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Abstract 

This study develops an automated optical inspection system for silicone rubber gaskets using traditional 

rule-based and deep learning detection techniques. The specific object of interest is a 5 mm × 10 mm × 5 mm
 
 mobile 

device power supply connector gasket that provides protection against foreign body inclusion and water ingression. 

The proposed system can detect a total of five characteristic defects introduced during the mold-based manufacture 

process, which range from 10-100 μm. The deep learning detection strategies in this system employ convolutional 

neural networks (CNN) developed using the TensorFlow open-source library. Through both high dynamic range 

image capture and image generation techniques, accuracies of 100% and 97% are achieved for notch and residual 

glue defect predictions, respectively. 

 

Keywords: traditional rule-based strategy, deep learning, convolutional neural networks (CNN), image recognition, 

image processing, deep residual learning 

 

1. Introduction 

Mobile device designers and manufacturers have made considerable efforts to increase the "ruggedness" of their products. 

One such effort has been the industry-wide adoption of the International Electromechanical Commission (IEC) published 

Inclusion Protection (IP) that rates electronic devices according to their protection against solid inclusion and water ingression. 

As mobile device components have become smaller and IP ratings higher, it has become necessary for manufacturers to be able 

to detect defects that are a few micrometers in size. Defect detection at this scale requires automated optical inspection 

techniques as traditional instrument-aided methods have been rendered obsolete.  

The demand for silicone rubber-based components in the mobile device industry to provide tight seals to prevent foreign 

body inclusion and water ingression has been a boost for Taiwanese manufacturers. The strength of Taiwanese science and 

engineering has proved fundamental for the development and manufacture of natural and synthetic rubber products that require 

complex chemical refinement, bridging, and coloring sequences. Rubber mold manufacturing techniques can be broadly 

classified into three categories: sheet molding, injection molding, and extrusion molding, each of which introduces 

characteristic defects at varying rates and distributions. 

As mobile device designers have decreased component size and increased ruggedness requirements, manufacturers have 

realized the necessity of automated optical inspection techniques for detecting defects a few micrometers in size. Furthermore, 

the non-invasive nature of optical inspection techniques provides the speed necessary for mass manufacturing. 

In 1980, A. Cornforth and C. James proposed a rubber gasket inspection system to identify the void and lamination 

disband errors between the nylon tip and the rubber ring using an ultrasonic device [1]. Recently, systems have been developed 

for the prediction of silicone rubber solidification time through the optical measurement thickness [2]. Furthermore, optical 
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inspection-based systems to inspect the bubbles present in solid and liquid silicone rubber in the molding process have also 

been developed [3]. Machine vision measurement provides a non-invasive inspection process widely deployed in a broad range 

of smart manufacturing systems [4-6], e.g. leather production and manufacturing [7], leather defect-recognition [8], solenoid 

manufacturing [9], and in-process LED chip mounting alignment [10]. All the examples mentioned above feature dim and low 

reflective surface materials which make the proper illumination for defect detection difficult. In our previous study [11], we 

found that while machine vision-based systems are capable of defect classification performance, the performance of these 

systems was affected by variation in lighting conditions, and these systems were incapable of qualitative defect detection. 

Therefore, to ensure the homogeneity of the silicone rubber gaskets with its isolated components, a specified on-line 

measurement system for this application was developed in this study as shown in Fig. 1.  

This study develops a fully automated optical inspection system for silicone rubber mobile device power supply 

connector gaskets. The defect detection application employs traditional rule-based and deep learning detection methods. 

Recently, several studies have been conducted on the application of deep learning methods for machine vision-based optical 

inspection systems [12-16]. 

   
(a) The silicone rubber gaskets. 

   
(b) inclusion (c) notches (d) inner residual glue 

Fig. 1 Examined rubber gaskets 

  

(a) inclusion defects (b) skewness 

Fig. 2 Two types of side layer defects for the silicone rubber gaskets from side-view 

2. Rule Based Image Detection Methodology 

The mobile device power supply gasket inspection unit has two separate image capture stations, one is the top view and 

the other is the side view station as shown in Fig. 2. The top view station is used to examine three defects: outer ring inclusion, 

inner ring notches, and inner ring residual glue, whereas, the side view station checks for two defects: top edge inclusion and 

metal contact leg skewness. 

2.1.   Top-view station 

The top view station captures the inspected object images using a Basler acA2500-14μm monochrome area scan industrial 

camera, fitted with a 50 mm CCTV lens. At the time of inspection, the camera was set to a ×0.343 zoom for a 16 × 12 mm² 

sensor size and a precision of 6.4 μm/pixel. 
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The top view station begins by acquiring multi-exposure images of the silicone rubber seal rings. The image processing 

application then creates both a contour approximation and a convex hull representation of the outer seal ring. As the 

eccentricity and straightness of the outer seal ring are rotation invariant, the application uses horizontal and vertical projections 

to segment the image. The application then calculates the difference in the segmented contour and convex hull representations 

to predict manufacturing defects as shown in Fig. 3. Because the top view optical inspection application does not use 

morphological operations or filtering, the image preserves the geometry of the inspected object at the pixel level. Thus, the 

application can correctly detect inclusion defects as small as 60 μm in size.  

It is found that traditional rule-based image processing techniques are unable to accurately detect notch and inner residual 

glue defects because these defects are more qualitative in nature, thereby making them more suitable for deep-learning 

approaches. 

 
Fig. 3 Top view flowchart using traditional rule based image processing strategy 

2.2.   Side-view station 

The second inspection station uses a Basler cA1600-20μm monochrome area scan industrial camera equipped with an 

open four-view mirror to capture four side views. While the four-view mirror reduces the overall number of stations needed in 

the system, it increases the pre-processing time necessary to divide the distinct views as shown in Fig. 4. As illustrated in Fig. 

5(a), the side view defect detection application first partitions the image using a predetermined region of interest (ROI). While 

this ROI attempts to consider most variations in the power supply gasket placement, excessively skewed or absent gaskets may 

lead to unpredictable results. The application uses a binary threshold to the ROI. The image processing application segments 

the image via horizontal projection techniques, which include additional parameters in the segmentation routine to control the 

magnitude of separation or overlap between the images as presented in Fig. 5(b). Additionally, a separate metal connection leg 

absence defect detection application is implemented using contour finding techniques. As shown in Fig. 6, the routine centroid 

calculations are allowed for the labeling of contour centroids to check for potential skew detection. 

 

Fig. 4 Side view flowchart with using traditional rule-based strategy 
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(a) Side view of region of interest. 

 

(b) Four view segmentation. 

Fig. 5 Region of interest and image segmentation  

 

(a) the front metal connection leg absence defect 

 

(b) the back metal connection leg absence defect 

Fig. 6 Leg absence defect detection using contour finding techniques 

The flow chart of top edge inclusion detection provides an intuitive explanation of the application logic. As the ROI is 

determined from the orientation of the top edge and subsequent affine transformation, the top edge defect detection allows 

improper placement of the power supply gasket on the fixture. The ROI is narrowed to account for the entire top edge and does 

not prevent errors that may arise when executing the inclusion finding a routine. The top edge material defects are observed by 

comparing the contour and convex hull representations of the top edge plastic material, as shown in Fig. 7. 

 

 
Fig. 7 The detected top edge material defects 

3. Deep Learning Approach 

The top view defect detection application is improved by adding images and type labels to provide a labeling framework 

for potential machine learning applications. Therefore, quantitative information for more qualitative surface defects, namely 

inner ring notches and residual glue defects [17-18] were provided. To detect the surface type defects of the silicone rubber 

gaskets which have a rough and dim texture, a multi-exposure technique is used to enhance the illumination and highlight the 

defects. These multi-exposure images are then included in the dataset and trained in a 50-layer ResNet network [19-20]. The 

pixel size range of the defects is limited to avoid the feature vanishing during the convolution operations of the network and to 

front 

back 



Advances in Technology Innovation, vol. 5, no. 2, 2020, pp. 76-83 80 

allow for more accurate discernment between the background and the defects. Moreover, the deep learning approach can 

indicate the defect types and defect positions within the predicted image. 

3.1.   Deep learning network structure 

 
Fig. 8 The employed deep learning framework 

Table 1 ResNet-50 structure 

Layer name Output size ResNet 50-layer 

Inputs 224 × 224 × 3  

conv1 112 × 112 × 64 7 × 7, 64, stride 2 

pool1 56 × 56 × 64 3 × 3 max pool, stride 2 

conv2.x 28 × 28 × 256 1 1, 64

3 3, 64

1 1, 256

 







 
 
 
  

× 3, stride 2 

conv3.x 14 × 14 × 512 1 1,128

3 3,128

1 1, 512







 
 
 
  

× 4, stride 2 

conv4.x 7 × 7 × 1024 1 1, 256

3 3, 256

1 1,1024

 







 
 
 
  

× 6, stride 2 

conv5.x 7 × 7 × 2048 1 1, 512

3 3, 512

1 1, 2048







 
 
 
  

× 3, stride 1 

pool5 1 × 2048 reduce mean 

conv6 1 × 2 1 × 1, 1000, stride 1 
 

Table 2 RMPNet-50 structure 

Layer name Output size ResNet 50-layer 

Inputs 112×112× 3  

conv1 56 × 56 × 64 7 × 7, 64, stride 2 

pool1 56 × 56 × 64 3 × 3 max pool, stride 2 

conv2.x 28 × 28 × 256 1 1, 64

3 3, 64

1 1, 256

 







 
 
 
  

× 3, stride 2 

conv3.x 14 × 14 × 512 1 1,128

3 3,128

1 1, 512







 
 
 
  

× 4, stride 2 

conv4.x 7 × 7 × 1024 1 1, 256

3 3, 256

1 1,1024

 







 
 
 
  

× 6, stride 2 

conv5.x 7 × 7 × 2048 1 1, 512

3 3, 512

1 1, 2048







 
 
 
  

× 3, stride 1 

pool5 1 × 2048 reduce mean 

conv6 1 × 6 1 × 1, 6, stride 1 
 

ResNet is chosen as the deep residual network because its residual architecture effectively overcomes the vanishing 

gradient and explosion issues. As the ResNet in TensorFlow pre-training models and related high-level libraries are available 

in the open-source community, many comparative data for ResNet are available for industrial use. The network proposed in 

this paper uses a multi-class classifier constructed with ResNet 50-layer architecture. Part of the ResNet structure is modified 

by reducing the size of the receptive field, and the size of the feature map increased as shown in Tables (1)-(2), respectively. 

The proposed PMPNet network can be seen in Fig. 8. The size of the input picture of our proposed network was 112 × 112 

pixels, and there is no max-pooling layer. 
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Fig. 9 The labelled defect types for deep learning 

3.2.   Training and dataset for deep learning network  

The image of the surface defect and its annotation mask are labeled using the patch-based method. Fig. 9 shows the 

original image and the labeled defect types for deep learning. This work uses the TensorFlow open-source software library to 

develop a deep learning network and the corresponding training classifier. In addition to distinguishing the defects, this 

proposed method can also identify non-defective background images to increase detection accuracy. The training process is 

divided into two steps. The first step used the pre-trained model of ResNet V1 50-layers for transfer learning. It only trained for 

five epochs and updated the parameters of the last layer of the convolutional neural network layer. The parameters of the 

remaining network layers are fixed, the batch size was set to 64, the learning rate is set to 0.001, and the weight decay is set to 

0.0004. The second step trained for 50 epochs and updated all network layer parameters, the batch size was set to 64, the 

learning rate is set to 0.0001, and the weight decay is set to 0.0004. The normalized exponential function is used as the basis of 

confidence for classifying in the last layer of the network. It is an extension of the Sigmoid function and can be termed as the 

Softmax function: 
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Furthermore, mean square error (MSE) is used to evaluate the loss function. MSE is expressed as: 
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In this study, a common data augmentation method such as mirroring and up and down flipping is used for image 

preprocessing. 

3.3.   Defect prediction for deep learning network  

The cutting principle of defect detection is the same as the labeling dataset strategy, although the method and parameters 

were slightly different. The original large image is cut into several 112 × 112 segment patches in the stride of 64 and the trained 

defect classifier is used to predict the patches. The fused feature map of the defect category is normalized into a gray-scale map. 

As deep learning method requires a large amount of data to achieve accurate and efficient results. Each silicon rubber gaskets 
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is rotated by a mechanical turntable to acquire more image data from different lighting angles. The feature map corresponding 

to different colors according to different types of detected defects is shown in Fig. 10. During the prediction stage, the 

accuracies of the notch and residual glue defects were 97% and 80%, respectively. After rotating the objects under inspection 

at different angles, a series of images are obtained from different angles for the rubber gasket under evaluation. The collected 

images are analyzed for deep learning and the classification is chosen with voting. After voting, the prediction accuracies of the 

notch and residual glue defects were 100% and 97%, respectively. Compare to the traditional rule-based image detection 

approach, the deep learning approach has high classification performance. It can detect non-contour defects (i.e., notches and 

residual glue) and achieve valid prediction results. 

 
Fig. 10 The fused feature map after deep learning prediction 

4. Conclusions 

In this paper, defect detection for mobile device power supply connector gaskets using rule-based and deep learning 

image processing techniques is presented. Using a rules-based approach, outer ring inclusion and metal contact leg absence 

defects with 100% accuracy are successfully identified. The inner ring surface notch and residual glue defect detection 

applications are developed using deep learning approaches. Using the PMPNet framework, the overfitting phenomenon is 

avoided during all the proposed training steps, and the prediction accuracies of 100% and 97% are reached for the notch and 

residual glue defects, respectively. The high accuracy online inspection system for silicon rubber gaskets is implemented by 

fusing two different strategies successfully. Due to misjudgments caused by the instability of the light source, both approaches 

are desirable to help determine the stability of the light source processing before the light source correction mechanism. 

However, these two approaches require manual input to help to evaluate the value of the result. Further studies can be 

investigated to acquire feedback during the training process which will allow computers to make the decisions. 
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