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Abstract 

The large number of motorcycle users has created challenges, particularly related to parking violations, which can 

lead to traffic congestion, hinder emergency access, disrupt pedestrian pathways, and inconvenience other users. 

Therefore, this study aims to detect motorcycle parking violations in unsupervised restricted areas using YOLOv7 

to classify non-parking, parking, and personal objects. The best model is achieved at the 28th epoch with an mAP 

value of 0.953 at the 0.5 threshold. Parking restriction areas are defined using a Region of Interest (ROI), where 

violations depend on the parking object’s detected coverage within the ROI exceeding 50%. By employing an area 

calculation method, the results show better performance compared to methods without area calculation, achieving a 

recall of 89.7%, precision of 82.6%, and F1-score of 86.2% with a confidence threshold of 0.5. 
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1. Introduction 

Mobility is one of the important factors in strengthening the economy, which evolves along with the population’s activities 

to meet their needs, especially in the context of transportation accessibility and efficiency [1-3]. In Indonesia, personal vehicles 

such as cars and motorcycles have become the most common and convenient means to commute and conduct any activity [4-

5], where motorcycle is the preferred choice for the public due to the efficiency of driving time and affordability, especially in 

urban areas with heavy traffic [6]. Based on data from Statistics Indonesia, motorcycle dominates the number of vehicles with 

132,433,679 units or around 84.3% of the total 157,080,504 vehicle units in 2023 [7]. 

Despite providing ease of mobility and accessibility, the increasing number of motorcycle vehicles also poses various 

challenges, especially related to traffic violations [8-9]. One of the common violations that often occurs in society is parking 

violation [10], which can be ascribed to limited parking spaces, lack of clear signs, and lax enforcement of parking rules [11-

12]. Motorcycle parking lots in small and restricted areas require more attention in enforcing parking rules, as they can incur 

various problems such as traffic congestion, hindering emergency access, disrupting pedestrian pathways, and creating 

inconvenience for other users [9]. In addition, the officer’s manual enforcement of parking rules is often inefficient, ineffective, 

and time-consuming due to limited human resources. Therefore, the application of computer vision technology is indispensable 

to ensure the orderly management of parking areas. This technology can identify vehicles and monitor parking areas without 

requiring the presence of field officers. 
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Several studies have conducted parking violation detection using multifarious computer vision and machine learning 

methods. For instance, one study detected car parking violations on the side of the highway using the Faster Region-based 

Convolutional Neural Network (Faster R-CNN) with an accuracy of 77.9% [13]. Another study detected taxi parking violations 

by applying semantic segmentation of PSPNet and YOLOv3, resulting in an accuracy of 96.1% [14]. In addition, some studies 

detect parking violations by using Region of Interest (ROI) to define parking restriction zones. Akhawaji et al. [15] detected 

and tracked vehicles using a Gaussian Mixture Model and Kalman Filter, marking vehicles as violators if stayed within the 

ROI for more than sixty seconds without moving, reaching the F1-measure of 88%. 

Similarly, a different study applied MobileNet to detect violations when vehicles remained in the ROI for one minute, 

eliciting a precision of 98.7% [16]. Further research also detected double parking by employing background subtraction to 

identify vehicles in the ROI, declaring a violation if the vehicle was stationary for more than six counts, achieving 91% 

accuracy [17]. Another study defined parking areas using ROI, detecting violations when vehicles were parked outside the 

designated area, resulting in a precision and recall of 97% and 95%, respectively [18]. These studies demonstrate that the use 

of ROI is an effective approach for detecting vehicle parking violations. 

However, the focus of these studies has primarily been on cars. One notable study related to motorcycle parking violations, 

conducted by Hernández-Díaz et al. [19] detected motorcycle violations in pedestrian zones by classifying data into four 

categories: motorcycles with motorcyclists in crosswalks, motorcycles with motorcyclists outside crosswalks, pedestrians in 

crosswalks, and only motorcycles outside crosswalks. This study employed YOLOv8, Single Shot MultiBox Detector (SSD), 

and MobileNet, with YOLOv8 achieving the highest mean average precision (mAP) of 84.6%. 

These findings, along with the research presented by Yang and Yu [14], highlight that YOLO proves to be an effective 

method for object detection, demonstrating its capability to accurately identify parking violations across different contexts. 

Meanwhile, Wang et al. [20] used block matching and motion detection techniques to identify violations involving two-

wheeled vehicles such as bicycles, classifying violations when these vehicles remained outside the parking area for more than 

five minutes, resulting in an average F1-score of 79%. Despite this advancement, motorcycle parking violation detection still 

presents challenges. Motorcycles are volumetrically smaller, more maneuverable, and often park in irregular positions, 

hindering the reliability of both time-based and motion-based detection methods, which function well for cars. Moreover, the 

rapid movement and frequent stops of motorcycles complicate the distinction between legal and illegal parking. 

To address these challenges, this study focuses on detecting motorcycle parking violations in restricted areas that are 

unsupervised by officers. The proposed method entails creating a classification model using YOLOv7 to identify objects in 

the parking area, including parked motorcycles, non-parked motorcycles, and persons. This model is specifically designed for 

rapid detection of potential parking violations, such as driverless parked motorcycles, without requiring time-based vehicle 

monitoring. Furthermore, ROI is established for the restricted parking area, and the area of the parking object within this ROI 

is calculated. A violation is flagged if the area occupied by the parking object within the ROI reaches 50% or more. This area-

based approach aims to ensure accurate detection of violations, even for objects that are not entirely within the ROI but still in 

violation. The study aims to enhance the efficiency of motorcycle parking violation detection and improve parking 

management, ultimately contributing to safer and more organized urban environments. 

2. Research Methods 

The research methods consist of data acquisition, preprocessing and data augmentation, annotation, split data, 

classification, violation detection, implementation, and evaluation. The methods of the research are graphically depicted in 

Fig. 1, in which the area with the red line indicates the main focus of the proposed method for detecting motorcycle parking 

violations. 
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Fig. 1 The research methods 

2.1.   Data acquisition 

The data consists of photos and videos showing activities in the parking lot area in front of the Teknol building of the 

Department of Informatics and Computer Engineering, State University of Makassar. The photo was taken using a smartphone 

camera with a total of 600 images, while the video was taken using a webcam with a resolution size of 1080 × 1920 pixels and 

a speed of 30 frames per second (fps), consisting of 32 videos with a total duration of 254 minutes. Data was collected from 

the 3rd floor of the Teknol building. 

2.2.   Preprocessing and data augmentation 

Preprocessing is the stage carried out to process raw data before further processing by an algorithm or model [21]. From 

the 600 images, 180 images were selected by only taking images that have clear objects. In addition, a cropping process was 

carried out to focus the objects in the image and resize them to reduce the image size. Concerning the video data, preprocessing 

involved converting the video into a series of frames, where 2,462 frames were selected. Furthermore, data augmentation was 

carried out through the flip process, which changed the horizontal orientation of the image to obtain more diverse motorcycle 

position data. The final amount of data used in the parking, non-parking, and person classification object process is presented 

in Table 1. 

Table 1 Total data used 

Data Baseline data Augmentation data Total 

Image 180 41 221 

Video frame 2,462 617 3,079 

Total 3,300 

2.3.   Annotation 

   

(a) Parking (b) Person (c) Non-parking 

Fig. 2 Example of object classes for annotation 
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The YOLO annotation is a labeling process to mark objects in the image with the appropriate label to enable the object 

to be recognized and understood during model training [22]. The tool used for YOLO annotations is LabelImg, where the 

object in the image is annotated using a bounding box surrounding the object and then labeled appropriately. The annotation 

result is saved in YOLO annotation format (.txt), which contains the normalized bounding box coordinates (relative to the 

image size) and the object label. The labels for object annotation consist of three scenarios: parking, person, and non-parking, 

as shown in Fig. 2. 

The annotated object for the parking class shown in Fig. 2(a) is a parked motorcycle, which means the absence of a rider 

on the motorcycle. In the person class shown in Fig. 2(b), the annotated object is a human. Meanwhile, the annotated object in 

the non-parking class is a motorcycle that is being driven, as shown in Fig. 2(c). In certain images, multiple object classes were 

annotated, signifying the image contains annotations for various types of objects. The cumulative results of the annotations are 

presented in Table 2. 

Table 2 Total object annotations 

Class Number of annotations 

Non-parking 2,689 

Parking 2,520 

Person 2,533 

Total 7,742 

2.4.   Classification model 

The classification model was formed using YOLOv7, which is an object detection algorithm that can recognize and 

identify objects in an image [23]. This model is used to classify parking, non-parking, and person objects. In this process, the 

3,300 data was divided into 80% train data (2,640 images), 10% validation data (330 images), and 10% test data (330 images). 

The following details of the number of object annotations for each class in training, testing, and validation data are presented 

in Table 3. The hardware used during training is a laptop device equipped with Windows 11 64-bit, 11th Gen Intel(R) 

Core(TM) i5-1135G7 2.40 GHz (8 CPUs), 8 GB RAM, and NVIDIA GeForce MX350 5.8 GPU (2 GB Dedicated, 3.8 GB 

Shared). The hyperparameters used during model training are presented in Table 4. 

Table 3 Distribution of the number of object annotations 

based on training, testing, and validation data 

Class Training Testing Validation 

Non-parking 2,129 281 279 

Parking 2,023 248 249 

Person 2,021 265 247 

Total 6,173 794 775  

Table 4 Hyperparameters used for training model 

Hyperparameters Value 

Image size 416 

Batch size 4 

Epoch 28 

Optimizer SGD (Stochastic Gradient Descent) 

Learning rate Adaptive Learning Rate 

Loss function BCE (Binary Cross-Entropy)  

2.5.   Parking violation detection 

The proposed method for detecting parking violations commences by developing a classification model to identify 

parking, non-parking, and person objects, as previously explained in the annotation and classification subchapters. The next 

steps involve forming an ROI and calculating the bounding box area of the parking object within it, enabling the system to 

detect parking violations. Specifically, ROI refers to a specific area or region in an image that is selected for further analysis 

[24]. In this study, ROI is used to mark the parking restriction area. The ROI formation process is customized to the street area 

captured in the video. This area remains consistent and unchanged owing to stable video footage. An illustration of the ROI 

can be seen in Fig. 3, where ROI formation is performed using the pixel coordinates of the rectangular street area in the frame. 
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The coordinate points x1 and x2 indicate the x coordinates of the upper left and lower right corner points, while y1 and y2 

indicate the y coordinates of the same points. Thus, x1 and y1 represent the upper left point of the area (start point), while x2 

and y2 represent the lower right point of the area (endpoint). 

 

Fig. 3 Illustration of the region of interest 

By forming ROI, the focus of object detection is on the parking class within the ROI. A parking object is considered to 

be in violation if all four coordinate points on the object’s bounding box are between the ROI coordinates, as shown in Fig. 3 

for parking-3 and parking-4. However, this method is sometimes disadvantageous, especially when a parking object cannot be 

detected as a violation if only two coordinate points on the object’s bounding box are inside the ROI, as seen in Fig. 3 for 

parking-1 and parking-2 objects. Therefore, the determination of whether a detected object violates the rule or not is based on 

the percentage of the parking object’s bounding box area that falls into the ROI (the intersection area between the bounding 

box of the parking object and the ROI). To calculate the percentage of object area, the following formula is established: 

Intersection area of the bounding box object
Object area (%) 100

Area of the bounding box object
= × 

 
(1) 

 

 

Fig. 4 Illustration of the object area calculation in cartesian diagram 
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To calculate the area of intersection of the bounding box object and the area of the bounding box object itself, the concept 

of the rectangular area formula is used, by multiplying the length by the width. Fig. 4 shows the calculation of the bounding 

box’s length and width in a cartesian diagram, illustrating the interrelationship between the coordinate points in the ROI and 

the bounding box in determining the object area. Based on Fig. 4, the intersection area of the bounding box object and the area 

of the bounding box are calculated as follows: 
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From Eq. (2), the intersection area calculation is based on two conditions: if the detected object’s start point is larger than the 

ROI start point, the area is calculated; if the object’s endpoint is smaller than the ROI endpoint, the object is considered outside 

the ROI endpoint. If both the start and end points are within the ROI, the area is deemed 100% inside the ROI. In Eq. (3), the 

bounding box area is calculated using the start and end coordinate points. 

The overall general architecture of the proposed parking violation detection system is illustrated in Fig. 5. It consists of 

two main modules: the object detection module and the violation detection module. The object detection module processes 

each video frame and detects vehicles using the YOLOv7 algorithm, identifying objects within the ROI. The violation detection 

module calculates the area of any detected parking object within the ROI thereafter. A violation is flagged when 50% or more 

of the object’s area falls within the ROI. 

 

Fig. 5 General architecture of parking violation detection system 

2.6.   Implementation 

   

(a) Place A (b) Place B (c) Place C 

Fig. 6 Three different locations for system implementation 
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The implementation stage was carried out by applying the system that has been developed to detect parking violations to 

assess the effectiveness and reliability of the model in detecting parking violations. This implementation process involves 

applying the model to the acquired video, which includes real-life parking violations in three different locations, as shown in 

Fig. 6. Detailed information on the duration and description of the videos during the system implementation at each location 

is presented in Table 5. 

Table 5 Duration and description of videos for system implementation 

Place Duration Description 

A 0:22:44 

Features the parking lot in front of the Teknol Building of the Department of 

Informatics and Computer Engineering at the State University of Makassar, recorded 

from the 3rd floor. 

B 0:10:48 
Features the street area in front of a housing estate that is often bustling with daily 

activities, recorded from the 3rd floor of a resident’s house. 

C 0:18:51 
Features the street area in front of At-Taubah Mosque, recorded from the 2nd floor of 

the mosque. 

2.7.   Evaluation 

Evaluation, the process of measuring the performance and accuracy of a system [25], is performed using a confusion 

matrix to assess the effectiveness of the model in classifying parking, non-parking, and person objects. Additionally, the 

confusion matrix is used to measure the results of the system implementation. The components of the confusion matrix are 

presented in Table 6, which is then used to calculate the recall, precision, and F1-score values [26]. 

Table 6 Confusion matrix 

 
Predicted 

Positive Negative 

Actual 
Positive True positive (TP) False negative (FN) 

Negative False positive (FP) True negative (TN) 

True positive (TP) is the number of correct predictions for the positive class, while true negative (TN) is the number of 

correct predictions for the negative class. False positive (FP) is the number of false predictions for the positive class, and false 

negative (FN) is the number of false predictions for the negative class. Recall shows how many positive cases are found by 

the model, and it is calculated as follows: 

TP
Recall

TP FN
=

+  
(4) 

Precision indicates how many of the model’s positive predictions are correct, and it is calculated using: 

TP
Precision

TP FP
=

+
 (5) 

Meanwhile, the F1-score balances the two and provides a more comprehensive score of the model’s performance, and it is 

calculated as: 

Recall Precision
F1-score 2

Recall Precision

×
= ×

+  
(6) 

3. Results and Discussion 

The parking violation detection system is developed by building a model that can detect objects in the parking area. The 

detected objects include a person, a non-parked motorcycle, and a parked motorcycle. The sample dataset used in this study is 

shown in Fig. 7, which comprises two frames and their labels from videos taken with different brightness conditions. 
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Fig. 7 Example dataset of video frames for building a detection model 

The results of the object annotations are shown in Fig. 7, where the non-parking object class is labeled as 0, the parking 

object as 1, and the person object as 2. To avoid class imbalance, certain objects were intentionally left unannotated. This 

approach was adopted to maintain a balanced dataset and prevent any class from dominating the annotations, which could 

negatively impact the model’s performance during training. By selectively annotating the objects, a fairer distribution among 

all classes can be achieved. Additionally, since parking objects appear consistently in most frames, they were annotated 

differently across frames for variety. The labeling of parking and non-parking classes includes two different object orientations, 

vertical and horizontal, enabling the system to recognize all variations of object forms. 

    

(a) Upward non-parking (b) Upward parking (c) Downward non-parking (d) Downward parking 

Fig. 8 Vertical variations of non-parking and parking objects 

 

  

(a) Right-facing non-parking (b) Right-facing parking 

  

(c) Left-facing non-parking (d) Left-facing parking 

Fig. 9 Horizontal variations of non-parking and parking objects 
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Vertical objects are categorized into two types: one when the object is facing up and the other when it is facing down, as 

shown in Figs. 8 and 9. Similarly, horizontal objects are also divided into two categories: one when the object is facing right 

and the other when it is facing left. After labeling or annotating all objects according to their respective classes, the model was 

trained using the YOLOv7 architecture. The results obtained at different epochs are presented in Table 7. 

Table 7 Results of the model training experiments 

Test 
Epoch 

13 28 35 40 45 

non-parking 

(%) 

TP 95 99 98 98 98 

Precision 92 95 95 95 95 

Recall 95 97 93 93 93 

map 50 96 97 97 97 97 

mAP 50:95 69 71 72 72 72 

parking 

(%) 

TP 94 98 98 98 98 

Precision 79 82 80 80 80 

Recall 81 83 88 88 88 

mAP 50 91 94 94 94 94 

mAP 50:95 64 69 70 70 70 

person 

(%) 

TP 91 95 92 92 92 

Precision 85 89 89 89 89 

Recall 84 84 83 83 83 

mAP 50 91 94 94 94 94 

mAP 50:95 46 51 50 50 50 

The model has achieved decent performance in detecting objects for each class at the 13th epoch. At this point, the 

detection accuracy for each class exhibited satisfactory and stable results. However, when the number of epochs increased to 

28, a significant improvement emerged in detection accuracy across all classes. This improvement indicated that the model 

continued to learn and enhance its ability to detect objects as the epochs increased. The accuracy of each class improved, 

demonstrating that the model became more effective and precise in recognizing patterns in the training data. 

Furthermore, when the number of epochs increased to 35, the accuracy improvement was no longer maximized. Some 

indications are interpreted that the model’s performance declined, particularly in the person class, with no improvement in 

accuracy observed at the 40th and 45th epochs. This decline was attributed to overfitting, where the model became too fitted 

to the training data, incurring decreased performance when handling new data [27]. As a result, the chosen model was trained 

up to the 28th epoch with the corresponding confusion matrix, as shown in Fig. 10. 

 

Fig. 10 Confusion matrix of the selected model at the 28th epoch 
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The non-parking class has the highest TP rate, correctly detecting objects with 99%, followed by the parking class at 98% 

and the person class at 95%. However, a weakness is observed in the prediction of background elements being incorrectly 

detected as objects, resulting in FP, especially in the parking and person classes, where FP values are relatively high. This high 

FP rate is due to the large number of parking and person objects in the dataset that actually exist but were not labeled to avoid 

an imbalance in the number of data annotations. Despite the high FP rate, the model performs well overall, as the TP values 

for each class are quite high, indicating robust detection capabilities. Background errors FP are primarily due to unlabeled 

objects in the dataset rather than inherent weaknesses in the model. Additionally, the background FN value, which represents 

errors when objects that should have been detected are incorrectly identified, as the background is relatively low. Such a result 

indicates that, despite some background errors, the model remains effective in detecting most relevant objects. 

 

Fig. 11 Precision-recall curve result 

Based on the precision-recall curve graph in Fig. 11, which illustrates the relationship between precision and recall, the 

mAP value at a threshold of 0.5 for all classes reaches 0.953. Such a finding reveals that the model is capable of identifying 

and classifying objects. The non-parking class demonstrates the highest performance, achieving an almost perfect precision-

recall value of 0.974, as indicated by the curve nearly reaching the upper right corner. The parking class has a precision-recall 

value of 0.940, denoting that although its performance is slightly lower than non-parking, the model remains reliable in 

detecting parking objects. Meanwhile, the person class achieves a precision-recall value of 0.946, slightly above parking, 

indicating that the model is effective in detecting most person objects as well. Subsequently, the selected model was 

implemented on video with the results, as shown in Fig. 12. 

 

Fig. 12 Object detection results using YOLOv7 
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At this stage, the model was utilized to detect and classify objects in video footage to evaluate the detection performance 

in more dynamic and realistic situations. The video implementation aims to assess how effectively the model can identify 

moving objects and tackle challenges such as lighting changes, varying viewing angles, and potential occlusion. Fig. 12 unveils 

the detection results identified by the model in a certain frame of the video. From these results, it can be seen that the model 

has been able to predict parking, non-parking, and person objects in the parking area. Initially, the model was designed to 

detect only two classes of objects: parking and non-parking. 

However, a significant issue was found during initial testing, where the model frequently misclassified passers-by in the 

parking area as non-parking objects, as shown in Fig. 13(a). This phenomenon yielded many inaccurate detections, particularly 

in situations with high human activity around the parking area. This error indicates that the model requires improvement to 

effectively differentiate between parking, non-parking, and people moving around. Therefore, a new class was added to the 

model, i.e., the person class. After the addition of the person class, the model was re-implemented and tested on the same data, 

resulting in a significant improvement in detection accuracy. Fig. 13(b) shows the updated detection result, where a human 

walking in the parking lot is now successfully detected and correctly identified as a person. 

  

(a) Wrong detection (b) Correct detection 

Fig. 13 Model detection results before and after adding person class 

This breakthrough demonstrates that adding the person class enhanced the ability of the model to distinguish between 

different objects in the parking lot environment. Furthermore, the implementation of the system to detect motorcycle parking 

violations using the proposed method, which includes the formation of ROI and the calculation of the parking object area, was 

also successfully carried out, as shown in Fig. 14. The motorcycle parking violation detection system demonstrates effective 

performance across the three different locations. Specifically, parking objects were successfully detected as parking violations 

when the area reached 50% or more while within the ROI. Additionally, non-parking objects were correctly identified as not 

committing parking violations when inside the ROI. This significantly accurate classification of non-parking objects reflects 

the ability of the system to differentiate between designated parking areas and areas where parking is prohibited. 

 

(a) Place A 

Fig. 14 System implementation results for detecting motorcycle parking violations in three different locations 
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(b) Place B 

 

(c) Place C 

Fig. 14 System implementation results for detecting motorcycle parking violations in three different locations (continued) 

In the following phase, a system evaluation was conducted to validate the performance of the system in detecting 

motorcycle parking violations in three different locations. The system evaluation compared the proposed method, which 

utilizes object area calculation for detected parking objects within the ROI, with a scenario that does not use area calculation. 

Using object area calculation achieves an average recall of 91.5%, significantly higher than the 78.6% recall without object 

area calculation, as shown in Table 8. 

Table 8 Comparison of the system evaluation with and without object area calculation 

Place Real 

With object area calculation Without object area calculation 

System 

(TP) 

Error detection Recall 

(%) 

Precision 

(%) 

System 

(TP) 

Error detection Recall 

(%) 

Precision 

(%) FN FP FN FP 

A 37 35 2 14 94.6 71.4 28 9 4 75.7 87.5 

B 5 5 0 2 100 71.4 4 1 1 80 80 

C 5 4 1 1 80 80 4 1 1 80 80 

Average 91.5 74 Average 78.6 82.5 

F1-score (%) 82.7 F1-score (%) 80.5 

This difference is due to certain parking objects whose bounding box points were not entirely within the ROI, incurring 

their failure to be detected as violations as shown in Fig. 15(a). However, by applying the area calculation for parking objects, 

as illustrated in Fig. 15(b), an object with more than 50% of its area within the ROI was successfully detected as a parking 

violation. However, the average precision values in Table 8 yield the opposite result. Using object area calculation results in a 

lower precision of 74%, compared to 82.5% when object area calculation is not applied. As illustrated in Fig. 16(a), a non-

parking object detected when parking was not classified as a violation due to two of its bounding boxes that were outside the 

ROI. Conversely, Fig. 16(b) shows a misclassified object that was still recognized as a parking violation because more than 

50% of its area was within the ROI. 
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(a) Wrong detection (b) Correct detection 

Fig. 15 Detection results without and with the application of the object area calculation method 

 

  

(a) Detected as not committing a violation (b) Detected committing a violation 

Fig. 16 Double detection results without and with the application of the object area calculation method 

Based on the results obtained, the use of object area calculation yields an overall higher F1-score of 82.7%, compared to 

80.5% without using object area calculation. Therefore, it can be concluded that the proposed method of calculating the parking 

object area within the ROI enhances the effectiveness of the system in detecting parking violations, despite the increase in the 

number of non-violating objects that were incorrectly identified as violations. The system implementation used a confidence 

threshold set at 0.3, enabling the mis-detected object in Fig. 16 to still be considered valid due to its confidence score of 0.3. 

Therefore, a different scenario was tested by setting the confidence threshold to 0.5. 

Table 9 System evaluation with confidence threshold set at 0.5 

Place Real 
System 

(TP) 

Error detection Recall 

(%) 

Precision 

(%) FN FP 

A 37 33 4 6 89.2 84.6 

B 5 5 0 1 100 83.3 

C 5 4 1 1 80 80 

Average 89.7 82.6 

F1-score (%) 86.2 

Based on the results presented in Table 9, the average recall value achieved is 89.7%, reflecting a decrease compared to 

the results in Table 8 with object area calculation. This reduction occurred because two objects that committed parking 

violations were not detected due to having a confidence score of less than 0.5. However, the recall still surpassed the average 

recall from Table 8 without object area calculation. The average precision obtained is 82.6%, which is higher than the average 

precision in Table 8. Therefore, setting the confidence threshold at 0.5 is deemed effective, as evidenced by the F1-score which 

reached a higher value of 86.2%. 

4. Conclusions 

From the research conducted on the motorcycle parking violation detection system, the use of the YOLOv7 for classifying 

non-parking, parking, and person objects achieved its optimal performance at the 28th epoch with an mAP score of 0.953 at a 

threshold of 0.5. The classification model is designed to expeditiously detect parking violations when a parking object is 
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located within a parking restriction area or ROI. A detected parking object is considered a violation if its area within the ROI 

reaches 50% or more. By deploying this object area calculation, the F1-score increased to 82.7%, higher than the 80.5% F1-

score obtained without the object area calculation. Additionally, the model demonstrated more effective performance in 

detecting violations with a confidence threshold of 0.5, resulting in a recall of 89.7%, precision of 82.6%, and an F1-score of 

86.2%. The fast object detection capability of YOLOv7, along with its ability to detect multiple objects simultaneously in a 

single image enables the parking violation system to work efficiently, even in dense parking environments across three 

different locations. Future developments could focus on nighttime detection by training the model on a larger dataset and 

incorporating the utilization of infrared cameras. 
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