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Abstract 

Limestone is a non-metallic mineral extensively used in cement manufacturing and construction sector. 

Extensive mineral mining processes impact the environment. The study aims to map and evaluate the limestone 

mining area change at the Yerraguntla industrial zone in the YSR district of Andhra Pradesh, India. The 

normalized difference vegetation index (NDVI) and modified soil-adjusted vegetation index (MSAVI) are 

computed from the Landsat-5/8 images using Quantum GIS (QGIS) software. Experimental results show that the 

limestone mining area increases from 307 ha to 469.92 ha during 2005-2019. NDVI method is more effective 

than MSAVI in change assessment of limestone mining areas with overall accuracy of 87.75 % and 79.49 % and 

kappa coefficient of 0.89 and 0.62 respectively in 2019. The finding is compared with industry field survey 

reports (487.10 ha). This study contributes to the limestone mining industry management in developing a land-

environmental management plan for the long-term sustainability of limestone mining. 
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1. Introduction 

Limestone is a non-metallic mineral made up of calcium carbonate (CaCO3) [1]. Mineral extraction contributes 

nearly 2.5 % to India’s gross domestic product (GDP). Limestone is an important mineral resource extensively used in the 

construction sector and as the primary material for cement making. In the Yerraguntla industrial zone, there is an active 

mining area of 487.10 ha and a reserved area of 2,226.16 ha. Both of the areas lead to a significant contribution to the 

socio-economic development Limestone surface mines are developed by stripping the surface soil and vegetation to 

obtain minerals [1]. The removal of vegetation and the destruction of soil structure has resulted in a significant decline in 

biodiversity [2]. Furthermore, environmental degradation caused by mine solid waste and cement industry dust is 

extensive [3]. 

Monitoring opencast limestone mines and their solid waste is crucial to mitigate environmental impacts such as air 

pollution, water contamination, soil degradation, health, and the safety of surrounding communities. Moreover, monitoring is 

indispensable for the sustainability of limestone at the local level [4]. Conventional ground-based mine mapping methods are 

dependent on labor, time-consuming, and capital-intensive. Therefore, it lacks efficiency for large-scale surface mine 

monitoring [5]. 
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On the other hand, the remote sensing (RS) based mapping of limestone mines, mine transformation monitoring, and 

mining area environmental impact assessment is cost-effective, regular revisiting time frame, and time-saving, and it covers 

a broad area as well [6]. Geographical information system (GIS) is a versatile digital system for capturing, storing, 

visualizing, and analyzing spatial data related to geographical features [4]. The integration of RS and GIS conducts detailed 

mapping of limestone mining areas for decision-making, future planning, and development, which is critical for meeting the 

demands and wellness of the ever-growing population [7]. As a result, this study concentrates on mapping and quantitatively 

assessing the change in limestone mining areas by using satellite imagery and the Quantum GIS (QGIS) tool. 

Previous studies [8-10] conducted research on mapping open-pit surface limestone mines using Google Earth image 

visual interpretation and NDVI methods. Bona et al. [11] classified limestone mining sites using multi-sensor remote sensing 

data and an object-based image analysis (OBIA) approach. Visual interpretation necessitates a significant amount of manual 

work and leads to inefficiency, especially when interpreting huge regions with numerous complex features. The algorithm 

based on pixel-based (PB) and object-based (OB) has revealed that classification performance is extremely subjective and 

dependent on training data samples [12-13]. Unlike PB and OB, an index-based classification selects satellite spectral bands 

for the land use/cover classification based on the land surface feature’s unique spectral characteristics, making it a fast and 

effective mapping method. Therefore, the index-based method has better potential in mapping limestone mining areas on a 

large scale [4]. 

The purpose of the study is to map and change the assessment of the captive limestone mines at the Yerraguntla cement 

industrial zone in the YSR Kadapa district of Andhra Pradesh, India. Using NDVI and modified soil-adjusted vegetation 

index (MSAVI) spectral indices are derived from the Landsat-5/8 images for the period of 15 years (2005 to 2019), and 

enable to evaluate of the accuracy of the industrial field survey reports. 

The article text is aligned into four sections: Section 1 describes an introduction to RS for surface mine mapping by 

using image classification methods and related work. While Section 2 describes the research area, and land use/cover classes 

in the study area, and Section 3 describes the collection of multispectral image data, pre-processing, and extraction of 

spectral characteristics, as well as the computation of the most widely used spectral indices such as NDVI and MSAVI. In 

Section 4, mining area changes are evaluated, accuracy in mapping the limestone mining area is calculated, and the 

limestone mining area is verified by using data from an industrial field study. 

2. Materials 

This section presents information about the study area, including geographical coordinate location, cement factories, 

captive limestone mineral mining region aerial and satellite images, changes in temperature, and study area distance from the 

district headquarters. Additionally, this section defined and described six land use and land cover classes in the study area.  

2.1.   Study area  

Fig. 1 shows aerial photographs of captive limestone mines covering an area of 487.10 ha in the study region [8-10]. 

Mining sites were clear enough from cement industry mine field survey reports to identify and map using satellite imagery. 

The study area depicted in Fig. 2 is a cement industrial hotspot, with four cement industries and captive limestone mines, 

namely the India Cement Limited at Chilamkur and Yerraguntla, Zuari Cement Limited at Yerraguntla, Bharathi Cement 

Corporation Private Limited near Yerraguntla, and Kadapa Black Marble Tile Mines around Yerraguntla Mandal, YSR 

Kadapa district, Rayalaseema region, Andhra Pradesh, India. Yerraguntla is located 47 km west of the YSR Kadapa district 

headquarters. 
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(a) Coromandel mine south (b) Coromandel mine north (c) Niduzuvvi limestone mine 

   

(d) Bharathi cement limestone (e) Zuari cement limestone mine (f) Black limestone quarry 

Fig. 1 Captive limestone mines aerial photographs at the Yerraguntla zone [8] 

The cement industries are located between 14.30° and 14.45° N latitude and 78.23° to 78.39° E longitude. The extreme 

heat of the study area reaches 48 °C in the summer (March-May), while it hovers at 14 to 27 °C in the winter (December-

February) [9]. 

 
Fig. 2 Geological map of the cement industry cluster in the Yerraguntla region [8] 

2.2.   Land use/cover classes 

Six land use/cover classes were identified from district survey reports, environmental clearance reports of limestone 

mines, and the cement industry’s annual reports at the Yerraguntla industrial area consisting of water bodies, limestone 

mines, barren lands, fallow lands, built-up, and vegetation described in Table 1 [10]. 
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Table 1 Land surface features at the Yerraguntla industrial zone [10] 

S.No. Land class Characterization of land features 

1 Water bodies Surface water is held in open pit mines, check dams, lakes, reservoirs, flowing streams, canals, etc. 

2 Limestone mines Surface limestone mining areas. 

3 Barren lands 
Land that has been dumped because of mining, erosion, or open surfaces, especially due to 

overgrazing and crop cultivation. 

4 Fallow lands Land that has been cleared for cultivation is allowed to remain uncultivated for one or more seasons. 

5 Built-up Buildings in both rural and urban areas, cement industry. 

6 Vegetation Natural vegetation areas that are under cultivation. 

3. Methodology 

The mapping and assessment strategy for limestone mines using geospatial indices is depicted in Fig. 3. Multispectral 

Landsat-5/8 image data for the years 2005 and 2019 were collected from the USGS Earth Explorer database. With the shape 

file, the preprocessed and layer-stacked images are clipped (subset) to the study area. Besides, to observe the spectral 

characteristics of land cover classes and gather ground truth data for area evaluation, a false color composite (FCC) is 

produced [8]. Also, the NDVI and MSAVI spectral indices were calculated by the USGS Earth Explorer database. 

Meanwhile, the images were reclassified using the indices’ threshold values, and the mining area was evaluated and 

validated with industrial field survey data. 

 
Fig. 3 Limestone mining area mapping and change assessment workflow 

3.1.   Satellite data collection 

The Earth Explorer Website of the United States Geological Survey is to accumulate multispectral satellite images for 

the years 2005 and 2019. Table 2 depicts the sensors used by Landsat-5/8 satellites, as well as the capture date, spatial 

resolution (m), earth-sun distance (AU), and sun elevation angle (Degrees). The image was chosen for its low cloud 

coverage (˂ 2 %), high quality, same season, close acquisition date, and atmospherically as well as geometrically corrected. 
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Table 2 Satellite imagery details are incorporated in the proposed method 

Satellite Sensor Capture date 
Spatial 

resolution(m) 

Spectral 

resolution 

Earth-sun 

distance (AU) 

Sun elevation 

angle (Degrees) 
Path/row 

Landsat-8 OLI March 6th, 2019 30 11 Bands 0.992 55.87 143/50 

Landsat-5 TM May 18th, 2005 30 8 Bands 1.012 63.64 143/50 

*Note: Operational land imager (OLI), the thematic mapper (TM) 

3.2.   Image pre-processing 

With QGIS 3.18 software tool, Landsat-5 TM six spectral bands (Bands 1 to 5, and 7) with a resolution of 30 m, while 

Landsat-8 OLI nine spectral bands (Bands 1 to 7, and 9) with a resolution of 15 m, 30 m, and 60 m were pre-processed. All 

images were corrected geometrically and projected to EPSG 32644-WGS84/ UTM Zone 44N. QGIS 3.18 semi-automatic 

classification plug-in (SCP) was used to apply radiometric calibration and atmospheric correction to the images.  

M Qcal Aρ′ρλ = + ρ  (1) 

( )SEsin
λ

′ρλ
ρ =

θ
 (2) 

where ρλ� is the top of atmosphere (TOA) planetary reflectance, without correction for the solar angle; M� is the band-

specific rescaling factor from the metadata; Qcal is the digital numbers of the band being processed; Aρ is the band-specific 

additive rescaling factor from the metadata; ρ� is the TOA planetary reflectance, with correction for the solar angle; θ�	 is 

the sun elevation angle (in degrees) from metadata. 

During the radiometric calibration, raw digital data (digital numbers) values of the satellite bands were converted into 

TOA transmittance using Eqs. (1)-(2) [8-10]. An image-based atmospheric correction using the dark-object subtraction 1 

(DOS1) method was implemented in SCP. A true-color composite image of the study area obtained by the Landsat satellite 

is shown in Fig. 4. The image shows the limestone mines in white, barren lands in blue, fallow lands in dark brown, mine 

solid waste in light grey, and vegetation in green. In true color composite (TCC) images, land, and water are not much 

clearer, and vegetation does not reflect strongly. However, these are strong in the infrared (IR) than in the visible. Thus, FCC 

is better for visual interpretation of land surface features. 

  

(a) Landsat-8 TCC image in 2019 (b) Landsat-5 TCC image in 2005 

Fig. 4 Landsat satellite true color composite image of the study area 
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3.3.   Spectral characteristics of land cover features 

The spectral signature properties of land use/cover classes are obtained using SCP in the QGIS tool [14]. The spectral 

signatures of limestone and other land use/cover classes are depicted in Fig. 5 in the visible (0.4 to 0.7 µm), near-infrared 

(NIR) (0.78 to 1.4 µm), and short-wave infrared (SWIR) (1.4 to 3.0 µm) portions of the electromagnetic (EM) spectrum. The 

spectral signature values of all land use/cover classes are unique to the substance and environment in which they are assessed. 

Limestone reflected visible and near-infrared (VNIR) light while absorbing SWIR radiation at the 1.4 µm wavelengths in the 

study area. 

 

Fig. 5 Spectral characteristics of land use/cover classes in the study area [6] 

3.4.   False color composite images for ground truth data 

Satellite multispectral bands converted to reflectance were clipped to the region of interest (ROI) using the study area 

shape file. From the clip of layers, a layer stack image was generated using the nearest neighbor resampling algorithm for the 

creation of color composites. Fig. 6 depicts the result of the color composite. The band composite 7-6-2 for Landsat-8 and 

the band composite 7-5-1 for Landsat-5 are useful for the interpretation of the geological formations and lithology features. 

Ground truth data of six land use/cover categories were collected using Landsat-8 image FCC by the on-screen digitization 

and visual image interpretation techniques in the QGIS tool. 

 

(a) Landsat-8 FCC image in 2019 (b) Landsat-5 FCC image in 2005 

Fig. 6 Major land cover classes interpretation in the FCC 
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3.5.   Spectral indices 

Spectral indices are the radiometric dimensionless quantity computed from two or more spectral bands in a satellite 

image. Spectral indices are used to highlight pixels that show the relative plenty or lack of a land-use/cover type of interest in 

an image that cannot be observed in the display of the original color bands [15]. Vegetation indices such as NDVI and 

MSAVI are the most popular type used for mapping major geological land surface features. Other indices such as bare soil 

index (BSI), normalized difference built-up index (NDBI), and weighted normalized difference water index (WNDWI) are 

used for bare soil, man-made (built-up) features, and water bodies mapping on the land surface respectively. In this study, 

NDVI and MSAVI were computed for mapping and the change assessment of the limestone mining area, as well as mapping 

of water bodies, barren lands, fallow lands, built-up, and vegetation in the study area using their spectral characteristics (Fig. 

5 and bands listed in Table 3. 

Table 3 Landsat satellite band designation and their usage in land feature identification 

Band LS-5TM (µm) LS-8 OLI (µm) Band usages 

Blue B1 (0.45-0.52) B2 (0.45-0.51) 
Identification of man-made characteristics, differentiation of vegetation 

kinds, and mapping of different forest types. 

Green B2 (0.52-0.60) B3 (0.53-0.59) 
It highlights peak vegetation and provides a great contrast between pure 

and turbid (muddy) water. 

Red B3 (0.63-0.69) B4 (0.64-0.67) Recognizing different soil types, urban features, and vegetation types. 

NIR B4 (0.77-0.90) B5 (0.85-0.88) Plant health is assessed with a focus on shorelines and biomass content. 

SWIR1 B5 (1.55-1.75) B6 (1.57-1.65) 
Distinguishing between the soil’s and the vegetation’s relative levels of 

moisture, and differentiation between rocks and soils. 

SWIR2 B7 (2.09-2.35) B7 (2.11-2.29) 
Moisture levels in plants, soil, and hydrothermally changed rocks around 

mineral deposits. 

3.5.1.   Normalized difference vegetation index 

  

(a) Landsat-8 NDVI image in 2019 (b) Landsat-5 NDVI image in 2005 

Fig. 7 NDVI-discrete interpolation outcome in 2005 and 2019 

The normalized difference vegetation index (NDVI) with multi-spectral RS data was used to identify land use/cover 

classes [9, 16]. 

NIR Red
NDVI =

NIR Red

−

+
 (3) 



Emerging Science Innovation, vol. 1, 2023, pp. 10-21 17

The NDVI computed from the NIR and red bands (Eq. 3) of Landsat-5 (0.07 
 NDVI � 0.29) in 2005, while the NDVI 

range (0.13 
 NDVI � 0.59) obtained in 2019 with Landsat-8. The NDVI positive values (
 0.13) indicate limestone 

mining areas, 0.13 to 0.25 represents barren lands, 0.25 to 0.36 stands for fallow lands, and 0.36 to 0.59 is for built-up and 

vegetated areas. Finally, NDVI � 0.59 indicates dense vegetation features [17] in 2019 as shown in Fig. 7. The images were 

taken during the summer for mapping the limestone mining area. Hence most of the agricultural fields around the mining 

regions were marked as bare soil (fallow lands) and had little vegetation. Since the NDVI is sensitive to soil backdrops and 

only detects healthy vegetation, it will not accurately display areas with scant vegetation or bare soil. 

3.5.2.   Soil-adjusted vegetation index 

  

(a) Landsat-8 MSAVI image in 2019 (b) Landsat-5 MSAVI image in 2005 

Fig. 8 MSAVI-discrete interpolation outcome for the years 2005 and 2019 

In arid areas with limited vegetation cover, the soil-adjusted vegetation index (SAVI) is used to adjust NDVI to 

minimize the effects of soil brightness using a soil-brightness coefficient (L). The outputs of the index range from -1.0 to 1.0. 

( )( )
( )

1 L NIR Red
SAVI =

NIR Red L

+ −

+ +
 (4) 

The L factor ranges from 0 to 1 and varies inversely with the quantity of vegetation present. L = 1 in the absence of any 

green vegetation, L = 0.5 in the presence of some green vegetation but not much, and L = 0 in the presence of a lot of green 

vegetation, which is comparable to the NDVI method [18]. 

( )WDVI = NIR a Red− ×  (5) 

where a  NIR���� Red����⁄ .
 

An MSAVI transforms the coefficient L in the SAVI (Eq. 4) with a variable L function [19]. The L function is derived 

from induction or by combining the NDVI, and the weighted difference vegetation index (WDVI), which can be shown in 

Eq. 5. 

( ) ( ) ( )
2

2 NIR 1 2 NIR 1 8 NIR Red
MSAVI =

2

× + − × + − × −
 (6) 
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The MSAVI was computed as the ratio of NIR and Red band values, with an inductive L factor used to minimize soil 

implications on the vegetation. The MSAVI as shown in Eq. 6, increases the vegetation index dynamic range, while 

decreasing soil background influences, resulting in increased vegetation sensitivity [18]. Fig. 8 shows the MSAVI computed 

in 2005 and 2019. The index figures are unable to discriminate between built-up and barren lands. In 2019, the limestone 

mine index range was from 0.67 to 0.8, barren lands range was from 0.8 to 0.93, and fallow lands range was from 0.93 to 

1.06. 

4. Results and Discussion 

The NDVI has been widely used to analyze changes in vegetation growth rate. NDVI and MSAVI are also effective for 

mapping and determining the area change of limestone mines using spectral index threshold values. Table 4 depicts the 

captive limestone mining areas between 2005 and 2019. Fig. 9 and Fig. 10 depict the LULC classes using NDVI and 

MSAVI, respectively, followed by an accuracy assessment in Table 5 and a comparison of limestone mining area land use 

change in Fig. 11. 

4.1.   Limestone mining area assessment 

The study evaluates the active limestone mining area spatiotemporal change at the Yerraguntla industrial zone. The land 

use/cover classes were determined by the classification of NDVI images using the “reclassify by table” tool in the system for 

automated geoscientific analyses (SAGA) GIS software. The assessed limestone mining area quantitative values are outlined 

in Table 4. The classified images are depicted in Fig. 9 and Fig. 10. The findings from the NDVI method denote that the 

limestone mining area increased from 307 ha in 2005 to 469.92 ha in 2019. By using the MSAVI technique, the mining area 

of limestone grew from 221 ha in 2005 to 301 ha in 2019. The results of the analysis show that there was a change in some 

ground classes such as the increase in barren lands (from 1061 to 4874 ha) and the drop in fallow lands (from 9424 to 5392 

ha) from 2005 to 2019. 

Table 4 Limestone mining area change from the year 2005 to 2019 

S.No. Classification method 
Limestone mine area (ha) 

2005 (yr) 2019 (yr) 

1 NDVI 307 469.92 

2 MSAVI 221 568.62 

 

  

(a) LULC from NDVI in 2019 (b) LULC from MSAVI in 2019 

Fig. 9 Land use land cover (LULC) maps at the limestone mining area in 2019 
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(a) LULC from NDVI in 2005 (b) LULC from MSAVI in 2005 

Fig. 10 Land uses land cover (LULC) maps at the limestone mining area in 2005 

4.2.   Accuracy assessment 

Estimating the accuracy of LULC classifications is vital for evaluating the quality of findings. The accuracy assessment 

was conducted by the construction of an error matrix using the QGIS semi-automatic classification plugin (SCP) accuracy 

assessment tool. 

Number of  correctly classifed pixels of a class
PA

sum producer in a colunm
=  (7) 

Number of  correctly classifed pixels of a class
UA

sum user in  a  row
=  (8) 

sum of  correctly classified pixels
OA

sum of  pixels used for accuracy assessment
=  (9) 

( )
2

N A B
Kappa hat =

N B

× −

−
 (10) 

where N is the total number of pixels used for accuracy evaluation, A is the total number of correctly classified pixels, and B 

is the product of the total ground truth data for a class. 

The statistical metrics such as user’s accuracy (UA), producer’s accuracy (PA), overall accuracy (OA), and Kappa hat 

[12] were computed using the Eqs. (7)-(10). The result of accuracies is summarized in Table 5. The NDVI reclassification 

results show a considerable OA of 87.75 % and a Cohen’s kappa hat of 0.89 in 2019. In 2005, the limestone mine land use 

class had the lowest PA of 24.17 % and UA of 50.97 %. The MSAVI reclassification results show a considerable OA of 

79.49 % and a Cohen’s kappa hat of 0.62 in 2019. In 2005, the limestone class had the lowest PA of 19.53 % and UA of 

56.64 %. 

Table 5 Limestone mines mapping accuracy and area in the years 2005 and 2019 

 2019 2005 

Spectral index 
PA 

(%) 

UA 

(%) 

OA 

(%) 
Kappa hat 

Area 

(ha) 

PA 

(%) 

UA 

(%) 

OA 

(%) 
Kappa hat 

Area 

(ha) 

NDVI 94.54 89.96 87.75 0.89 469.92 24.17 50.97 46.35 0.16 307 

MSAVI 100 64.13 79.49 0.62 568.62 19.53 56.64 49.33 0.54 221 
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4.3.   Comparison of mining area change 

The classification results were compared with delineated high-resolution (1m/pixels) Google Earth image (486.47 ha) 

and industry field survey reports (487.10 ha) in 2019 [8-10]. As shown in Fig. 11. The comparison results revealed that the 

mining area computed by using the NDVI method is highly precise to industrial field survey data. The limestone mining area 

increased from 307 ha in 2005 to 469.92 ha in 2019. Due to the increased limestone production [19-21], the growth in the 

mining area meets the raw material requirements of India Cement Limited at Chilamkur and Yerraguntla, ZuariCement 

Limited at Yerraguntla, and Bharathi Cement Corporation Private Limited at Yerraguntla industrial area. 

 

Fig. 11 Limestone mining area Land use change comparison 

5. Conclusion 

This research demonstrates the application of NDVI and MSAVI indices in mapping the limestone mining area and the 

change assessment from 2005 to 2019. The study found the limestone mining area increased from 307 ha to 469.92 ha. 

While barren lands increased (from 1,061 ha to 4,874 ha), and fallow lands decrease (from 9,424 ha to 5,392 ha) from 2005 

to 2019 respectively. The results indicate the NDVI method is more reliable for monitoring and the change assessment of the 

limestone mining area than the MSAVI method. The change assessment by using RS methods is beneficial to policymakers 

in understanding and decision-making on the mining-induced LULC change and the environmental impacts. The spectral 

characteristics of limestone solid waste, building material, and barren rocks are too similar to separate them adequately by 

using spectral index-based techniques. For future work, hyperspectral image classification utilizing machine learning 

techniques is concerned with LULC classification in the research region. 
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