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Abstract 

The study aims to improve the diagnosis of arrhythmia in cardiovascular disease management. A novel 

approach using a deep convolutional network combined with a selective attention mechanism is proposed for 

electrocardiogram signal classification. The deep convolutional network extracts relevant features directly from raw 

electrocardiogram signals, while the selective attention mechanism focuses on the most critical regions of the signals 

and suppresses irrelevant or noisy components. This method achieves an accuracy of 99.70% in multi-class 

arrhythmia classification and 99.85% in binary classification, significantly outperforming traditional classification 

algorithms. Furthermore, the selective attention mechanism improves the localization of critical electrocardiogram 

segments, offering valuable insights for clinicians and aiding in the diagnosis process. This enhanced approach 

increases diagnostic accuracy and provides a clearer understanding of the electrocardiogram signals, which is crucial 

for effective patient management in cardiovascular diseases. 
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1. Introduction 

Cardiovascular diseases constitute the leading cause of death globally [1], and the World Health Organization (WHO) 

has listed them as the cause of the maximum number of deaths worldwide, accounting for about 31% of all deaths every year 

[2]. Cardiac arrhythmia is a condition in which the heartbeat becomes irregular due to some fault in the electrical system of 

the heart. An electrocardiogram (ECG) is an established diagnostic tool for cardiac arrhythmias since it captures the heart's 

physiological activity over time [3]. Global annual ECG recordings exceed 300 million and are projected to increase. The 

popularity of ECG stems from its simplicity, affordability, non-invasiveness, and ability to provide valuable information about 

the heart's electrical activity, heart rate, and the presence of conditions like arrhythmias or heart attacks [4]. ECG tests are 

painless, easy, quick to perform, and can be repeated to monitor the progress of certain conditions. Fig. 1 shows the ECG heart 

cycle [5]. 

The main part of an ECG contains a P wave, a QRS complex, and a T wave. The P wave indicates atrial depolarization. 

The QRS complex consists of a Q wave, R wave, and S wave, representing ventricular depolarization. The T wave comes after 

the QRS complex and indicates ventricular repolarization. Structural, electrical, and circulatory are the three types of 

cardiovascular systems [6]. 
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Accurate diagnosis of the type of arrhythmia is necessary to select appropriate treatment. However, considerable 

morphological differences exist in the correct manual identification of ECG components. Moreover, visual identification, the 

current standard, might bring subjective biases between observers. As illustrated in Fig. 2, ECG signal classes exhibit distinct 

heartbeat characteristics and patterns, such as fusion, F; normal, N; supra-ventricular ectopic, S; and ventricular ectopic, V, 

beats [7]. In this regard, researchers have explored alternative methods—deep learning being one—to remove visual and 

manual interpretations. 

 

Fig. 1 ECG heart cycles [5] 

 

Fig. 2 Heartbeat ECG patterns [7] 

Traditionally, clinicians diagnose arrhythmias through manual analysis of ECG signals, which can be time-consuming 

and susceptible to human error. These methods often lack the precision and efficiency needed for large-scale screenings. Deep 

learning (DL) offers a promising alternative to cardiac arrhythmia classification, as it can automatically learn significant 

features and class distinction [8]. DL has advantages in handling massive and noisy datasets, automatically reducing features, 

and finding applications in different domains. The automatic detection of cardiac arrhythmia has been the topic of many 

researchers over the past decades. Most of them use the MIT-BIH Arrhythmia Dataset [9] and the Physikalisch Technische 

Bundesanstalt(PTB) Diagnostic ECG Database [10], which are publicly available and represent the most frequently used 

database in arrhythmia research. To achieve this, deep genetic hybrid classifiers were used by [11-12] in diagnosing the 

arrhythmias from the long-term ECG data in the MIT-BIH database with an accuracy of 94.6%. 

The proposed approach addresses the deficiencies by including a deep convolutional neural network along with a selective 

attention mechanism. This allows the model to capture more relevant features from the ECG signals, thereby improving 

classification accuracy and speed. It leverages state-of-the-art feature extraction with pre-trained models like ResNet-50 and 

Visual Geometry Group (VGG19), reducing the need for manual intervention and improving model generalization. This 

method significantly outperforms traditional algorithms, offering a more reliable and scalable solution for arrhythmia diagnosis. 

2. Literature Review  

Since ECG signals are nonlinear, variations in real-life signals can be detected using higher-order statistical methods like 

the nonlinear dynamic method [13]. Principal component analysis reduces the dimensionality of the derived bispectrum 
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features. From these reduced features, a least squares-support vector machine and a four-layer feed-forward neural network 

are used for automatic pattern recognition. This approach achieved the highest average accuracy among the researchers at 

93.48%. While the accuracy of deep convolutional network (DCNN) training decreases with increasing network depth, [14] 

has reported an accuracy of 97.5% using only a simple convolutional neural network (CNN) model with five layers. This 

technology worked on the principle of wavelet transform based on quadratic waves for identifying individual ECG waveforms 

and generating a fiduciary marker array. Data classification was performed using a probabilistic neural network with an 

accuracy rate of 92.7% [15]. 

Dewangan and Shukla [16] classified heartbeats into five different types by employing artificial neural networks and 

discrete wavelet transformation. The authors have reported that using wavelet coefficients and morphological features 

improved the performance of ANN, increasing the accuracy to 87%. The accuracy further increased with the increase in the 

number of neurons in the hidden layer. Jha and Kolekar [17] contributed an efficient approach to classify seven types of ECG 

beats based on the 12 approximation coefficients derived through the tunable Q-wavelet transform of ECG beats from a 

dissimilar record of the MIT-BIH database. Extracted features were used as the input to support the vector machine classifier, 

which yielded an average classification accuracy of 99.27% for an additional class of eight ECGs. 

In [18], researchers proposed an efficient classification methodology in which five types of heartbeats were classified 

using a one-dimensional CNN with 12 layers. Before classification, the noise was removed from the ECG beats using the 

threshold denoising technique, which was accurate at 97.41%. In [19], four types of heartbeats from various datasets were 

categorized through five machine-learning algorithms, including Random Forest. Wavelet decomposition and frequency 

content-based sub-band coefficients were used to reduce the dataset's dimensionality, improving the performance of the 

classification technique. The results showed that the Random Forest algorithm achieved a classification accuracy of up to 97%. 

Murat et al. [20] provided a survey for background information, and further research into deep learning models became 

one of the standard approaches by which ECG data had to be classified. They worked on ECG data from 5 classes with 100,022 

beats from the MIT-BIH rhythmic database and focused on testing the most commonly used DL strategies available in the 

literature. Acharya et al. [21] identified general and predictive classes using 13 deep layers of a fully CNN. Like the artificial 

neural network (ANN), the final CNN model performance judgment depends on network structure weights and previous layer 

preferences. The pooling process reduces the output neurons' dimension co-evolutionary layer to reduce calculation amplitude 

and avoid overfitting. The suggested method's accuracy, specificity, and sensitivity were 88.67%, 90.00%, and 95.00%, 

respectively. 

DCNN can use attention mechanisms to diagnose cardiac arrhythmias by focusing only on salient parts of the ECG signals. 

This provides a new way to isolate and detect relevant features in accurately classifying arrhythmias[22]. The attention 

mechanism allows for the identification of the ECG signals that drive the classification decision. This implies the localization 

of the relevant segments of the signals, promoting an understanding of the rationale behind diagnosis and giving valuable 

insights that enable informed decisions about patient management. Moreover, most of the problems associated with inter-

observer variability and subjective biases of visual identification will be decreased due to the attention mechanism. Most 

arrhythmia diagnosis methods using ECG signals have low accuracy or suffer from similar-looking patterns of arrhythmias. 

Most conventional methods involve huge feature engineering, which is normally time-consuming and inefficient in most cases. 

Additionally, many models lack interpretability, making them difficult for clinicians to adopt practically. 

The present study exploits the deep learning potential based on CNNs to automatically extract relevant features from 

ECG signals in classifying various arrhythmias. Another milestone in this area is the integration of a selective attention 

mechanism within DCNN to diagnose arrhythmias. This provides deep learning with its power while maintaining the 
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interpretability and transparency of the model; further bridging the gap between automated analysis and human understanding. 

Thus, deep learning embedded with selective attention holds high promise to raise the accuracy, efficiency, and reliability in 

the diagnosis of arrhythmias for improved patient outcomes in the management of cardiovascular diseases. 

3. Materials and Methods  

An arrhythmia is an irregular heartbeat resulting from abnormal electrical activity in the heart, which can lead to 

ineffective blood pumping. It is defined as a deviation from normal heart rate. Tachycardia, bradycardia, and irregular heartbeat 

are terms used to describe several arrhythmia problems. Bradycardia is characterized by a slow resting heart rate, fewer than 

60 beats per minute, whereas tachycardia is characterized by a high resting heart rate, often exceeding 100 beats per minute. 

The heart's abnormal electrical activity can be fatal. People with coronary artery disease, diabetes, and high blood pressure are 

more likely to experience arrhythmias. 

3.1.   Dataset overview 

This paper uses the PhysioNet MIT-BIH arrhythmia dataset [11] and The PTB Diagnostic ECG Database [12] as data 

sources of labeled ECG records. This demonstrates how the knowledge from previous databases can be successfully transferred 

to train inference models. The ECG lead II resampled at 125Hz is used as an input. The MIT-BIH database contains the ECG 

recordings of 47 different subjects. The sampling rate is 360Hz. Each beat is annotated with at least two independent 

cardiologists' estimates. In this paper, annotations from the dataset are used to separate the five beat types under the EC57 

standard of the Association for the Advancement of Medical Instrumentation. The PTB Diagnostics dataset consists of ECG 

recordings of 290 subjects: 148 with MI diagnosis, 52 healthy controls, and the rest diagnosed with 7 diseases. Each record 

includes ECG signals from the 12 leads sampled at 1000 Hz. This paper will only work on ECG lead II and two categories: 

MI and health controls.  

3.2.   Preprocessing 

Since ECG beats are used as inputs for this method, Kachuee et al. [23] introduced an efficient approach to preprocessing 

the ECG signal and extracting its beats. Figs. 3 and 4 illustrate the steps involved in extracting beats from the ECG signal. The 

continuous ECG signal is divided into 10-second windows, with a specific window selected for further analysis. To enhance 

signal quality, a combination of noise reduction techniques is employed, including a high-pass filter with a cutoff frequency 

of 0.5 Hz for baseline wander removal, a notch filter at 50/60 Hz to eliminate power line interference, and a low-pass filter 

with a cutoff frequency of 40 Hz to reduce high-frequency noise. Additionally, min-max normalization rescales the ECG signal 

amplitudes to ensure they fall within the range of zero to one. 
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Fig. 3 Flow chart for bit extraction 
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Fig. 4 An extracted beat from 10s ECG window [23] 

 Zero-crossings of the first derivative are utilized to identify all local maximum points in the signal. A threshold of 0.9 is 

then applied to the normalized values of these local maximums to identify potential R-peak candidates corresponding to the 

peaks of heartbeats. The median value of the R-R intervals, representing the time between consecutive R-peaks, is calculated 

to determine the nominal heartbeat period for that specific window (T). For each R-peak candidate, a signal segment with a 

length equal to 1.2 times the nominal heartbeat period (1.2T) is selected. To ensure a fixed length for further analysis, each 

selected segment is padded with zeros, if necessary, to meet a predefined length requirement. 

 The beat extraction methodology is effective in capturing R-R intervals from ECG signals that exhibit diverse 

morphological characteristics. Applying this technique, all extracted beats are standardized to an equal length, enhancing the 

reliability of subsequent analyses. This uniformity is crucial for accurate interpretation, the assessment of heart rate variability, 

and the evaluation of overall cardiac health. 

3.3.   Pre-traind CNN 

ResNet-50 and VGG19 are popular deep-learning architectures used in computer vision tasks, including image 

classification, object detection, and feature extraction [24]. While they have different architectural designs, both models have 

achieved state-of-the-art performance on benchmark datasets. 

3.3.1.   ResNet-50 

ResNet-50 stands for Residual Network with 50 layers. It is a deep residual network proposed by Microsoft Research in 

2015. One of the most critical innovations introduced by ResNet-50 is residual or skip connections. These connections enable 

the network to learn residual mappings, which are differences between a layer's input and output, instead of learning it directly. 

Residual connections overcome the problem of vanishing gradients during backpropagation and allow for the training of deep 

networks. In the ResNet-50 architecture, several building blocks of residual blocks are used. Each residual block comprises 

multiple convolutional layers integrated with batch normalization, ReLU activation, and dropout. ResNet-50 implements skip 

connections to facilitate gradient flow. Such is the architecture that enables the network to learn more efficiently and effectively. 

The architecture combines global average pooling and a fully connected layer for classification. 

3.3.2.   VGG19 

VGG19 is a DCNN developed by Visual Geometry Group, VGG, at the University of Oxford. Introduced in 2014, it 

became widely adopted due to its simplicity and notable performance. VGG19 is an extension of VGG16, with 19 layers 

composing the architecture [24]. Another critical element of VGG19 is using 3x3 convolution filters throughout the network. 

This size of filter allows deep networks without excessively increasing the parameter count. The architecture consists of a 

stack of convolutional layers and a max-pooling layer for down-sampling. The last few layers in VGG19 are fully connected 

to facilitate the classification task. The architecture of VGG19 is straightforward and uniform; this simplicity makes the model 

easy to understand and implement. It provides a balanced model complexity and performance and is thus broadly employed 
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as a baseline model for several tasks in computer vision [24]. Due to its deeper architecture, VGG19 contains significantly 

more parameters than other models. 

ResNet-50 and VGG19 have been among computer vision's most influential deep models. ResNet-50 introduced residual 

connections that enable the training of deep networks, while VGG19 is straightforward yet effective; thus, it is perfectly 

suitable for use as a baseline model. These models have been successfully applied to many diverse areas with pre-trained 

representations and powerful features that enable an accurate classification. 

4. Proposed Model 

In this first stage, the goal is to train ResNet-50 and VGG19 using a public ECG bit dataset containing multi-class 

classification labels for various cardiac beats. The beat dataset contains labeled ECG signals, and every signal corresponds to 

a specific cardiac condition or beat type. Continuous ECG signals are segmented into small time windows before training.  

Preprocessing of the ECG signals is the first step. Preprocessing techniques include amplitude normalization to a range 

between zero and one, noise filtering, and resampling the signals to the desired frequency [23]. Later, the previously pre-

trained models of ResNet-50 and VGG19, which were trained on large-scale datasets of images, are loaded. These models are 

used for initialization for training with the ECG bit dataset. Fine-tuning of the pre-trained models on the ECG bit dataset is 

performed using backpropagation and gradient descent methods. In the process of fine-tuning, the weights are optimized for 

the multi-class classification task. During training, the models take ECG signal windows as input, and the predicted beat 

category is compared with the ground truth labels. The iterative optimization process enables the models to learn the patterns 

and features indicative of each beat category. Evaluation metrics such as accuracy, precision, recall, and the F1 score, can be 

used to evaluate the performance of the models during training [25-26]. These parameters indicate the classification 

performance of the models' different types of cardiac beats. 

Training ResNet-50 and VGG19 on the ECG bit dataset is for obtaining a model to accurately classify multiple categories 

of ECG signals: normal beats, supraventricular premature beats, premature ventricular contractions, fusion beats, unclassifiable 

beats, and myocardial infarction. Subsequently, an ECG signal is divided into equal-sized window fragments to capture 

meaningful cardiac cycles. Each fragment is then converted into a spectrogram using a Short-Time Fourier Transform (STFT) 

(1). This involves computing the Fourier transform on short and overlapping time windows to produce a time-frequency 

representation. This creates a visual image of how the frequency content of the ECG signal changes over time. The 

spectrograms resulting from this are well-suited for use with CNNs, as these networks can exploit this rich frequency and 

temporal information for the classification task. This effectively highlights patterns that are less discernible in the raw 

waveform and thus facilitates better analysis and interpretation of the ECG data. 

2
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where x (τ) is the ECG signal in the time domain, and 𝑤 (𝜏 − 𝑡) is A window function, typically a smooth, finite-duration 

function, centered at time 𝑡. 

4.1.   Selective attention mechanism (SAM) 

SAM allows attention to be focused on specific regions or features of the input. A SAM in the context of ECG signal 

analysis could highlight the salient patterns or segments responsible for the accurate classification of the different arrhythmia 

types. The selective attention mechanism involves segmenting the ECG signals into smaller fragments at the front end (2) and 

subsequently assigning attention scores to them (3). The attention scores are computed by assigning weights to different 

segments of the ECG signal. These weights are determined based on the relevance of each segment to the classification task, 



Advances in Technology Innovation, vol. x, no. x, 20xx, pp. xx-xx 7 

allowing the model to prioritize key features that contribute to identifying specific arrhythmias. These attention scores indicate 

the diagnostic significance of the segment toward arrhythmia diagnosis. The segments with higher attention scores are 

considered more informative and are thus given greater weights during classification (4), (5). The one with the highest attention 

score is selected for further analysis. This can be realized in ECG signal classification by applying a hand-crafted layer in a 

model's architecture: "SelectiveAttentionLayer (6)." This mechanism ensures the model's focus on essential signal components, 

enhancing its diagnostic performance. 

The ECG segment X is divided into n segments 

 1 2 3 4, , , , ,= nX x x x x x
 (2) 

The attention score 𝑎𝑖for segment 𝑋𝑖 can be represented as 

1 2 3{ , , ,....., }i na a a a a=
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The SelectiveAttentionLayer function 𝑆𝐴𝑀(𝑋) ,taking X as input, is 

( )
weighted

SAM X X=

 
(6) 

4.2.   Deep convolutional neural network with a selective attention mechanism s 

The integration of SAM with the DCNN presents a significant advancement in this study. SAM enhances the DCNN by 

dynamically weighting the features extracted from ECG signals; thus, the model can concentrate its attention on the most 

relevant components of the signal, which improves both feature extraction and accuracy in classification. In more detail, SAM 

accomplishes this by attaching the attention score to different features, assigning higher priority to the features that contribute 

the most to proper classification. This mechanism is seamlessly embedded within the DCNN framework, enhancing its ability 

to distinguish between complex arrhythmic patterns. 

 

Fig. 5 VGG19-SAM architecture 
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The second stage centers around the integration of the pre-trained ResNet-50 and VGG19 models with the selective 

attention mechanism to classify ECG data. This will leverage the rich, learned representations from these pre-trained models 

while enhancing classification performance by focusing on salient temporal patterns. These pre-trained ResNet-50 and VGG19 

models have learned discriminative features from the variably transformed ECG signals. An ECG signal is segmented into 

window fragments of equal size; and transformed into a spectrogram-like representation. These pre-trained models extract 

features from every segment to capture high-level representations in complete signal classification. These features are input 

into SAM, to select the most relevant segments based on their attention scores. It focuses on salient parts of the ECG signal at 

different steps, emphasizing patterns that contribute more to arrhythmia classification. Fig. 5 illustrates the integration of 

VGG19 with SAM. 

The combination of the pre-trained models with SAM improves the accuracy and robustness of arrhythmia classification 

by considering only the most informative segments while harnessing the benefit of learned representations from the pre-trained 

models. SAM improves classification performance by highlighting salient patterns in the ECG signal, as illustrated in Fig. 6. 

It can effectively utilize informative segments to identify and classify arrhythmia correctly. The model may finally identify 

the relevant segments strongly and give insights into the existence and type of arrhythmia, thereby helping in making more 

accurate diagnostic decisions. Further work in this area aims to optimize the integration of a pre-trained model with SAM by 

investigating variations or adaptations specific to ECG signal analysis. These developments have been crucial in enhancing 

precision and speed in arrhythmia diagnosis and thereby advancing cardiovascular care. 

 

Fig. 6 Flow chart of the proposed model 

In clinical settings, the computational costs and complexity of models like VGG19 and ResNet-50 must be considered. 

VGG19, with its 143 million parameters, requires substantial computational resources, whereas ResNet-50, with 25 million 

parameters, offers a more efficient option for real-time diagnostics. By integrating a selective attention mechanism (SAM), the 

interpretability of these models is significantly enhanced. SAM focuses on the most relevant parts of the ECG signal, providing 

attention maps that align with clinical reasoning. This approach not only improves diagnostic accuracy but also increases 

transparency, fostering trust in automated systems. By aligning machine predictions with human reasoning, SAM bridges the 

gap between model outputs and clinical insight, making automated diagnostics more reliable. 
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4.3.   Evaluation metrics 

The evaluation metrics used in this paper are as follows [26] :  

Accuracy (7): The proportion of true results (both true positives and true negatives) among the total number of cases examined.  

100
TP TN

Accuracy X
TP TN FP FN

+
=

+ + +  
(7) 

where TP is true positives, FP is false positives, FN is false negatives, and TN is true negatives. 

Recall (8): The proportion of true positives among the total number of actual positives. 

Re 100
TP

call X
TP FN

=
+  

(8) 

Precision (9): The proportion of true positives among the total number of positive predictions. 

Pr 100
TP

ecision X
TP FP

=
+  

(9) 

Specificity (10): The proportion of true negatives among the total number of actual negatives. 

100
TN

Specificity X
TN FP

=
+  

(10) 

F1 score (11): The harmonic mean of precision and recall 

1 100
1

( )
2

TP
F Score X

TP FP FN

− =

+ +
 

(11) 

The Receiver Operating Characteristic (ROC) curve plots the True Positive Rate (Recall) against the False Positive Rate 

to evaluate a binary classifier's performance across different threshold values. 

5. Results 

Experimental results demonstrate the superiority of the proposed approach over traditional methods for arrhythmia 

diagnosis. Utilizing a DCNN with a SAM for arrhythmia diagnosis has shown promising results in ECG signal classification. 

The combination of these techniques enhances accuracy by capturing important temporal patterns in the signals. Pretrained 

networks extract discriminative features, while the SAM highlights relevant segments. The evaluation of the model typically 

involves 5-fold cross-validation, which enhances the reliability and generalization ability of the performance assessment. This 

technique trains and evaluates a model on five subsets of a dataset to increase its ability estimation. It improves interpretability, 

robustness against noise, and generalization performance, demonstrating superior accuracy compared to traditional techniques, 

and making it valuable for real-time arrhythmia detection. 

Table 1 presents the performance metrics for multi-class arrhythmia ECG signal classification. The models achieved high 

accuracy values: VGG19 with an accuracy of 91.51%, ResNet50 at 94.98%, VGG19+SAM at 97.12%, and ResNet50+SAM 

with the highest accuracy of 99.70%. These accuracy scores prove that the models are capable of accurately classifying the 

various classes of arrhythmia. 

High precision was recorded for all models in this work, reflecting the reliability of the identification of arrhythmia cases 

among the predicted positives. VGG19 achieved a precision of 91.68%, and ResNet50 achieved 95.04%.VGG19+SAM 

achieved 97.14%, and ResNet50+SAM maintained a precision of 99.70%. These precision values indicate low false positive 

rates in model predictions. 
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The F1-Score, which considers both precision and recall, demonstrated outstanding performance across all models: 

VGG19 at an F1-Score of 91.45%, ResNet50 at 94.97%, VGG19+SAM at 97.11%, and ResNet50+SAM was the best at 

99.70%. These scores indicate the ability models can balance precision and recall, yielding an accurate classification of 

Arrhythmia cases. 

Specificity, which measures a model's ability to correctly classify subjects without Arrhythmia, showed remarkable 

results: the specificity was 97.88% for VGG19, 98.74% for ResNet50, and 99.28% for VGG19+SAM, with the highest being 

for ResNet50+SAM at a specificity of 99.93%. These specificity values highlight the ability of models to recognize subjects 

without arrhythmia. 

Confidence intervals (CIs) estimate a range likely containing the true population parameter, often calculated at a 95% 

confidence level. In this study, the classification train accuracy ranged from 99.44%- 99.99%. P-values quantify the strength 

of evidence against the null hypothesis. In this case, ANOVA was used for statistical analysis, yielding a statistically significant 

p-value of 0.000006, well below the threshold of less than 0.05. 

Table 1 Evaluation metrics of multi-class classification 

VGG19 

Metrics N S V F Q Average CIs P-Value 

Accuracy 99.08% 90.29% 91.98% 82.61% 93.59% 91.51% 

84.1%-98.92% 0.0051 

Precision 88.50% 87.87% 93.68% 94.11% 94.22% 91.68% 

Error   0.92%   9.71%   8.02% 17.39%   6.41%   8.49% 

F1-Score 93.49% 89.06% 92.82% 87.99% 93.91% 91.45% 

Specificity 96.78% 96.88% 98.45% 98.71% 98.56% 97.88% 

ResNet 50 

Accuracy 99.23% 94.28% 94.75% 90.68% 95.96% 94.98% 

94.19%-99.94% 0.0043 

Precision 93.59% 92.48% 95.63% 97.05% 96.43% 95.04% 

Error   0.77%   5.72%   5.25%   9.32%   4.04%   5.02% 

F1-Score 96.33% 93.37% 95.18% 93.76% 96.19% 94.97% 

Specificity 98.30% 98.08% 98.92% 99.31% 99.11% 98.74% 

VGG19+SAM 

Accuracy 99.49% 97.05% 98.00% 93.17% 97.89 97.12% 

94.16%-99.99% 0.000021 

Precision 96.62% 95.62% 98.02% 98.16% 97.27% 97.14% 

Error   0.51%   2.95%   2.00%   6.83%   2.11%   2.88% 

F1-Score 98.04% 96.33% 98.01% 95.60% 97.57% 97.11% 

Specificity 99.13% 98.89% 99.51% 99.56% 99.31% 99.28% 

ResNet 50+SAM 

Accuracy 99.94% 99.65% 99.79% 99.38% 99.75% 99.702% 

99.44%-99.99% 0.000006 

Precision 99.76% 99.18% 99.97% 99.80% 99.81% 99.704% 

Error   0.06%   0.35%   0.21%   0.62%   0.25%   0.298% 

F1-Score 99.85% 99.42% 99.88% 99.59% 99.78% 99.704% 

Specificity 99.94% 99.79% 99.99% 99.95% 99.95% 99.93% 

The ResNet50+SAM model exhibits outstanding performance in binary classification between myocardial and normal 

cases, as shown in Table 2. It achieves high scores across metrics such as accuracy, precision, recall, F1-Score, and specificity, 

ranging from 99.82% to 99.88%. These results indicate that this model efficiently classifies cases correctly, reliably detects 

true positives, and is extremely low in false positives. Overall, ResNet50+SAM worked well in distinguishing myocardial 

cases from normal ones with exceptional accuracy and reliability. 
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Table 2 Evaluation metrics for binary classification 

CNN Accuracy Precision Recall F1-Score Specificity 

VGG19 92.33% 92.08% 92.53% 92.31% 92.13% 

ResNet50 93.81% 93.87% 93.76% 93.82% 93.87% 

VGG19+SAM 97.62% 97.56% 97.68% 97.62% 97.56% 

ResNet50+SAM 99.85% 99.88% 99.82% 99.85% 99.88% 

Fig. 7 displays deep dream images for features in the `selective_attention` layer in a neural network trained for multiclass 

arrhythmias from ECG signals. It consists of a 4x4 grid of subplots, each illustrating a deep dream image that maximizes the 

activation of a specific feature. These images highlight the patterns learn by the network's features for arrhythmia classification. 

Each subplot is titled with its corresponding feature number. This visualization helps interpret the network's representations 

and its ability to distinguish arrhythmia types from ECG data. 

 

Fig. 7 Deep dream with SAM 

Feature extraction, as shown in Fig. 8, visualizes the learned features of a neural network trained for multiclass 

classification of arrhythmias from ECG signals. Each subplot in this figure represents feature activations for the test image, 

described as bar plots where the x-axis denotes feature indices and the y-axis shows activation values. Higher bars indicate 

those features that are most important/relevant for classifying a particular image. 

 

Fig. 8 Features visualization of the last layer 
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The titles of the subplots display the real class of arrhythmia for every signal; therefore, enabling a visual comparison 

across classes. This visualization helps with relevant features for separating the arrhythmia classes and provides hints into 

model decision-making, which may guide improvements in diagnostic tools and treatment strategies. 

  

(a) VGG19 (b) ResNet50 

  

(c) VGG19+SAM (d) ResNet50+SAM 

Fig. 9 Confusion matrices (multi-class) 

  

(a) VGG19 (b) ResNet50 

  

(c) VGG19+SAM (d) ResNet50+SAM 

Fig. 10 Confusion matrices (Binary) 
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Confusion matrices corresponding to the proposed models for multiclass and binary classification are illustrated in Fig. 9 

and 10. The confusion matrices comprehensively summarize the normalized process and provide a clear indication of how 

well each model fits the data. 

The Precision-Recall and ROC curves are plots used to evaluate the performance of models in classifying the arrhythmias. 

The Precision-Recall curve highlighting the trade-off between the two metrics, precision and recall, is represented in Fig. 11. 

Fig. 12 presents the ROC curve, which plots the true positive rate against the false positive rate, assessing model performance 

across different classification thresholds. These curves provide insights into model effectiveness, thus making comparisons 

possible and full decisions based on such performance characteristics. 

  
(a) VGG19+SAM (b) ResNet-50+SAM 

Fig. 11 The Precision-recall curve 

  
(a) VGG19+SAM (b) ResNet-50+SAM 

Fig. 12 The ROC curve 

Table 3 summarizes the most relevant research efforts reviewed. This collation helps provide input into the commonalities 

among the individual studies, which have tremendously advanced arrhythmia diagnosis using machine and deep learning 

techniques with ECG signal analysis. 

Table 3 Comparison of proposed methodology with some existing method 

Ref. Model Class Accuracy Specificity Sensitivity Precision F1 score Computational Complexity 

[27] NN 5 98.90% 98.90% 98.90% - - Low 

[28] 
MLP 4 94.76% 96.50% 90.11% - - Low 

SVM 4 98.20% 98.79% 96.45% - - Medium 

[29] LSTM 5 99.37% 99.14% 94.89% 96.73% 95.77% Medium 

[30] CNN 3 99.2% 99.6% 99.2% - - High 

2024 
This Work 

CNN+SAM 

5 99.702% 99.93% - 99.704% 99.704% 
High 

2 99.85% 99.88% 99.82% 99.88% 99.85% 
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Implementing the deep convolutional network (DCNN) with a selective attention mechanism (SAM) in clinical practice 

offers significant potential to enhance arrhythmia diagnosis. Integrating the DCNN-SAM model into existing systems could 

streamline workflows, reduce diagnostic errors, and allow clinicians to concentrate on complex cases. Training programs will 

be necessary to help clinicians interpret the model's outputs appropriately. Challenges may include ensuring system 

compatibility and addressing data security concerns. These problems are key concerns for widespread adoption. Ultimately, 

by increasing the accuracy of diagnostics, this approach enhances diagnostic accuracy, provides clearer insights into ECG 

signals, and supports timely, individualized treatment plans, hence improving patients' outcomes in cardiovascular care. 

6. Conclusion 

This study proposed a model for arrhythmia diagnosis based on ECG signal classification using pre-trained ResNet-50 

and VGG19 models combined with a selective attention mechanism to enhance accuracy and robustness by focusing on 

prominent signal patterns. The approach involved preprocessing ECG signals, fine-tuning the models for binary and multi-

class classification, and utilizing attention scores to emphasize critical signal segments during feature extraction and 

classification. The proposed approach significantly outperformed traditional methods, achieving high accuracy rates of 99.70% 

and 99.85% in multi-class and binary arrhythmia classification between myocardial and normal cases, respectively. 

With its highly accurate ECG signal classification, this approach can improve diagnostic efficiency and accuracy in managing 

cardiovascular disease. 
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