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Abstract 

This paper reviews visual system models using event- and frame-based vision sensors. The event-based 

sensors mimic the retina by recording data only in response to changes in the visual field, thereby optimizing real-

time processing and reducing redundancy. In contrast, frame-based sensors capture duplicate data, requiring more 

processing resources. This research develops a hybrid model that combines both sensor types to enhance efficiency 

and reduce latency. Through simulations and experiments, this approach addresses limitations in data integration 

and speed, offering improvements over existing methods. State-of-the-art systems are highlighted, particularly in 

sensor fusion and real-time processing, where dynamic vision sensor (DVS) technology demonstrates significant 

potential. The study also discusses current limitations, such as latency and integration challenges, and explores 

potential solutions that integrate biological and computer vision approaches to improve scene perception. These 

findings have important implications for vision systems, especially in robotics and autonomous applications that 

demand real-time processing. 
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1. Introduction 

Technological advancements in robotics and artificial intelligence have propelled the development of computer vision 

models that emulate human visual capabilities, with DVS and frame-based vision sensors playing critical roles in this 

advancement. This paper aims to delve into the evolution of computer vision models inspired by visual systems, using these 

sensors to improve computer systems' capacity to efficiently and effectively perceive and understand their surroundings. 

Previous research in this sector has highlighted the need to combine continuous data streams from DVS sensors with frame-

based data to improve precision and efficiency in computer vision [1-2]. 

Building a bio-inspired model for visual perception remains a challenge; many researchers have developed models 

inspired by the dorsal pathway, which is concerned with identifying an object in visual space, and is also called the motion 

pathway; on the other hand, the ventral pathway, which is focused on form, color, texture, has been studied by other researchers 

and is referred to as the form pathway. The question here is how data can be collected from two types of sensors, event-based 

and frame-based sensors, to simulate the visual perception of both pathways by processing the motion data and the form data 

for an object in the visual scene. Building a bio-inspired model for visual perception remains a challenge.  Many researchers 

have developed models inspired by the dorsal pathway, which identifies where an object is in visual space, also known as the 

motion pathway. On the other hand, the ventral pathway, which is concerned with form, color, and texture, is the focus of other 

researchers and is referred to as the form pathway. Merging motion and form data to identify objects in a visual scene could 

unlock new possibilities for real-world applications, including industrial automation, autonomous robotics, augmented reality, 
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and virtual reality [3]. This approach aims to create more effective and physiologically accurate visual processing. The range 

of vision tasks has expanded due to recent advances in deep learning approaches for optical flow estimation and reinforcement 

learning, but incorporating DVS into these models remains a challenge. To complement these gaps, this study aims to highlight 

the main shortcomings in the existing research while offering a thorough overview of the state-of-the-art in frame-based sensor 

integration and DVS. It also seeks to provide insights into how bio-inspired systems imitate the processing powers of the brain 

and can simplify processing while lowering data redundancy. 

Deep learning in optical flow estimation applications includes high-level vision tasks such as recognition, reconstruction, 

and segmentation, as well as low-level vision tasks including feature detection, tracking, and optical flow. This technique 

provides two variants of ultrasound flow (US flow). One variation is a PWC-like model based on a modification of pyramid, 

warping, and cost volume (PWC-Net). It incorporates two spike streams that pass through a common dynamic timing 

representation module before routing to existing backbones in an end-to-end architecture [4]. 

PWC is an optical flow estimation technique utilizing images at multiple resolutions to capture details, aligning them 

across different scales, and employing a cost volume to represent pixel-level differences between frames for accurate motion 

estimation. PWC-Net, on the other hand, enhances this technique by integrating neural networks, significantly improving the 

accuracy and efficiency of motion estimation at multiple levels of detail. 

Computational visual processing mechanisms are categorized into bio-inspired and computer vision models, which focus 

on tasks such as segmentation and edge detection [5]. For the purpose of enhancing accuracy and efficiency in visual data 

analysis. Deep reinforcement learning techniques have also been applied to further optimize these processes and achieve higher 

performance. 

This paper is organized as follows. Section 2 covers visual perception and bio-inspired models, focusing on biological 

systems that inspire computational models. Sections 3 and 4 delve into the evolution and key techniques of computer vision 

models, respectively. Section 5 reviews visual sensors, detailing both frame-based and event-based sensors, such as DVS. In 

Section 6, the discussion addresses depth estimation using sensors, exploring how sensors are used to perceive depth. Section 

7 presents the data-driven tools employed in the field. Section 8 highlights applications of visual system models across various 

industries. Finally, Section 9 summarizes the findings and implications of the study, leading to the conclusions presented in 

Section 10. 

2. Visual Perception and Bio-Inspired Models 

Examining biological vision systems, particularly the human retinal system, is essential before discussing bio-inspired 

vision sensors. The human retinal system comprises bipolar cells, ganglion cells, and photoreceptors. These convert light into 

electrical pulses, which travel through ganglion and bipolar cells before entering optical fibers, which transmit them to the 

brain for interpretation of these signals. Fig. 1 presents a schematic depiction of the retina network [6]. 

 

Fig. 1 (Colour online) Retinal network schematic illustration [6] 
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Ganglion cells, specifically X-cells and Y-cells, play a crucial role in this process. X-cells are located in the parvocellular 

pathway, which accounts for 80% of nerve fibers and conveys patterns, spatial features, and color information. This system, 

known as the biological "what" system, is complemented by the magnocellular pathway, which processes changes related to 

movement, distance, and speed, commonly referred to as the "where" system [6-7]. 

Concepts from the biological visual system are employed in artificial intelligence models for visual perception and deep 

learning [8]. These models enhance computational performance, enable rapid response times, maintain high computing 

efficiency, and support discrimination among elements in images and data [9-10]. 

DVS operates at a human retina level, capturing scene changes using the event-based sensing method. Such selectivity 

can be observed in ganglion cells where only movement evokes action, reducing data load and power consumption [11]. This 

development ensures that AI models are highly efficient in low-latency, low-power applications usage including robotic 

systems and autonomous vehicles. 

Moreover, this represents one of the most efficient temporal pathways for human vision, capable of handling complex 

visual tasks. Foveal covert receptors located in the rostral pole of the optic tract are triggered by movement and transient 

ganglion cells, a concept mirrored by DVS, which processes only field changes to improve operational speed in devices such 

as surveillance and self-driving cars [12-13]. This closely links DVS to biological visual systems, bridging the gap between 

visual biology and sensor technology [14-15]. 

In humans, the primary visual cortex (V1) is a foremost component of the visualization process. It analyzes eye signals, 

converts them into understandable formats, and contributes to binocular interaction. For the correct appreciation of the 

surroundings, and making agreeable decisions, it is necessary to utilize motion, contours, and borders of visual stimuli, which 

are the functions of V1 in the brain [8,14,16-17]. 

Bio-inspired vision systems are expected to improve intelligent structures and self-learning mechanisms while decreasing 

energy consumption in areas like space imaging, robotics, surveillance, and object identification [18]. 

In the case of capturing real motion on event-based or frame-based sensors, DVS processes only a small portion of the 

visual movement taking place, thereby lowering power requirements and processing time. This results in superior performance 

in high-motion scenarios such as self-driving cars and high-speed surveillance. DVS also improves security and precision via 

real-time visual processing. According to Gallego et al. (2020), DVS outperforms conventional systems in estimating motion 

in 2D space via the moving objects and images, enabling bio-inspired systems in practical cases where traditional systems 

often face high delay and processing power requirements. 

3. Computer Vision 

For many years, computer vision has been a prominent research topic, with applications ranging from photogrammetry 

to medical imaging, car safety, machine inspection, and beyond [3, 19-20]. 

Computer vision increases the accuracy of human action detection by analyzing data from dynamic vision devices and 

extracting morphological and kinematic information. This provides a useful and effective way of evaluating dynamic 

observational data [3, 21-23]. 

Although deep neural networks (DNNs) have revolutionized computer vision, debates continue about their role in vision 

research. DNNs need to exhibit robust object identification capabilities and recognize objects under changing 3D viewing 

angles and distortions. Challenges such as manipulated adversarial examples underscore the differences between DNNs and 

human vision perception, rendering them promising yet insufficient representations vision [8-20]. 
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This study demonstrates the proof of concept (POC) of reducing energy consumption by utilizing central processing units 

(CPUs), graphical processing units (GPUs), video processing units (VPUs), and digital signal processors (DSPs) to save power 

and mitigate carbon emissions in technology. Techniques from sensor visual perception studies demonstrate non-convolutional 

methodologies for understanding sensory input, and integrating perceptrons with memory [24]. Fig. 2 illustrates three types of 

systems performing the same task. 

 

(a) The retina mechanism 

 

(b) The convolution visual system 

 

(c) Hardware design for vision processing 

Fig. 2 Systems and mechanisms of visual processing [24] 

4. Computer Vision Models 

This technique analyzes and tracks the movement of objects in photos and videos, and is considered an important tool in 

fields such as intelligent robotics, motion analysis [25], and automatic image correction enhancement [11]. 

Optic flow refers to the global motion during movement, characterized by stimuli with complex speed gradients. Its speed 

increases with the viewing angle, rendering greater velocities more significant. Neurophysiological data indicates that 

selectivity for ocular flow originates in area medial superior temporal (MST), influenced by area V5/middle temporal (MT). 

Imaging and lesion studies reveal a broad cortical network involved in optic flow perception. Age-related effects on motion 

processing and signal complexity may lead to significant perceptual decline. Limited research provides minimal evidence of 

perceptual decline, with heading detection thresholds ranging from 1.18 in young to 1.98 in older individuals. Lich and 

Bremmer's study reveals that older individuals exhibit lower accuracy in determining heading direction using a reference ruler, 

emphasizing the need for more detailed measures [26-27]. 

Optical flow estimation presents a challenge in computer vision, as it requires regularization to estimate the object's 

velocity without prior knowledge of the scene's geometry or motion. Event-based optical flow estimation is challenging due 

to the novel way visual information is presented as events. Traditional cameras determine optical flow by comparing two 
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consecutive pictures. Over the past two decades, methods have improved, with new concepts developed to overcome existing 

limitations. The quadratic regularization in the Horn and Schunck model was replaced by smoothness constraints, facilitating 

the development of more advanced computer-based applications [13-14, 28-31]. 

Researchers have developed state-of-the-art deep learning models to address performance challenges in object recognition 

within dynamic video data. Applications of video analysis and tracking with advanced sensors, include video monitoring, 

movement detection, optical flow analysis, RGB-D imaging devices, infrared (IR) detectors, radar systems, light detection and 

ranging (LIDAR) technology, digital photography, augmented reality (AR), and security monitoring. The DEEP-SEE 

framework employs computer vision and deep convolutional neural networks for real-time object detection, tracking, and 

recognition in outdoor navigation. The framework identifies both static and moving objects without prior knowledge, 

employing motion-based monitoring and visual similarity to predict object placements. The DEEP-SEE framework is utilized 

in an innovative assistive device designed to enhance cognitive abilities and safety for visually impaired individuals navigating 

urban environments. Validation with a 30-element video dataset demonstrates its high accuracy and robustness [32].  

This study focuses on object detection, identification, and classification. Experimental findings indicate that an improved 

version of the you only look once (YOLO) model surpasses traditional algorithms in categorizing distant scenes with moving 

objects, achieving a 98.94% accuracy on both public and custom datasets. The YOLO algorithm is employed for various tasks, 

including classification training pre-trained on ImageNet. Standard data augmentation techniques are applied, with 160 training 

epochs, a 224 x 224 input image size, and an initial learning rate of 0.1 [33-34]. 

Furthermore, 33 convolution layers of 11 layers and 1024 filters are added after the final convolution layer for detection 

tasks. In YOLOv2 and similar models, category probabilities are associated with each box instead of a grid, contributing to 

increased inference time. This evolution culminates in the development of YOLOv10 [35-36]. 

Modern vision system models employ an attention mechanism [37]. The authors introduce a "Transformer" network 

design that relies exclusively on attention mechanisms rather than traditional complex neural networks. This approach 

surpasses existing sequence-to-sequence models in terms of quality, parallelizability, and training efficiency. Initially applied 

to natural language understanding (NLU) tasks like machine translation [38], this mechanism was later adapted for visual 

system tasks [39], including models such as vision transformer (ViT) and data-efficient image transformer (Deit) [40-42]. 

5.  Visual Sensors  

Visual sensors are electronic devices applied across various fields, including robotics, surveillance, automotive systems, 

industrial automation, and healthcare. They detect and record visual data employing technologies, such as charge-coupled 

devices (CCDs), complementary metal-oxide-semiconductor (CMOS) sensors (see, [43-44] for example), and DVS (see, [7-

13] for example). These sensors convert optical signals into electrical signals for computational processing. The data is 

subsequently analyzed through computer vision and image processing techniques [13, 45-46]. Technological advancements 

have enabled the development of sophisticated sensors capable of real-time high-resolution photo and film collection. Some 

notable examples of such sensors include: 

5.1.   Event-based sensor 

Event cameras, also referred to as data-driven sensors operate based on the principle that their reaction is determined by 

the amount of motion or change in scene brightness they perceive. Each pixel in these cameras adjusts its delta modulator 

sampling rate based on the rate of change of the log intensity signal it monitors. Consequently, faster motion leads to the 

creation of more events per second. These sensors respond swiftly to visual stimuli, sending events with sub-millisecond 

latency and timestamped to microsecond precision [3, 12-13, 23-52].  
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The DVS represents a departure from conventional cameras, which capture entire pictures at a predetermined pace 

determined by an external clock, such as 30 frames per second. Instead, event cameras react to scene brightness variations 

independently and asynchronously for each pixel. Focusing on scene changes rather than static frames makes them a valuable 

tool in various applications [2-53]. 

The output of an event camera comprises a changeable data-rate series of digital "events" or "spikes," with each event 

representing a pixel's change in brightness (log intensity) at a specific time, with a predetermined magnitude. Event cameras, 

inspired by the spiking properties of biological visual circuits, enable continuous event representation and deliver improved 

performance [13, 43-54]. 

When a pixel delivers an event, it memorizes the log intensity and monitors significant changes from this value. The 

camera transmits an event when a change beyond a threshold is detected, relaying the x, y position, time "t", and 1-bit polarity 

"p" (indicating an increase or decrease in brightness) from the chip. These events are transmitted from the pixel array to the 

peripheral and eventually out of the camera using a common digital output bus, typically employing address-event 

representation (AER) readout. The readout speeds of event cameras can vary from 2 MHz to 1200 MHz, depending on the 

hardware interface and chip type [11-13, 55-56]. 

DVS devices show promise for space and scientific applications due to their low power consumption, excellent temporal 

resolution, and broad dynamic range. Additionally, DVS devices, with higher dynamic range and temporal resolution, are well-

suited for applications such as intelligent robotics, autonomous driving, high-speed photography, and intelligent surveillance, 

owing to their ability to capture images instantaneously [55, 57-60]. Dynamic vision device technology, being cost-effective 

and impactful in artificial intelligence, human activity recognition, and other specialized applications, has the potential to 

significantly influence various research fields [21].  

Focusing on research into comprehension, event segmentation, episodic memory, and activity planning, this analysis 

explores the intricate mental representations of everyday experiences and proposes future scientific directions [38]. 

5.2.   Frame-based sensor 

Frame-based systems are techniques used for processing or recording data in discrete frames or snapshots at a fixed point 

in time. In the realm of computer vision, they are employed to sequentially acquire and process visual data, such as photos or 

films. These systems utilize standard cameras or sensors to periodically capture entire frames of visual data, each comprising 

a grid of pixels. Frame-based processing involves extracting features, monitoring motion, identifying objects, and performing 

image comprehension and interpretation. 

However, the performance of these sensors is constrained by their mode of operation. Fixed frame rates can give rise to 

two primary issues: loss of crucial information and significant redundancy, as changes to all pixels unnecessarily increase data 

transfer and volume. These issues are compounded by the fact that modifications only affect a small section of the image [1-

2, 43, 49, 61-62]. 

Video frame interpolation techniques are crucial in computer vision research as they improve intermediate frames, provide 

precise motion estimates, boost algorithm performance, reduce memory resource utilization, and improve frame quality [63-

65]. 

Due to their differing data acquisition methods, integrating event-based and frame-based data remains challenging. The 

main issue is synchronization, in which event-based systems capture data in response to changes in the scene, while frame-

based systems capture the entire scene at fixed intervals. Additionally, frame-based systems face data redundancy and 

computational overhead challenges, as they record redundant data, while event-based systems capture only significant changes. 
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A hybrid model (see Fig. 3) could address these challenges by combining event-based sensors for real-time motion detection, 

with frame-based sensors providing a complete and detailed view of the surroundings at less frequent intervals. This integration 

could significantly enhance energy efficiency and processing speed while reducing data redundancy, resulting in more robust 

and accurate systems for real-time applications. 

 

Fig. 3 Bio-inspired visual model utilizing event-based and frame-based sensors 

Given these constraints, Table 1 summarizes numerous optical system models that utilize both frame-based and event-

based vision sensors, highlighting their key characteristics, advantages, and applications.  

Table 1 Summary of optical system models utilizing various sensor technologies 

References 
Model 

Type 

Sensor 

Type 

Key 

Characteristics 
Advantages Applications Summary 

[1] 
Hybrid 

Vision 

Frame-

Based and 

Event-

Based 

Combines 

event- and 

frame-based 

data to track 

photometric 

features. 

Improved 

feature 

tracking 

accuracy, 

robust to 

dynamic 

scenes. 

Asynchronous 

photometric 

feature 

tracking. 

Uses both frame-based and 

event-based sensors for 

tracking features 

asynchronously. 

[2] 
Hybrid 

Vision 

Frame-

Based and 

Event-

Based 

Utilizes 

combined data 

from both 

sensor types to 

enhance 

machine vision. 

Versatility in 

various 

lighting and 

motion 

conditions. 

Object 

recognition 

and machine 

vision. 

Describes the integration 

of frame-based and event-

based sensors to improve 

machine vision 

capabilities. 

[4] 

Event-

Based 

Vision 

Dynamic 

Vision 

Sensors 

(DVS) 

Dynamic time 

representation 

for unsupervised 

optical flow 

estimate. 

No need for 

labeled data, 

suitable for 

dynamic 

environments. 

Spike camera 

applications 

and optical 

flow 

estimates. 

Demonstrates the use of 

dynamic timing from spike 

camera data to estimate 

optical flow in an 

unsupervised manner. 

[43] 

Event-

Based 

Vision 

Dynamic 

Vision 

Sensors 

(DVS) 

Uses DVS data 

to estimate the 

lifespan of 

occurrences. 

Aids in sensor 

calibration and 

provides a 

metric for 

event 

dependability. 

Calibration of 

sensors and 

optimization 

of 

performance. 

Outlines a technique for 

calculating an event's 

lifespan from DVS, which 

can help with precise 

sensor calibration and 

performance enhancement. 

[63] 

Frame-

Based 

Vision 

Frame-

Based 

Sensors 

Reviews various 

techniques for 

video frame 

interpolation. 

Minimizes 

motion 

artifacts and 

enhances 

frame quality. 

Animation and 

video 

processing. 

A comprehensive survey 

of techniques and 

advancements in video 

frame interpolation, 

addressing key challenges. 
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6. Depth Estimation Using Sensors 

Zhao Chen, Vijay Badrinarayanan, Gilad Drozdov, and Andrew Rabinovich introduced a deep model designed to generate 

dense depth maps with high accuracy from RGB photos with limited depth information, leveraging datasets such as New York 

University Depth V2 (NYUv2) and Karlsruhe Institute of Technology and Toyota Technological Institute (KITTI) [66-67]. 

This model meets real-time criteria for both outdoor and indoor scenarios, achieving a mean depth error of less than 1% in 

interior settings [68]. Such sensors could find applications in autonomous vehicles and robotics. 

A strategy for dealing with sparse depth data in convolutional neural networks is provided, with the option of using dense 

RGB. The technique efficiently learns sparse features without the need for extra validity masks, ensuring network durability 

even at densities as low as 0.8%. The process of transitioning from a sparse to a dense depth map involves a deep neural 

network that integrates an RGB image and a sparse depth map (see Fig. 4). Mean relative absolute error (MRAE) serves as the 

evaluation metric to minimize error rates in the generated output. The network architecture includes dense layers along with 

other components such as pooling layers and rectified linear unit (ReLU) activation functions [69]. 

 
Fig. 4 Artificial neural networks for scaling images from sparse to dense Inference  [68] 

7. Data-Driven Tools  

Event cameras that communicate per-pixel intensity changes have emerged as a feasible choice in a variety of industries, 

including consumer electronics, industrial automation, and autonomous cars, due to their efficiency and resilience. In event-

based algorithms, maintaining these advantages requires balancing accuracy and efficiency [46]. 

The development of data-driven methodologies has emerged as a thriving research area due to its compatibility with 

spiking neural networks (SNNs) and deep learning techniques. This study explores the operation and benefits of event cameras, 

highlighting a recent shift in research focus towards data-driven technologies in event-based vision. Alongside discussions on 

hardware, datasets, and algorithmic trends, it aims to guide future research towards developing more effective and bio-inspired 

visual systems. 

In contrast to artificial neural networks (ANNs) [70], the emerging generation of neural networks, spiking neural networks 

(SNNs), which synchronize their firing, can be employed in event-based vision systems to reduce energy consumption [71]. 

SNNs are particularly suited for processing high temporal resolution data from event-based cameras due to their differences 

from ANNs in information encoding (spiking neurons encode information via spikes while non-spiking neurons use real-value 

activations), memory (spiking neurons typically possess memory unlike non-spiking neurons), and time-variance (SNNs 

exhibit time-varying behavior whereas many ANNs are time-invariant) [72]. Fig. 5 below illustrates a simple SNN neuron. 

SNNs employ various spiking neuron models to mimic the information-transmission processes of biological neurons. 

Three prominent models include the Hodgkin–Huxley model, which accurately represents the electrical properties of neurons, 

including ion channels; the leaky integrate-and-fire model, which is simpler and more computationally efficient than Hodgkin-

Huxley; and the Izhikevich model, which strikes a balance between biological realism and computational efficiency [73-75]. 
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Fig. 5 Simplified SNNs neuron model [72] 

8. Applications of Visual System Models 

Event- and frame-based sensors are employed across various sectors for visual system models, including autonomous 

vehicles, robotics, surveillance, and security.  

Event-based sensors detect dynamic changes, whereas frame-based sensors deliver comprehensive images for object 

recognition and lane detection. Event-based sensors improve user experiences in AR and VR, while frame-based sensors 

contribute to immersive experiences. These sensors enable real-time gesture detection, and facial recognition, and are also 

applied in biomedical imaging, industrial automation, and sports analytics. Combining both sensor types provides high-speed 

processing, low latency, and rich visual data [47, 76-77]. 

9. Discussion  

Visual system-inspired vision models (VSVIMs) and traditional computer vision models (CVMs) are widely utilized in 

the realms of artificial intelligence and machine vision, which are entrusted with the task of interpreting visual data. VSVIMs 

take their cue from how human vision works biologically; they employ neuromorphic engineering and draw insights from 

neuroscience to replicate resilience, flexibility, and, above all else, the efficiency exhibited by the human visual system on a 

computational platform. The traditional models walk a different path altogether; relying on mathematical formulae and 

algorithms to decipher what the visual data is all about. The strategies used by these two classes of models could not be more 

dissimilar. 

VSVIMs take an event-driven approach towards recording visual information, producing sparse and yet temporally 

precise data streams that echo what is observed at the level of brain activity. Conventional models with frame-based sensors 

capture contextual information but fall short when it comes to understanding temporal dynamics. 

DVS provides high-resolution pictures and contextual information while maintaining the real-time performance 

requirements of activities like object recognition and tracking. VSVIM succeeds in both of these resource-intensive domains 

since their demand exceeds available resources, particularly due to their efficiency. Traditional models perform well in 

situations requiring limited visual input, sluggish motion, or a low dynamic range. Vision systems based on visual sensorimotor 

coordination have applications in a variety of fields, including robotics, healthcare, and self-driving automobiles. 

Event cameras provide various benefits over traditional cameras, including high temporal resolution, low latency, low 

power consumption, and a large dynamic range. Using digital readout and rapid analog circuitry, event cameras achieve 

microsecond precision in time-stamped event detection, allowing quick action capture without motion blur. Their independent 

pixel feature and immediate propagation of changes ensure low latency, which results in a reaction time of less than a 

millisecond. Integrated event camera systems consume 100 mW or less power, whereas image-based cameras have a dynamic 

range of 60 dB. Event cameras can collect data from moonlight to daylight, making them versatile for various applications 

[23-64]. 
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Sensor technologies are crucial in determining the performance of computer vision systems. Image-based sensors and 

DVS sensors have different advantages and applications. DVS sensors detect illumination changes with no external 

synchronization, which is ideal for motion-adaptive real-time systems, while paddle devices take picture snapshots and 

measure space but cannot cope well when the environment is rapidly changing or objects are in motion. This means DVS 

sensors can move expeditiously over moving scenes and a variety of objects allowing machines robots and autonomous 

systems to perceive and track motion efficiently. Image-based sensors have detailed physical motion information, allowing for 

motion evaluations over time and trajectory analysis, but they are less effective when fast motion is presented with lots of 

highs and changes over time.  

Motion sensor (DVS) techniques allow for energy-efficient data gathering for mobile robotics, wearable technologies as 

well as battery-powered devices. Their absence of sync and presence in most cases make them cost-effective in terms of 

computing. Frame-based energy sensors, by contrast, would mostly lead to unwanted battery-powered applications in moving 

areas or very remote zones where there are no power resources for extended periods [65]. 

DVS sensors are utilized in various activities including robots, teleportation, and augmented reality due to their high 

resolution, low latency, and power consumption. Frame-based sensors are applied in scientific research as well as industrial 

inspection, medical imaging, and surveillance. Future developments aim at improving the parameters of performance, for 

instance, the working energy efficiency and resolution. Both DVS and frame-based vision sensors are applied in visual data 

analysis. DVS offers higher spatial and frame resolution while the frame-based sensors offer temporal resolution and power 

savings [78-80]. 

10. Conclusions  

This paper critiques and analyzes data acquisition from both event-based and frame-based vision sensors. Conventional 

cameras produce a chain of frames with significant data redundancy, requiring extensive processing. In contrast, event-based 

sensors respond more effectively to scene modifications, thereby minimizing redundant data. However, DVS faces challenges 

in detecting objects in static scenes, which limits its effectiveness. 

To address these challenges, a hybrid approach integrates the efficient data processing of event-based sensors with the 

high-resolution spatial data of frame-based systems, thus providing a robust solution for visual computation. This 

complementary approach enhances real-time processing and computing efficiency, effectively addressing challenges in visual 

computation across diverse applications, including industrial automation, interactive environments, and driverless vehicles. 

Furthermore, future research could explore advanced data fusion techniques and evaluate the hybrid model’s performance 

in various settings, including dimly lit environments or rapidly moving scenes, aiming to enhance real-time performance. 

Improving the synergy between event-based and frame-based data, could enable AI-driven solutions to enhance visual 

processing for robotics and augmented reality applications. 
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