0
( ) ( ) (0) (0) ( (0))

e

T T
e e e e exJ x t x t dt x x x

∞
= Λ < Λ =∫ J

 
(29) 

Therefore, if matrices Λ and   that satisfy the LMI in Eq. (27) exist, the asymptotical stability of the system in Eqs. (5) and (6) 

is ensured and the upper bound on the quadratic cost function in Eq. (19) is given by Eq. (29). 
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Now, by introducing the auxiliary parameter 8 ∈ ℝ�, the following matrix is considered (Remark 1): 

( ) ( )
( )

T
nQ I K t RK t Q

t
Q Q

 + +Γ =   
 

δ
δ

 

(30) 

From Eqs. (20) and (30), the relation Γ9(�) # Γ(�) ≥ 0 holds. Therefore, the inequality in Eq. (27) also holds provided that the 

following condition is satisfied: 

vex( ) ( ) ( ) 0,T
tΩ Λ + Λ Ω + Γ < ∀ ∈ ∆δθ θ θ

 
(31) 

Here, ; ≜ diag(@, @() ≜ ΛA�(@, @( > 0 ∈ ℝ�×�) and C ≜  @ are defined. Then, pre- and post-multiplying Eq. (31) by ;, the 

condition in Eq. (31) can be written as:  

vex( ) ( ) ( ) 0,T
tΩ + Ω + Γ < ∀ ∈ ∆δθ θ θS S S S

 
(32) 

The inequality in Eq. (32) is organized as follows: 

11 12

vex

12 22

( ) ( , ) 0 0
0,

0 0( , ) ( , )

T

n

T
e e

t t S SQ I Q

S SQ Qt t

Ψ Ψ +
+ < ∀ ∈ ∆

Ψ Ψ

      
      

     

θ δ
θ

θ θ  
(33) 

1 1 ( ) ( ) ( ) ( ) ( )T T T T T T
t A S S A B B S K t B B K t S S K t R K t SΨ = + − − − ∆ − ∆ +W W

 
(34) 

12 ( , ) ( ) ( )T
e e et SA GCS G t CSΨ = + + ∆θ θ

 
(35) 

22 ( , ) ( ) ( ) ( ) ( )T T T T T
e e e e e et A S S A GCS S C G S C G t G t CSΨ = + − − − ∆ − ∆θ θ θ

 
(36) 

Using Lemma 1 and Lemma 2, the inequality of Eq. (33) can be described as follows: 

11 12

*
12 22 vex

1 2

( )
0 0

( ) ( ) 0 0,
0 0

0

T

T

T

e e

K m

S S

S S
R I

−

 Ψ Ψ
     
 Ψ Ψ + Γ < ∀ ∈ ∆   
     
 − + 

δ

θ
θ θ θ

ξε

W

W
 

(37) 

2
2

11
1K

G n

T T T TA S SA B B BB I SS SSΨ = + − − + + + +
ε

α η ε
α ξ

W W  
(38) 

12 ( ) ( )T

e e
SA G C SΨ = +θ θ

 
(39) 

2
22

  

1
( ) ( ) ( )

1

 G

T T T T
e e e e n e e

T
e e

A S S A G C S S C G I S C C S

S C C S

= + − − + +

+

Ψ θ θ θ β ε β

η
 

(40) 

Note that Γ9∗ in Eq. (37) is the matrix expressed as:  

* 
nQ I Q

Q Q

+
Γ

 
 
 
≜δ

δ
 

(41) 
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One can easily see that the matrix Γ9∗ is positive definite because its positive definiteness is equivalent to % + δF� #
%%A�% � δF� > 0. Because the matrix Γ9∗ is a positive definite, Lemma 2 can be applied to the inequality condition in Eq. (37). 

As a result, the following condition is obtained:  

( )

11 12

2212

1 2

vex

1*

00( ) 0

( ) 00 0 0( )

0 00 0 000

0 0 0 0000

0( ) 0 0 0 0,000

0 0 00 00 0

0 0 000 00

0 0 0 0 0 0

0 0 0 0 0 0

−

−
− Γ

Ψ Ψ

ΨΨ

− +
−

−Ψ = <

−

−

∀ ∈ ∆

 
 
 
 
 
 
 
 
 
 
 
 
  
 

δ

θ ε

θθ

ξε
αε

ξθ

β

η

θ

T

K

TT T

eee

K m

nK

n

e l

e l

e

SS S

SS CS C

R I

IS

IS

CS I

CS I

S

S

W

W

 

(42) 

2
11 T T T T

G nA S S A B B B B IΨ = + − − + +α η εW W
 

(43) 

12 ( ) ( )T

e eSA G C SΨ = +θ θ
 

(44) 

2
22 ( ) ( ) ( ) T T T

e e e e G nA S S A G C S S C G IΨ = + − − +θ θ θ β ε
 

(45) 

The condition in Eq. (42) is an LMI for ; > 0,C, G > 0, H > 0, I > 0 and J > 0. If the solution ; > 0,C, G > 0, H >
0, I > 0 and J > 0 of the LMI in Eq. (42) exists, an observer-based quadratic guaranteed cost control law is obtained as 

follows: 

ˆ( ) ( )u t K x t−≜
 

(46) 

1 K S
−= W  

(47) 

From the above, the following theorem for designing the observer-based quadratic guaranteed cost controller is obtained: 

Theorem 1: By solving the LMI in Eq. (23), the observer gain matrix � is derived as � � 4(A��(  in advance. If there exists 

the solution ; > 0,C, G > 0, H > 0, I > 0 and J > 0 for ∃8 > 0 satisfying the LMI, 

vex( ) 0,Ψ < ∀ ∈ ∆θ θ
 

(48) 

then the control gain matrix   can be computed as  � C@A�  and the control law �(�) � # 
$(�)  becomes an 

observer-based quadratic guaranteed cost control. 

4.3.   Sub-optimal guaranteed cost control 

Because the LMI in Eq. (42) has a convex solution ; > 0,C, G > 0, H > 0, I > 0 and J > 0, it can be optimized by 

using software such as MATLAB’s Robust Control Toolbox. In this section, the following optimization problem is considered: 

, , , , ,

*
( (0)) subject to Eq. (42) and 0, 0, 0, 0, 0Minimize e
x > > > > >

α β η ξ
α β η ξ

S W

J S
 (49) 
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If the optimization problem in Eq. (49) is solved, then a sub-optimal observer-based quadratic guaranteed cost control can 

be obtained. However, the upper bound +∗(
((0)) in Eq. (49) depends on the initial augmented vector 
((0). Note that the 

error '(0) cannot be utilized because the initial state 
(0) cannot be completely observed. Thus, to avoid this dependence, it is 

assumed that the initial vector 
((0)	is a random vector that satisfies EM
((0)
(�(0)N � F6� and EM
((0)N � 0. Then, the upper 

bound on the quadratic cost function in Eq. (29) is given as OP+∗Q
((0)RS � TU{Λ}. Therefore, the minimization problem of 

TU{Λ} minimized subject to the LMI constraint in Eq. (42) can be derived. Moreover, by introducing a complementary variable 

∑ ∈ ℝ6�×6�, which is a symmetric positive definite matrix, the following relation is considered: 

2

2

0 0n

n

I

I

Σ 
Σ ≥ Λ > ⇔ ≥ 

 S  (50) 

Then, the minimization problem of TU{Λ} can be transformed into that of TU{∑} because the condition in Eq. (50) is an 

LMI in ∑ and ;. Consequently, the optimization problem in Eq. (49) can be reduced to the following constrained convex 

optimization problem: 

, , , , , ,
{ } subject to Eqs. (42) and (50) and 0, 0, 0, 0, 0Minimize Tr

Σ
Σ > > > > >

α β η ξ
α β η ξ

S W
S

 (51) 

Finally, the following theorem can be obtained: 

Theorem 2: If there exists the solution ; > 0,C, G > 0, H > 0, I > 0 and J > 0 that satisfies the constrained convex 

optimization problem in Eq. (51), there exists a sub-optimal observer-based quadratic guaranteed cost control. Note that by 

using the solution of the LMI in Eq. (23), the observer gain matrix � is derived as � � 4(A��(  in advance. If the solution to the 

constrained convex optimization problem is obtained, the control gain matrix   can be computed as  � C@A�. Therefore, 

the control law �(�) � # 
$(�) is a sub-optimal observer-based guaranteed cost control. 

Remark 1:  This study introduced the auxiliary parameter 8 in Eq. (30). If 8 is zero, the positive definiteness of the matrix Γ9∗ 
is reduced to the relation % # %%A�% � 0. Then, Lemma 2 cannot be applied to the inequality in Eq. (37). If the parameter 8 is 

a positive scalar, then the LMI in Eq. (42) can be obtained. However, if the parameter 8 is set to a larger value, the result will be 

more conservative. Therefore, 8 is set to be small as possible. 

5. Simulation 

This section demonstrates the effectiveness of the proposed method. As an example, the following aircraft model is 

considered [18]: 

0.091 0.097 0 1 0 0 0 0

0 0 1 0 0 0 0 0

5.43 0 0.686 3.62 2.87 0.638 0 0
( ) ( ) ( )

0.56 0 0 0.122 0.127 0.459 0 0

0 0 0 0 10 0 10 0

0 0 0 0 0 10 0 10

x t x t u t

− −   
   
   
   − −

= +   
+ −   

   −
      −   

ɺ
ω  (52) 

( )( ) 0 1 0 0 0 0 ( )y t x t=
 (53) 

where the parameter Y represents the uncertainties and is assumed to vary in the range of M#1.01.0N. Let Case 1 and Case 2 be 

Y � #1.0 and Y � 1.0, respectively; these two cases are the worst cases of the uncertainties. It is assumed that the initial state 

and the initial estimate are 
(0) � (1.0			0			0			0			0			0)� and 
$(0) � (0			0			0			0			0			0)�, respectively. The state variables are 
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shown in Table 1. This simulation sets the weighting matrix of the quadratic cost function, the parameter 8, and the variations 

of   and � as follows: 

5
6 21.0 , 4 .0 , 1 .0 10Q I R I

−= = = ×δ
 

(54) 

1 1 1 1 1 1
( ) 0 .1(1 .0 | c o s (1 0 ) |)

1 1 1 1 1 1
tK t e t−  

 
 

∆ = − π  (55) 

1 1 1 1 1 1( ) 0 .1(1 .0 | co s (1 0 ) |)( )t TG t e t−∆ = − π  
(56) 

In addition, �!  and ��  are set as �! � 0.35 and �� � 0.25, respectively. By solving the LMI condition in Eq. (23), the 

observer gain matrix � is derived as: 

( )10.9786 9.4665 59.8127 11.6423 14.4855 3.4610
T

G = − − −
 

(57) 

Then, by applying Theorem 2 and solving the constrained convex optimization problem, the control gain matrix   is obtained as: 

51.3273 1.5326 3.7102 34.5183 1.7920 1.3725

162.0656 7.9559 0.2540 124.4227 1.3723 5.1444
K

− 
=  − − 

 (58) 

Consequently, the upper bound on the quadratic cost function OP+∗Q
((0)RS is obtained as OP+∗Q
((0)RS � 6.4975 × 10c. 

This simulation compares the results of the proposed method, the conventional linear quadratic regulator (LQR), and the work 

of Oya et al. [10]. Oya et al. [10] proposed a method for designing observer-based quadratic guaranteed cost control for 

uncertain systems. The control gain matrix   in Eq. (59) is the result obtained by using the LQR:  

0.5272 0.2315 0.2673 0.4336 0.1570 0.0223

0.3295 0.0495 0.0857 0.6478 0.0223 0.1270
K

− 
=  −   

(59) 

�d  in Eq. (60) and  d  in Eq. (61) are the observer gain matrix and the control gain matrix obtained from the design method in 

the work of Oya et al. [10]: 

( )4 .7663 4 .7328 33.2626 6 .0968 6 .2544 1 .2644
T

rH = − − −  
(60) 

9.6020 27.1407 15.0468 6.3814 3.2967 0.8400

4.0787 6.3076 3.9832 5 .2499 0 .8400 0.6510
rK

− 
=  − 

 (61) 

Figs. 2-5 and Figs. 6-9 show the results of the LQR and the method of Oya et al. [10]. From the results, the LQR and the 

method of Oya et al. [10] did not achieve asymptotical stability. Figs. 6 and 7 show that the state diverged in Case 1 by the 

method of Oya et al. [10]. Control gain variation was not considered in the work of Oya et al. [10], and thus the system could 

not be stabilized. 

Table 1 State variables of example aircraft 


�(�) Dimensionless slide-slip  
velocity (DSV) 


6(�) Roll 


c(�) Roll rate 


e(�) Yaw rate 


f(�) Aileron angle 


g(�) Rudder angle 
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Fig. 2 Time histories of 
�(�) # 
c(�) by LQR (Case 1) Fig. 3 Time histories of 
e(�) # 
g(�) by LQR (Case 1)  

  
Fig. 4 Time histories of 
�(�) # 
c(�) by LQR (Case 2) Fig. 5 Time histories of 
e(�) # 
g(�) by LQR (Case 2) 

  
Fig. 6 Time histories of 
�(�) # 
c(�) by the method of  

Oya et al. [10] (Case 1) 
Fig. 7 Time histories of 
e(�) # 
g(�) by the method of  

Oya et al. [10] (Case 1) 

  
Fig. 8 Time histories of 
�(�) # 
c(�) by the method of  

Oya et al. [10] (Case 2) 
Fig. 9 Time histories of 
e(�) # 
g(�) by the method of  

Oya et al. [10] (Case 2) 
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On the other hand, Figs. 10-14 show the results for the proposed controller design method. As shown, even in the presence 

of system uncertainties and control gain variation, the proposed method achieved asymptotic stability. This demonstrates the 

effectiveness of the proposed quadratic guaranteed cost controller.  

 
Fig. 10 Time histories of 
�(�) # 
c(�) by the proposed method (Case 1) 

  
Fig. 11 Time histories of 
e(�) # 
g(�) by the proposed  

method (Case 1) 
Fig. 12 Time histories of 
�(�) # 
c(�) by the proposed  

method (Case 2) 

  
Fig. 13 Time histories of 
e(�) # 
g(�) by the proposed  

method (Case 2) 
Fig. 14 Time histories of the input by the proposed method 

 

6. Conclusions 

This study proposed a method for designing an observer-based quadratic guaranteed cost controller for linear uncertain 

systems with control gain variation. In the proposed approach, the observer gain matrix was first designed, and then the control 

gain matrix was determined. The design parameter 8 was introduced. The design of an observer-based quadratic guaranteed 

cost controller was reduced to an LMI condition. Moreover, a robust sub-optimal guaranteed cost controller was investigated. 

The results of this study are a natural extension of those in the work of Oya et al. [10]. Although the uncertainty in the input 
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matrix has been considered in the work of Oya et al. [10], the proposed design method can be easily applied to such a problem. 

By introducing additional actuator dynamics and constituting an augmented system, the uncertainties in the input matrix are 

embedded in the system matrix of the augmented system.   

In future work, the proposed adaptive robust controller synthesis will be extended to a broad class of systems, including 

uncertain linear systems with time delays and decentralized control for large-scale interconnected systems. In the proposed 

design method, if the parameter 8  is set to a larger value, the result will be more conservative. Therefore, reducing 

conservatism should also be considered. 
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Appendix 

In this appendix, the extension to ℒ6 gain performance is discussed. The following uncertain system is considered: 

( ) ( ) ( ) ( ) ( )xx t A x t B u t D t= + +ɺ θ ω
 (A1) 

( ) ( ) ( )zz t C x t D t= +ɺ ω
 

(A2) 

where 
(�) ∈ ℝ� , �(�) ∈ ℝ
 , i(�) ∈ ℝ� , and Y(�) ∈ ℝj  are the vectors of the state, input, output, and disturbance, 

respectively. The following full-state observer is introduced: 

ˆ ˆ ˆ( ) ( ) ( ) ( )( ( ) ( ))x t Ax t Bu t G t z t Cx t= + + −ɺ
 

(A3) 

Let the input �(�), the estimation error '(�) and the augmented vector 
((�) be �(�) ≜ # (�)
$(�), '(�) ≜ 
(�) # 
$(�), and 


((�) ≜ (
$(�)	'(�))�, respectively. The augmented system and the estimation error system can be obtained as follows: 

ˆ( ) ( ( ) ( ) ) ( ) ( ) ( ) ( ( ) ) ( )e x ze t A G t C e t A x t D G t D t= − + + −ɺ θ θ ω
 

(A4) 

( ) ( ) ( ) ( )e ex t x t t= Ω +ɺ θ ωD
 

(A5) 

( ) ( )
( )

( ) ( ) ( )e

A B K t G t C

A A G t C

−
Ω =

−
 
 
 

θ
θ θ  

(A6) 

( )
( )

( )

z

x z

G t D
t

D G t D
=

−
 
 
 

D
 

(A7) 

Please refer to the work of Nagai et al. [19] for a definition and a lemma about ℒ6 gain performance. The observer gain matrix 

� is designed as Eq. (24) in section 4.1. To design control gain matrix  , the following Lyapunov function and Hamiltonian 

are defined: 

( ) ( ) ( )T

K e e ex x t x tΛ≜V
 

(A8) 

* 2( , ) ( ) z ( ) ( ) ( ) ( ) ( )T T

e K eH x t x t z t t t+ −ɺ≜ γ ω ωV
 

(A9) 

Here, (�∗)6 ≜ � and 
(�) ≜ (F�	F�) k/$(l)((l)m � n
((�) are introduced. Furthermore, the following equation can be obtained: 

( ) ( ) ( ) ( )
( , ) ( ) ( )

( )( )

T T T T T

zT T e
e e T T T

z z z p

C C t C D x t
H x t x t t

tt D C D D I

 
               

 

Λ Ω + Ω Λ + Λ +
=

Λ + −

θ θ
ω

ωγ

T T D T

D T  
(A10) 

To satisfy �(
( , �) < 0, the following inequality is considered: 

vex

( ) ( ) ( )
0,

( )

T T T T T

z

T T T

z z z p

C C t C D

t D C D D I

Λ Ω + Ω Λ + Λ +
< ∀ ∈ ∆

Λ + −

 
 
 
 

θ θ
θ

γ

T T D T

D T
 

(A11) 

; ≜ diag(@, @() ≜ ΛA�(@, @( > 0 ∈ ℝ�×�) and C ≜  @ are defined, then pre- and post-multiplying both sides of Eq. (A11) 

by diagQ;, FjR and using Lemmas 1 and 2, the following theorem is obtained: 
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Theorem A: The system in Eqs. (A1) and (A2) is asymptotically stable if there exists a solution ; > 0,C, G > 0, H > 0, I >
0, p > 0 and J > 0 satisfying the following LMI: 

11 12

22
12

( )
0 0 0 0

( ) 0 0( ) 0

0 0 00
0 0 00 0

0
( ) 0 00 0

0 00
0 000000 0 00 00000 00 0 0000

0 00 0000

T
Tz z

K
TT T TT

x z e z e ee
T T T T

TT T T z z
x z z e

z z pz z

e l

n
K

l
e

l

l

z
l

z

GD SC D
SC S

D GD S C D S C S CS C
D DD D G D CS D D ID G D CS

CS ICS
I

S
I

CS
I

I
D

I

D

 +Ψ Ψ

Ψ − +Ψ

− + −+
−

Ψ = −

−
−

−
−



θ
ε

θθ

γ

θ α
ε

β
η

ξ
λ

vex

0,


 
 
 
 
 
 
 
  <
 
 
 
 
 
 
 
 



∀ ∈∆θ

 

(A12) 

2 2
11 T T T T

G n G nA S SA B B B B I IΨ = + − − + + +α η ε ξεW W
 

(A13) 

12 ( ) ( )T
e eSA GCSΨ = +θ θ

 
(A14) 

2 2
22 ( ) ( ) ( ) G G

T T T
e e e e n nA S S A GCS S C G I IΨ = + − − + +θ θ θ βε λε

 
(A15) 

By solving the LMI in Eq. (23) in advance, the observer gain matrix � is derived as � � 4(A��( . If the solution of the LMI 

condition in Eq. (A12) is obtained, then the control gain matrix   can be computed as  � C@A�. Therefore, the control law 

�(�) � # 
$(�) is the observer-based control. 
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