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Abstract 

This study aims to leverage a promising avenue for the precise and early detection of Autism. Autism is a 

multifaceted neurodevelopmental condition marked by challenges in social interaction, communication, and 

repetitive behaviors. Traditional diagnosis relies on time-consuming behavioral assessments, necessitating reliable 

and non-intrusive biomarkers for early and accurate detection. This paper analyzes eleven linear and non-linear 

features across time and frequency domains from an EEG dataset. Four neural network models, such as convolutional 

neural network (CNN), deep neural network (DNN), long short-term memory (LSTM), and a custom neural network 

are employed for classification. The CNN achieves the lowest accuracy at 89.02%, while the custom neural network 

reaches the highest accuracy at 94.02%, and the DNN and LSTM achieve 91.98% and 93.83% accuracy, respectively. 

Other metrics such as precision, recall, specificity, and F1-score, are also evaluated. This research underscores the 

efficacy of neural network in detecting Autism, advancing diagnostic tools. 
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1. Introduction 

Autism spectrum disorder (ASD) is a complex neurodevelopmental condition characterized by a spectrum of challenges, 

including difficulties in communication, response, attention, social behavior, and repetitive activities [1-7]. Beyond these 

primary symptoms, individuals with ASD exhibit atypical neural activity patterns [8]. Diagnosing Autism presents complexity 

owing to its diverse symptoms and their varying degrees among individuals [9]. Early detection and intervention are crucial 

for optimizing outcomes and providing appropriate support for individuals with ASD [10]. The present diagnostic approach 

for ASD predominantly depends on subjective and time-consuming behavioral assessments [11]. 

The recent research explores diverse physiological markers such as eye tracking, functional magnetic resonance imaging 

(fMRI), and gait movements for identifying patterns to facilitate more accurate early diagnosis of Autism and improve 

intervention techniques [12-14]. Another promising avenue in this pursuit involves analyzing electroencephalogram (EEG) 

data [15]. EEG signals capture subtle electrical fluctuations in the brain, presenting valuable information about neural 

responses to various stimuli [16]. EEG data also provides insights into brain function and connectivity, offering the opportunity 

to explore neural processes [17]. The recognition of atypical neural activity in individuals with Autism has interest in utilizing 

EEG data as a potential biomarker for ASD [18]. Recent advancements in the machine learning (ML) approach for EEG 

analysis have shown promise in addressing this need [19-21]. Several studies have explored the use of ML techniques to 

analyze EEG data for ASD detection [22-24]. However, there is still a need for more comprehensive studies that explore a 

broader range of neural network (NN) models and feature selections. 
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This study aims to leverage this promising avenue by exploring eleven distinct linear and non-linear features across time 

and frequency domains from EEG data. By employing four NN models such as a convolutional neural network (CNN), deep 

neural network (DNN), long short-term memory (LSTM), and a custom NN—this research seeks to enhance the precision and 

early detection of Autism. The performance of these models is evaluated using accuracy, precision, recall, specificity, and F1-

score metrics. 

In this study, ML-based NN is employed to classify ASD using EEG signal analysis. The primary objective is to 

implement and evaluate the different ML-based NN models, including deep and custom-designed NNs, for accurately 

identifying patterns in EEG data that are indicative of ASD. By focusing solely on EEG data, the study of this paper provides 

a comprehensive understanding of the potential of EEG-based biomarkers for Autism detection. This paper represents a 

significant contribution by presenting highly accurate models for identifying ASD solely through EEG signal analysis. The 

outcomes of this research offer potential tools for early detection of Autism, addressing a critical need in the field. Furthermore, 

this analysis enhances the understanding of the neural characteristics associated with ASD and lays the groundwork for the 

development of targeted interventions and therapies. 

The subsequent sections of this paper are structured as follows: Section 2 provides an overview of related research works 

in the field of EEG-based Autism detection. Section 3 presents the methodology for the study of this paper, including the 

dataset and extracted features. Section 4 presents the NN models employed in this study. Section 5 presents the results of this 

study. Finally, Section 6 provides a discussion and conclusion on the findings of this study. 

2. Related Works 

Extensive research has been dedicated to the analysis of EEG signals for Autism detection. Some of the key findings in 

current research on Autism detection through EEG signals using ML are highlighted in this section. Table 1 provides a 

comprehensive summary of research on EEG analysis for Autism detection using various ML approaches. 

Table 1 Highlights and comparison of the existing research works 

Reference 
Publicati

on year 
ML approaches Extracted features 

Participants 

ASD/TD 

Classificatio

n accuracy 

Heunis et al. 

[19] 
2018 LDA, MLP, and SVM RQA 16/46 92.9% 

Haputhanthri 

et al. [20] 
2019 LR, SVM, NB, and RF 

Statistical features (mean and standard 

deviation) 
10/5 93% 

Abdolzadegan 

et al. [21] 
2020 

KNN Power spectrum, wavelet transform, 

FFT, fractal dimension, correlation 

dimension, Lyapunov exponent, 

entropy, detrended fluctuation analysis, 

synchronization likelihood 

34/11 

72.77% 

SVM 90.57% 

Radhakrishnan 

et al. [22] 
2021 DNN 

Automatic feature extraction and 

classification 
10/10 81% 

Garcés et al. 

[23] 
2022 

Linear support vector 

classifier (SVC), Elastic Net 

LR, radial basis function SVC 

Power spectrum and functional 

connectivity 
212/199 56% to 64% 

Peketi and 

Dhok [24] 
2023 

EBT, SVM with a fine 

Gaussian kernel, and artificial 

neural network (ANN) 

Linear and non-linear features across 

time and frequency domains 
15/0 91.12% 

This study 2023 

CNN 

Linear and non-linear features across 

time and frequency domains 
13/4 

89.02% 

DNN 91.98% 

LSTM 93.83% 

Custom NN 94.02% 

The existing studies employed diverse approaches including linear discriminant analysis (LDA), multi-layer perceptron 

(MLP), support vector machine (SVM), logistic regression (LR), naive Bayes (NB), random forest (RF), K-nearest neighbor 

(KNN), DNN, and ensemble bagged tree (EBT) [19-24]. Feature extraction techniques encompassed recurrence quantification 
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analysis (RQA), statistical features, power spectrum analysis, wavelet transforms, fast Fourier transform (FFT), fractal 

dimension, correlation dimension, Lyapunov exponent, entropy, detrended fluctuation analysis, synchronization likelihood, 

linear and non-linear features across time and frequency domains [19-24]. Classification accuracy across these studies ranged 

from 56% to 93%, showcasing the potential of ML in accurately discerning ASD patterns from typically developing (TD) 

individuals, thereby contributing to the development of effective diagnostic tools and interventions [19-24]. 

This study is distinct from earlier research in its eleven time and frequency domain features selection in distinguishing 

between EEG patterns associated with TD and individuals with ASD. This elevated level of accuracy highlights the study’s 

importance as it offers a more precise and dependable tool for the early detection of Autism. These results hold significant 

promise for contributing substantially to both Autism research and clinical applications. 

3. Methodology 

This section details the approach taken in this research to analyze EEG data from children diagnosed with ASD and TD. 

This study utilizes the global datasets for Autism disorder, which includes high-quality EEG recordings obtained under 

controlled conditions, ensuring reliability in the data. A detailed feature extraction process is conducted to derive both time-

domain and frequency-domain characteristics, providing a comprehensive understanding of the underlying neural patterns. By 

integrating these features, the study aims to effectively differentiate between the two groups using ML models.  

3.1.   Dataset overview 

The dataset utilized in this research, known as the global datasets for Autism disorder, is obtained from the brain-computer 

interface (BCI) group at King Abdulaziz University (KAU) with the necessary permissions for this study [25]. Comprising 

EEG recordings from two distinct groups, the dataset includes thirteen boys, aged 10 to 16 years, diagnosed with ASD in the 

first group. The second group consists of four TD boys, aged 9 to 16 years. 

The EEG signals were recorded during participants’ relaxed states to ensure artifact-free data, using the g.tec EEGcap, 

16 Ag/AgCl electrodes, g.tec GAMMAbox, g.tec USBamp, and BCI2000 system. The EEG data were acquired from 16 

electrodes, including FP1, FP2, F7, F3, Fz, F4, F8, T3, C4, Cz, C3, T5, Pz, O1, Oz, and O2 according to the 10-20 international 

system. The anterior frontal Z (AFz) electrode served as ground (GND), while the right ear lobe was used as reference (REF). 

The recorded data were filtered using a bandpass filter within the frequency range of 0.1-60 Hz and a notch filter at 60 Hz, 

subsequently digitized at 256 Hz. This dataset is chosen for its comprehensive and controlled acquisition method, providing 

high-quality, reliable EEG data crucial for distinguishing between ASD and TD children. 

Initially, the data is segmented into fixed-length epochs, and any null values are removed to ensure accurate feature 

extraction. The total number of epochs in the dataset for initial and after preprocessing are 5437 and 5402 respectively, and 

their distribution between the training and testing sets are 4321 and 1081 respectively. This information is crucial for 

understanding the dataset’s overall size and composition, which is important for ensuring the accuracy and generalizability of 

any NN models trained on it. Additionally, understanding the distribution of epochs in the training and testing sets helps 

identify any potential biases or imbalances in the data. 

3.2.   Extracted features 

The study explores eleven distinct linear and non-linear features across time and frequency domains from an EEG dataset 

utilizing ML-based NN models. These features encompass a variety of statistical, spectral, and signal processing measures, 

contributing to the analysis and interpretation of EEG data. Out of eleven features, six are time domain and five are frequency 

domain features. The explored features are discussed below. 
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Mean: The mean is a statistical measure that represents the average value of a set of numbers or data points. The mean is 

computed mathematically by adding all of the values in the dataset and dividing the total number of data points. Having a 

dataset with � data points, denoted by ��, ��, ��,…, ��, the mean (	) can be calculated as: 

1 2 3µ
+ + + +

=
… nx x x x

n
 (1) 

Quantile: Based on a collection of input features, quantile ML involves calculating the conditional quantiles of a target 

variable. The purpose of quantile is to discover a mathematical function that links the quantiles of the target variable 
 with 

the input features �. Let’s denote the conditional quantile of 
 at a given percentile � as �(
|�). The quantile regression 

minimizes the weighted absolute loss function, as shown in the following equation. Given the input characteristics �, �(�) 

here denotes the expected quantile of 
. Based on the specified quantile level �, the loss function penalizes the errors. 

( ) ( ) ( ) ( ), ( ) 1 max 0, ( ) max 0, ( )= − × − + × −qL y f x q y f x q f x y  (2) 

 SVD entropy: The singular value decomposition (SVD) and Shannon entropy are used to quantify the randomness of a 

dataset. It gives a measurement of the dataset’s level of uncertainty. The Shannon entropy mathematical formula is used to 

determine the SVD entropy. The average amount of information or uncertainty in a dataset is measured by Shannon entropy, 

as shown below. 

( )2log ( )= − ×Entropy p p  (3) 

Here, � denotes the probability distribution of the singular values and ∑ denotes the sum. 

Peak-to-peak amplitude (PPA): PPA is an ML feature that measures the difference between the maximum and minimum 

values of a signal within a given time interval, as shown in the following equation. It is commonly used in various signal-

processing applications, including audio and vibration analysis. 

( ) ( )max min= −PPA x x  (4) 

The max (�) represents the maximum value of the signal within the specified time interval. The min (�) represents the 

minimum value of the signal within the specified time interval. 

Energy frequency bands: Energy frequency bands record data on the signal’s energy distribution across several frequency 

bands. Considering a signal �(�) and applying the Fourier transform to obtain its frequency-domain representation �(�), 

where � represents frequency. The frequency range is divided into bands, such as the low-frequency, mid-frequency, and high-

frequency bands. By adding the squared magnitudes of the Fourier coefficients within the respective frequency range, it 

computes the energy inside each band. The energy �� within a frequency band � is computed, as shown below. 

2
( )=iE x f  (5) 

Here, � is the frequency range of band �. 

Spectral edge frequency (SEF): This characteristic in machine learning describes the distribution of frequencies in a signal, 

as shown in the following equation. It demonstrates how much high-frequency content is in a signal, information that can be 

helpful in a variety of applications, including audio and image processing. 

[ ]

[ ]

0, ( )

0, ( )

×
=

∝ ×




f f P f df
SEF

f P f df
 (6) 

Here, �(�) is the power spectral density (PSD) of the signal and � represents the frequency. 
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Standard deviation (SD): This metric quantifies the dispersion of the feature values around the mean. In ML, SD is 

frequently used as a feature engineering technique to assess a feature’s importance in predictive models and capture its 

variability, as shown below. 

( )
21

µ= × − iSD x
N

 (7) 

Here, the dataset’s total number of data points is �. Each distinct feature value is represented by the ��. The 	 represents the 

feature values’ mean. The ∑ stands for the total of the squared disparities. 

Hjorth mobility (HM): This parameter reveals the frequency content and signal variations. A signal with a greater mobility 

value denotes one with a higher frequency content or rate of change, whereas a signal with a lower mobility value denotes one 

with a lower frequency content or rate of change. It is determined using the three statistical measurements known as the Hjorth 

parameters that are deduced from the signal. Activity (A), mobility (M), and complexity (C) are the three Hjorth parameters, 

as shown below. 

=
M

HM
A

 (8) 

Spectral entropy (SE): A characteristic used in ML and signal processing to measure the spectral complexity or 

information content of a signal’s frequency spectrum, as shown in the following equation. For SE, the signal’s PSD, which 

depicts the signal’s power distribution across several frequencies, is necessary. Methods like the Fourier transform or the 

periodogram are used to obtain the PSD.  

( )2
( ) log ( )= − ×  SE P f P f  (9) 

Here, the summation is done over the entire range of frequencies, and �(�) indicates the normalized PSD at frequency �. 

Skewness: Skewness is a statistical metric used in data analysis and ML to express the asymmetry from symmetry in a 

data distribution. It reveals details about the distribution’s shape, including whether it is skewed left or right. A dataset’s 

skewness is mathematically determined as the third standardized moment, as shown below. 

3
µ

σ

 − 
=   

   

x
Skewness E  (10) 

Here, � is the data point, 	 is the dataset mean, � is its SD, and � stands for the anticipated value. 

Kurtosis: Kurtosis is a statistical index used in data analysis and ML to describe the peak or flatness of a data distribution. 

It reveals details about the distribution’s shape, including if it has thick tails or a denser center than a typical distribution. The 

fourth standardized moment is used to calculate a dataset’s kurtosis, as shown below. 

4
µ

σ

 − 
=   

   

x
Kurtosis E  (11) 

Time-domain and frequency-domain features are selected in this study for their complementary roles in capturing 

different aspects of EEG signals. Time-domain features (such as mean, SD, and HM) provide insights into the statistical and 

temporal characteristics of the EEG data, revealing patterns and variations over time. Frequency-domain features (such as 

SVD entropy, energy frequency bands, and SE) analyze the spectral content, identifying the distribution of signal power across 

various frequency bands, which is crucial for understanding the underlying neural oscillations and rhythmic activities. This 

combination ensures a comprehensive analysis, enhancing the ability to distinguish between ASD and TD children. 
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4. Neural Networks Employed for Autism Detection 

The study utilizes EEG analysis to distinguish between ASD and TD children, employing four distinct NN models: CNN, 

DNN, LSTM, and a custom-designed NN model. The CNNs are chosen for their ability to capture spatial hierarchies in data, 

making them effective in extracting spatial features from EEG signals. The DNNs are included for their capacity to learn 

complex representations and intricate relationships within the high-dimensional EEG data. The LSTMs are selected due to 

their proficiency in learning temporal dependencies, which is crucial for analyzing sequential EEG data and capturing long-

term patterns. Lastly, the custom-designed NN model is tailored specifically to the EEG dataset and classification task, 

allowing for the incorporation of domain-specific knowledge and fine-tuning for optimal performance. This combination of 

models leverages their respective strengths in spatial, complex, temporal, and customized feature extraction, enhancing the 

accuracy and reliability of distinguishing between ASD and TD children. 

4.1.   Convolutional neural network model 

The CNN model (Fig. 1) for binary classification between TD and ASD using EEG data comprises the input data with a 

reshaped layer to a suitable shape for Conv1D layers, as follows. 

( )Reshape , _ . ,=reshapedX X batch size i c  (12) 

Here, � is input data and � is the number of channels after reshaping the data. 

The Conv1D layers ( �) of the employed CNN model performed convolutions with kernels (!�), and biases ("�) followed 

by rectified linear unit (ReLU) activation, as follows. 

( )ReLU= × +i i i iY W X b  (13) 

Here, ReLU is defined in the following equation. 

( )
0,   0

ReLU
,   0

<
= 

≥

if x
x

x if x
 (14) 

The MaxPooling1D layers reduce the spatial dimensions, as follows. 

( )MaxPooling1D , _=i iZ X pool size  (15) 

The GlobalMaxPooling1D operation across the temporal dimension produces a vector output, as follows. 

( )GlobalMaxPooling1D=G x  (16) 

Dense layers perform fully connected operations with weights (!#), biases ("#), and activations. The Dense operation for 

a layer can be written as follows. 

( )Activation= × +i il lY W X b  (17) 

Here, activation represents ReLU for hidden layers, and sigmoid for the output layer is shown below. 

( )
1

1 −
=

+
x

Sigmoid x
e

 (18) 

The employed CNN model is compiled using the Adam optimizer and binary cross-entropy loss, monitoring accuracy as 

a metric. During training, the model learns training data for 50 epochs using a batch size of 60 and evaluates its performance 

on validation data. After training, the model is evaluated on test data, calculating the loss and accuracy metrics. Finally, 

predictions are generated using the trained model on the test data, producing predicted probabilities. 
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Fig. 1 Architecture of the CNN model employed in the study 

4.2.   Deep neural network model 

The DNN model employed for the study (Fig. 2) comprises three Dense layers. The initial layer consists of 128 neurons 

and employs the ReLU activation function, as follows. 

( )1 1 1ReLU= × +Output W X b  (19) 

Here, !� represents the weight matrix, $ denotes the input data, "�  is the bias term, and ReLU, represented by Eq. (13), 

represents the activation function. 

The second Dense layer contains 64 neurons and also uses ReLU activation, as shown in the following equation. This layer 

introduces further non-linearity to capture complex patterns in the data. 

( )2 2 1 2ReLU= × +Output W Output b  (20) 

The final Dense layer consists of a single neuron using the sigmoid activation function, as shown below.  

( )3 2 3Sigmoid= × +finalOutput W Output b  (21) 

Similar to the employed CNN model, the DNN model in this study is compiled using the Adam optimizer and binary 

cross-entropy loss while monitoring accuracy. The training phase involves iterating over the training data for 50 epochs with 

a batch size of 60, utilizing validation data for validation purposes. 

 

Fig. 2 Architecture of the DNN model employed in the study 
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4.3.   Long short-term memory model 

The employed LSTM model (Fig. 3) firstly reshapes the input data $%&'�� and $%()% for LSTM input compatibility. An 

LSTM layer is added to the sequential model. It consists of 64 neurons and utilizes the ReLU activation function. The LSTM 

cell operates as follows. 

[ ]( )1
,σ

−
= × +t i t t ii W h x b  (22) 

[ ]( )1 ,σ −= × +t t tf ff W h x b  (23) 

[ ]( )1
tanh ,

−
= × +t g t t gg W h x b  (24) 

[ ]( )1
,σ

−
= × +t o t t oO W h x b  (25) 

1−
= +⊙ ⊙t t t t tc f c i g  (26) 

( )tanh= ⊙t t th o c  (27) 

Here, �% is input gate, �% is forget gate, *% cell gate, +% is output gate, �% is cell state, ℎ% is the hidden state, �% input at timestep 

at �, the weight matrices are !�, !-, !*, !. and the bias terms are "�, "-, "*, ".. 

The output layer is the Dense layer with a single neuron and sigmoid activation for binary classification. The model is 

compiled with the Adam optimizer and binary cross-entropy loss, as shown below. 

( )Sigmoid= × +
LSTMout outfinalOutput W Output b  (28) 

( ) ( ) ( ) ( )1

1
, log 1 log 1

=
 = − × + − × −
 

N

true true truepred pred predi
L Y Y y y Y Y

N
 (29) 

Here, � is the total number of data points. 

During training, the model learns parameters by minimizing the defined loss function. The evaluation computes the loss 

(/) and accuracy metrics based on the test data. Predictions (
0&(1) are generated using the trained LSTM model, providing 

probabilities for binary classification tasks. 

 

Fig. 3 Architecture of the LSTM model employed in the study 

4.4.   Custom neural network 

The custom-designed NN for the study (Fig. 4) comprises several densely connected layers followed by batch 

normalization and dropout layers. The Dense layers, as shown in the following equations, contain 256, 128, 64, 32, and 16 

neurons respectively, with ReLU activation functions, L2 regularization, and input dimensions matching the feature size of 

$%&'��. 
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( )1−
= × +

ii i i
z w A b  (30) 

( )Re LU=i i
A z  (31) 

Here, 2�  is the weight, "� is the bias and 3� is the activation output. 

The batch normalization layers normalize the outputs of the previous layers to stabilize and improve the training process 

by reducing internal covariate shifts. Each dropout layer randomly sets a fraction of input units to zero during training to 

prevent overfitting. It aids in regularization by reducing interdependent learning among neurons. The model is compiled using 

the Adam optimizer with a learning rate of 0.001 and binary cross-entropy loss function, aiming to minimize the difference 

between predicted and true labels for binary classification tasks. After training, the model is evaluated using the test dataset to 

calculate the loss and accuracy metrics. 

 

Fig. 4 Architecture of custom NN model employed in the study 

4.5.   Evaluation metrics 

The parameters to evaluate the performance of this study are as follows. Here, true positive (TP), false positive (FP), true 

negative (TN), and false negative (FN) are defined. 

Accuracy indicates the fraction of the total samples that were correctly classified by the classifier, as follows. 

TP TN
Accuracy

TP TN FP FN

+
=

+ + +
 (32) 

Recall measures the proportion of actual positives that were correctly identified by the model, as follows. 

TP
Recall

TP FN
=

+
 (33) 

Precision measures the proportion of correct positive predictions, as follows. 

TP
Precision

TP FP
=

+
 (34) 

Specificity measures the proportion of actual negatives that were correctly identified by the model, as follows. 

TN
Specifity

TN FP
=

+
 (35) 
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The F1-score reflects the stability of the models by evaluating the balance between precision and recall, as follows. 

( )2 Precision Recall
F1-score

Precision Recall

× ×
=

+
 (36) 

The receiver operating characteristic (ROC) curve is a graphical tool used in ML to evaluate the performance of binary 

classifiers by plotting the TP rate against the FP rate at different thresholds. 

5. Results 

The t-distributed stochastic neighbor embedding (t-SNE) [26] figure shows the visualization of two classes (TD – 0.0, 

ASD – 1.0) in a two-dimensional space (Fig. 5). It demonstrates a partial separation of data points from both classes, indicating 

similarities and differences between the classes. While most points segregate into distinct clusters, some overlap occurs, 

suggesting shared features between individuals with ASD and TD individuals. The evaluation metrics for each of the employed 

NN models are presented in Table 2. 

 

Fig. 5 Visualization of data points 

Table 2 Evaluation metrics of the employed NN models 

NN Model Accuracy (%) Precision (%) Recall (%) Specificity (%) F1-score (%) 

CNN 89.02 91.20 93.98 75.68 92.57 

DNN 91.98 92.75 96.52 79.77 94.60 

LSTM 93.83 95.08 96.52 86.60 95.80 

Custom NN 94.02 95.85 95.94 88.86 95.90 

The evaluation of performance metrics for distinguishing ASD and TD individuals using EEG data reveals significant 

insights across various NN models. Custom NN attained the highest accuracy at 94.02%, reflecting its superior classification 

ability due to its tailored architecture that effectively captures both spatial and temporal features. CNN had the lowest accuracy 

at 89.02%, indicating its limitations in handling the temporal dependencies in EEG data. In terms of precision, which measures 

the reliability of identifying ASD cases among the predicted positives, custom NN excelled at 95.85%, suggesting fewer FP 

due to its effective regularization techniques and optimized feature extraction. CNN had the lowest precision at 91.20%, 

indicating overfitting to some features while missing others. The recall indicates the ability to capture true ASD cases. The 

employed DNN, LSTM, and custom NN models have achieved high rates of 96.52%, showcasing their effectiveness in 

minimizing missed ASD cases. The LSTM’s strength in handling sequential data contributes to its high recall, while custom 

NN’s complex architecture enhances its sensitivity. 
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The CNN lagged in the recall at 93.98% due to its lower effectiveness in handling the temporal aspects of the data. 

Specificity, measuring the capability to correctly classify TD individuals, ranged from 75.68% for CNN to 88.86% for custom 

NN. The high specificity of custom NN suggests its proficiency in distinguishing non-ASD cases, likely due to its sophisticated 

design and regularization methods. CNN’s lower specificity indicates a higher rate of FP, reflecting its challenges in accurately 

identifying TD cases. The F1-score, which balances precision and recall, was highest for custom NN at 95.90%, signifying its 

overall effectiveness and balanced performance. The LSTM also performed well with an F1-score of 95.80%, leveraging its 

architecture’s strength in handling temporal data. The CNN shows the lowest F1-score at 92.57%, indicating its overall lower 

performance in balancing precision and recall. 

These performance differences arise from the models’ architectural strengths, data handling, regularization techniques, 

and feature extraction capabilities. Custom NN and LSTM demonstrate superior performance due to their sophisticated designs 

tailored for EEG data analysis, capturing complex patterns and temporal dependencies effectively. Fig. 6 shows the confusion 

matrices for the employed NN models which summarize the counts of TP, TN, FP, and FN predictions.  

 

Fig. 6 Confusion matrices of the employed NN models 

 

 

(a) ROC Curve for custom NN Model 

Fig. 7 ROC curves for the employed NN models 
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(b) ROC curve for CNN, DNN, LSTM 

Fig. 7 ROC curves for the employed NN models (continued) 

6. Discussion and Conclusion 

The findings of this study underscore the potential of four NN models in the accurate classification of ASD using EEG 

data. Through a comprehensive evaluation of various NN models, including the standout custom NN, the study demonstrates 

notable advancements in distinguishing ASD cases from TD individuals. The analysis of accuracy, precision, recall, and 

specificity provides a well-rounded understanding of each model’s strengths and limitations, with the custom NN exhibiting 

particularly strong performance. This highlights its potential for practical application in clinical settings, where early and 

accurate detection of ASD is crucial for effective intervention. The study significantly contributes to Autism research by 

showcasing the efficacy of NN models, particularly in offering non-intrusive diagnostic tools. The high accuracy of the custom 

NN model emphasizes the urgency and potential of early detection techniques in improving ASD diagnosis and intervention 

strategies. The varied performance across NN models reveals the potential for innovation in diagnostic tools and reinforces 

the importance of continued advancement in this area.  

However, the study is not without its limitations. The reliance on a less diverse and relatively small dataset restricts the 

generalizability of the findings and the robustness of the developed models. This limitation impacts the models’ performance 

in real-world scenarios, as the dataset does not fully represent the variability seen in ASD cases across different demographics 

and age groups. Future research should address these limitations by incorporating larger and more diverse datasets to enhance 

the generalizability and robustness of NN models. Additionally, exploring hybrid model frameworks that integrate various NN 

architectures could further improve diagnostic precision and clinical utility. Expanding the dataset and refining model 

frameworks will be crucial for advancing early ASD detection and developing more effective diagnostic tools, ultimately 

contributing to progress in Autism research and clinical practice. 
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