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Abstract 

This paper aims to develop a balance control technique and investigates its impact on the stability and 

disturbance rejection capability of a bipedal wheeled robot. The bipedal wheeled robot is equivalent to a wheeled 

inverted pendulum nonlinear model with a legs-airframe centroid variable rod. The nonlinear model is linearized 

and decoupled into two subsystems: straight-line control using linear-quadratic regulator (LQR) for balance and 

speed, and steering control employing proportional integral derivative (PID). Height control adjusts the virtual force 

with PID-Feedforward, while hip torque is determined by virtual model control (VMC). MATLAB simulation 

confirms effective control of height, linear motion, and steering, with decoupling enhancing steering performance.  

 

Keywords: bipedal wheeled robot, wheeled inverted pendulum model, linear quadratic regulator (LQR), 

proportional integral derivative, virtual model control (VMC) 

 

1. Introduction 

With the rapid development of science and technology, robotics has penetrated nearly all aspects of daily life and 

industrial production. As a significant category of robots, mobile robots have wide-ranging applications across terrestrial, 

aerial, underwater, and even extraterrestrial environments. The existing motion mechanisms of mobile robots can be broadly 

categorized into two main areas: wheel-based systems [1-3] and leg-based systems research [4-6]. Wheeled robots are 

characterized by simple structures, high energy efficiency, fast mobility, and low manufacturing costs.  

However, they typically have limited obstacle traversal capabilities and struggle to adapt to complex environments. On 

the other hand, legged robots hold greater potential for maneuverability and adaptability in complex, unstructured 

environments with motion patterns more akin to humans. Yet, they come with increased degrees of freedom, complex 

structures, and pose greater challenges in system design and control. Moreover, legged robots tend to be more expensive due 

to their intricate design and control systems.  

Additionally, on flat surfaces, their movement speed and power consumption are generally inferior to wheeled robots. As 

a new type of robot [7], the wheel-legged robot has attracted widespread attention due to its design advantages of combining 

wheel and leg. In recent years, many new bipedal wheeled robots have emerged both domestically and internationally, such as 

the Ascento [8] robot developed by the Zurich team in Switzerland, and Ollie [9] from Tencent Robotics X Lab in China. 

Compared with traditional robots, the wheel-legged robot combines the mobility of wheeled robots with the agility of legged 

robots. Therefore, it offers faster and more energy-efficient movement on flat surfaces while providing better adaptability and 

traversal capabilities on uneven terrain. Additionally, it enables the robot to adjust its height, thereby avoiding collisions when 

it needs to pass through low obstacles. 
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However, the high mobility of the bipedal wheeled robots also poses challenges, especially in terms of control [10,11]. 

Therefore, effectively achieving precise control of the bipedal wheeled robot has become a significant topic in the current 

research. Wang et al. [12] proposed a novel balance control technology for a bipedal wheeled robot. A linear feedback 

controller based on output regulation and linear quadratic regulator (LQR) adjustment methods is used to keep the robot stable 

on the ground without drastic forward and backward movement. To address the nonlinearities of the model and obtain a large 

domain of stability, a nonlinear controller based on the interconnection and damping assignment-passivity-based control (IDA-

PBC) method, is introduced to control the robot in more general cases. Hsu [13] proposed an intelligent motion and balance 

controller (IMBC) using a fuzzy logic approach to maintain the wheeled bipedal robot's (WBR) balance while standing and 

moving on the ground.  

The IMBC system does not require prior knowledge of system dynamics, as the controller parameters are adjusted based 

on qualitative aspects of human knowledge. Cao [14] developed a model prediction controller (MPC) with input constraints 

to maintain the robot’s balance. In order to deal with unmodeled dynamics and external disturbances, an extended state 

observer (ESO) is designed to enhance the robustness of the controller. The proposed control method can ensure the balance 

of the robot and has satisfactory adaptability to external disturbances. Zhang et al. [15] adopted a combination of whole-body 

control (WBC) and a learning-based adaptive technique for the Ollie robot, which effectively improves the sensitivity of the 

system. 

For nonlinear complex systems, traditional control algorithms often exhibit performance limitations, hindering precise 

control. Therefore, advanced optimization techniques are needed to optimize traditional algorithms. Taking the PID algorithm 

as an example, Kanungo [16] introduced the novel wavelet-based fuzzy-adaptive hybrid bat-vulture PID (WFAHBVPID) 

controller for controlling brushless direct current (BLDC) motor acceleration. The proposed controller achieves low error rates 

of 0.002% and 0.02% under optimized and non-optimized conditions, respectively. 

However, compared to other models, the computational time increases by 66.14%. To mitigate noise effects on the direct 

current (DC) motor, Kanungo [17] also proposed a multi-resolution proportional integral derivative (MRPID) controller, 

leveraging wavelet multi-resolution properties to enhance PID controller performance. The performance of MRPID, fractional 

order PID (FOPID), and traditional PID controllers is compared under noise conditions to demonstrate superior results in 

transient response and disturbance rejection achieved with the MRPID controller. Itaborahy Filho [18] analyzed several 

variants of metaheuristic techniques to find generic algorithm proportional integral derivative (GAPID) control parameters for 

a Buck converter.  

The GAPID control of the Buck converter is implemented using the MATLAB/Simulink platform, and experiments with 

10 different variants of the genetic algorithm (GA), differential evolution (DE), and particle swarm optimization (PSO) 

algorithms reveal that variants generally implemented with PSO and DE exhibit the highest fitness. Shao [19] proposed a fuzzy 

adaptive particle swarm optimization-proportional integral derivative (PSO-PID) pitch control strategy, where PID parameters 

are initially optimized by PSO and adaptively adjusted by a fuzzy controller.  

Through simulation verification, the fuzzy adaptive PSO-PID effectively reduces errors in wind turbine rotational speed 

and output power compared to fuzzy PID and PID alone. Advanced optimization techniques can generally improve the 

performance of traditional algorithms. This study aims to investigate the effects of employing the LQR and VMC algorithms 

on the stability and disturbance rejection capabilities of a two-wheeled legged robot, enabling precise control of the leg height, 

and to compare the impact of decoupling on system performance. Compared to using a general LQR algorithm to control a 

bipedal wheeled robot, the LQR algorithm approach presented in this study allows for more precise control of the robot by 

adjusting the gain K according to the leg length. 
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2. Modeling of a Bipedal Wheeled Robot 

2.1.   Model of a bipedal wheeled robot 

Fig. 1 shows a bipedal wheeled robot model consisting of two wheels, a body, and two legs, connected by five swivel 

joints on each side. The structure of the robot’s leg is composed of four connecting rods, including the frame. The hip actuator 

consists of two servos, and the wheel actuator consists of two motors. In the MATLAB simulation environment, the body and 

legs of the bipedal wheeled robot are regarded as ideal rigid bodies. The centroid of each part is located at the geometric center 

of each rigid body, and the left and right sides are assumed to be perfectly symmetrical. 

 

Fig. 1 Model of a bipedal wheeled robot 

2.2.   Equivalent handstand pendulum model 

In the process of modeling the bipedal wheeled robot, the motion of the robot is broken down into wheel motion and leg 

motion, and the control object can be regarded as a wheeled inverted pendulum model with a legs-airframe centroid variable 

rod, as shown in Fig. 2. 

 

Fig. 2 Wheeled inverted pendulum model 

Searching for existing design models or studying a newly available design model with required specifications and 

establishing the topological structure of these models is the first step of the methodology. The goal of this step is to select some 

models mentioned above to research their equivalent mechanism skeleton and kinematic chain in order to develop new designs. 

2.2.1.   Legs-airframe centroid calculation 

 

Fig. 3 Schematic diagram of the distribution of the centroid of the legs-airframe 
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Due to the pitch angle of the bipedal wheeled robot body, the angle of each joint of the legs changes during movement, 

while the Legs-airframe centroid also changes. The position and parameters of the legs and the airframe’s center of mass are 

shown in Fig. 3. The physical parameters of Fig. 3 are listed in Table 1 and the relationships between the parameters are 

presented in Eqs. (1)-(17). 

Table 1 Legs-body parameters 

Symbols Definitions Symbols Definitions 

l 
The distance from the hip joint to the machine's 

center of mass 
l1 The length of member AB 

l2 The length of member BE l23 The length of member BC 

l3 The length of member CD l4 The length of member DE 

L0 The distance between the hip joint and the wheel θ0 The pitch angle of the body 

θ1 
The angle between the hip joint and member BE in 

the negative direction of the xb-axis 
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where (x0, y0) is the coordinate of the machine’s center of mass, and (x1, y1,), (x2, y2,), (x23, y23,), (x3, y3) are the coordinates of 

the centers of mass of members AB, BE, BC, and CD, respectively, relative to the wheel’s center on the xw-axis and yw-axis. 

According to Eqs. (1)-(17), the coordinates of the legs-airframe centroid can be obtained by 

0 0 1 1 2 2 23 23 3 3
c

0 1 2 23 3

x m 2x m 2x m 2x m 2x m
x

m 2m 2m 2m 2m

+ + + +
=

+ + + +
 

(18) 

0 0 1 1 2 2 23 23 3 3
c

0 1 2 23 3

y m 2y m 2y m 2y m 2y m
y

m 2m 2m 2m 2m

+ + + +
=

+ + + +
 

(19) 

where xc and yc are the coordinates of the legs-airframe centroid relative to the center of the wheel on the xw-axis and yw-axis, 

the total mass, consisting of the body and members AB, BE, BC, and CD, is the sum of m0, m1, m2, m23, and m3, respectively. 

The angle at which the legs-airframe centroid rotate relative to the yw-axis of the wheel’s coordinate system is the virtual 

pitch angle θ, which can be found by  

arctan c

c
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y
=

 

(20) 

Also, the distance from the legs-airframe centroid to the midpoint between the left and right wheel centers is the centroid height 

L, and can be obtained by  

2 2
c cL x y= +

 
(21) 

2.2.2.   Modeling of wheeled inverted pendulum dynamics 

Table 2 Physical parameters of wheeled inverted pendulum 

Symbols Definitions Symbols Definitions 

R Drive wheel radius(m) m The quality of the drive wheels(kg) 

L 
The distance from the center of 

gravity to the drive wheel axle(m) 
Iw 

The moment of inertia of the drive 

wheels(N·m) 

M 
The total mass of the body and 

members(kg) 
Iθ 

The total moment of inertia of the body 

and members(N·m) 

g Gravitational acceleration(m/s2) Iδ 
The moment of inertia at the yaw 

angle(N·m) 

D Drive wheel spacing(m) θ 
The angle between the body and the 

vertical direction(°) 

TL Torque of the left drive wheel(N·m) x 
Horizontal displacement of a wheeled 

inverted pendulum(m) 

TR Torque of the right drive wheel(N·m) δ 
The corner of the wheeled handstand 

pendulum(°) 
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The system parameters of the wheeled inverted pendulum model are listed in Table 2, and the nonlinear equations are 

provided as follows [20]  
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2.3.   State-space model 

Define the state vector x and the control vector u, as presented below  
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L

R
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(25) 

The solution function in MATLAB is used to calculate Eqs. (22)-(24), and the result of the system’s nonlinear model is 

expressed as  

( ), ,L Rx f x T T=
 

(26) 

The Jacobian function is then applied to linearize Eq. (26), and it yields   

x = Ax+Bu  (27) 

The formulas for the Jacobian matrices at the equilibrium points of a nonlinear model are presented as  
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(29) 

From the value of state matrix A shown in Eq. (28) and Eq. (29), it can be seen that the four state variables about the 

straight-line control are not related to the two-state variables about the steering control. 

2.4.   Decoupling of the system 

In order to reduce the influence of the straight-line controller on the steering controller, the objects of the control method 

are changed to the straight torque Tθ around the robot’s axis and the steering torque Tδ around the z-axis. Therefore, it is 
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necessary to decouple the system before the system input, as shown in Fig. 4, to decouple the straight torque Tθ and steering 

torque Tδ into the left wheel torque TL and the right wheel torque TR [21]. 

∑S11

S21

S12

S22 ∑

Tθ

Tδ

TL

TR

 

Fig. 4 System decoupling 

Through the decoupling system in Fig. 4, the decoupling equation of the system can be obtained by   
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(30) 

For the straight-line system, Tθ is used to control the robot’s inclination θ and displacement x, and Tδ is employed to 

control the robot’s steering angle δ. Substituting the decoupling equation into the state-space model shown in Eq. (27), the 

result is given by  
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The relationship between the four parameters of S11, S12, S21, and S22 is fixed, but one of the quantities is arbitrarily valued, 

in this article S11 = 0.5, as presented below  

. .

. .

L

R

TT 0 5 0 5

TT 0 5 0 5

    
=     

−      
(34) 

After decoupling, the planar control system is divided into two independent subsystems, the straight control subsystem 

and the steering control subsystem. In the straight control subsystem, balance and speed are managed by the LQR controller, 

while the steering control subsystem is controlled by the PID controller. 

3. Control 

The structural block diagram of the robot’s control system is shown in Fig. 5. The system’s control comprises a height 

control system and a planar control system. In the height control system, the magnitude of the virtual force is adjusted through 

the PID controller, while the VMC controller is used to calculate the corresponding hip joint torque to control the robot’s leg 

length. The decoupling system divides the planar control system of the wheeled inverted pendulum model into a straight control 

subsystem and a steering control subsystem, the LQR controller controls the system’s straight-line motion and the PID 

controller adjusts its steering. 
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Fig. 5 Block diagram for the motion control system of a bipedal wheeled robot 

3.1.   LQR control 

For the wheeled inverted pendulum model shown in Eq. (27), a feedback matrix K is applied to achieve optimal control, 

as presented below  
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The feedback matrix K is calculated using LQR, and the cost function J is defined as follows  

( )
¥ T T

0
J = x Qx+u Ru  dt

 
(36) 

where the weighting matrices question and response (Q and R) are used to balance the input and output weights. To minimize 

the cost function J, the output u, the feedback gain K and P should satisfy, respectively, the following equations  

-1 Tu = -R B Px  (37) 

1 TK R B P−=  (38) 

T 1 TA P PA PAR B P Q 0−+ − + =
 (39) 

Considering the different leg lengths of the robot, linearization is performed every 10 mm within the leg length interval 

[22], and the corresponding feedback gain matrix K is calculated. For the variation of each element of the matrix with leg 

length L0, the polynomial equation is fitted using the least squares method, and the polynomial equation is obtained by  

( ) | | |
2

ij 0 0 ij 1 ij 0 2 ij 0K L p p L p L= + +
 

(40) 

where p0, p1, and p2 represent the coefficients of each term in the polynomial equation fitted. 

In summary, the robot’s feedback control rate is presented as follows  

( )( )ij 0 du = K L x - x
 

(41) 
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3.2.   VMC 

Using the VMC approach, the virtual force F along the member AE is applied to the equivalent wheel-legged handstand 

pendulum model, and the hip moment T is outputted to achieve height control. 

When the height of the robot is fixed, simple theoretical mechanics and statics are used to derive the following equation. 

To map forces or torques in the workspace to joint torques in joint space, it is necessary to establish the relationship between 

these two spaces, known as the forward kinematic model presented below. The principle of virtual work, can be expressed by  

( )cos 0 0 1 2 23 3F m 2m 2m 2m 2m g 0− + + + + =
 (42) 

( )x = f q
 

(43) 

where x = L0 and q = θ1. 

( )
TTT q F x 0+ − =

 
(44) 

Taking the full differential of Eq. (43) with respect to x, it yields  

0

1

dL
dx = dq

dq
 

(45) 

and the Jacobian matrix J is defined as   

0

1

L
J

 
=  
   

(46) 

Subsequently, substituting Eq. (46) into Eq. (45) yields Eq. (47). That is, the joint velocity δq is mapped to the attitude 

change rate δx of the four links by the Jacobian matrix. 

x J q= TT = J F  (47) 

Consequently, substituting Eq. (47) with Eq. (44) gives Eq. (48).   

TT J F=  (48) 

In summary, the hip moment can be solved by the Jacobian matrix of the forward kinematic model. 

3.3.   PID control 

The mathematical expression for the PID controller can be obtained by  

( ) ( ) ( )
( )t

p d0
i

de t1
u t K e t e t dt K

K dt

 
= + + 

 


 

 

(49) 

where u(t) is the output of the controller, Kp is the proportional gain, Ki is the integral gain, and Kd is the derivative gain.  

In the steering control system, the error between the expected yaw angle δd and the estimated yaw angle δ calculated by 

the attitude, that is δd-δ, obtains the steering torque output through the PID controller, and superimposes it into the straight 

torque, so as to obtain the left and right drive wheel motor torques. 
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PID RobotLd

L0

F-+ +

+

Fd

 

Fig. 6 PID-Feedforward control block diagram 

In the leg length control system, the feedforward is used to compensate for the gravity of the robot body and legs, while 

the PID controller corrects the virtual force error of the feedforward model. The PID-Feedforward control block diagram is 

shown in Fig. 6, and the error between the expected leg length Ld and the actual leg length L0, Ld-L0 is calculated. The PID 

controller compensates for this error by generating a virtual force, which is then superimposed onto the static virtual force Fd, 

as presented as follows  

( )
cos

0 1 2 23 3
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m 2m 2m 2m 2m g
F

+ + + +
=

 

(50) 

4. Simulation Testing 

Table 3 Physical parameters of the robot 

Symbols Symbols MagnitudeMagnitude

m

m1

m23

R

l1

l23

l4

m0

m2

m3

D

l2

l3

g  9.8(m/s2)

0.111(m)

0.108(m)

0.246(m)

0.014(kg)

0.023(kg)

1.56(kg)0.23(kg)

0.034(kg)

0.005(kg)

0.325(m)

0.107(m)

0.026(m)

0.05(m)
 

In order to verify the performance of the bipedal wheeled robot control method, simulation experiments are carried out 

in the Simulink module of MATLAB software. The physical parameters of the robot, shown in Table 3, are used to build a 

virtual model of the robot. 

In the simulation test of the robot, the input leg length command controls the height of the robot, the input speed command 

controls the robot’s forward motion, the yaw angle command controls the robot’s steering, and the robot simulation starts from 

the near-ground falling position. 

The key to designing an LQR optimal controller lies in the selection of the weighting matrices Q and R. The magnitude 

of the Q value is directly proportional to the system's disturbance rejection capability, but should not be excessively large. 

After multiple adjustments of the weighting matrices Q and R, the final selections can be obtained by  

,
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Q R

0 0 0 100 0 0 0 25

0 0 0 0 1000 0

0 0 0 0 0 1

 
 
 
   

= =   
  

 
 
    

(51) 

The corresponding feedback gain matrix K is calculated by the LQR function of MATLAB, and the Simulink control 

module is shown in Fig. 7. 



Emerging Science Innovation, vol. 4, 2024, pp. 17-32  27 

 

Fig. 7 Control module of a two-wheeled robot 

4.1.   Control performance at a fixed height 

4.1.1.   Simulation of an autonomous balanced state 

According to different needs and working conditions, a robot motion control test under decoupling conditions is carried 

out to analyze its stability, straight-line control, and steering performance. The initial conditions are set as follows: the expected 

leg length (leg length in the patrol state) Ld is 0.15 m, the expected yaw angle dd is 20°, and the expected velocity is specified 

as follows 

,  
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m
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Fig. 8 LQR balance disturbance simulation results 
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Fig. 8 LQR balance disturbance simulation results (continued) 

Fig. 8 illustrates that the system reaches a steady state after approximately 11 seconds of adjustment, with both velocity 

and yaw angle achieving their expected values.  

4.1.2.   The system equilibrium state is disturbed simulation 

First, the initial parameters of the system should be consistent with those in the autonomous balanced state. An external 

input step signal lasting 1 second simulates an unbalanced scenario where the system is disturbed. The test results are shown 

in Fig. 9.  
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Fig. 9 LQR balance disturbance simulation results 

As can be seen from Fig. 9, after applying disturbances that disrupt the equilibrium state, there is a significant variation 

in the pitch angle of the system. However, the system is able to autonomously return to equilibrium within a short period, and 

the overshoot of the system remains within permissible limits. It can be seen that the LQR controller satisfies the disturbance 

rejection requirements under these conditions.  
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4.2.   Control performance at variable height 

Table 4 Simulation parameters 1 

2, 5

0, 5






t

t

2, 5

0, 5






t

t

dxdL d

Squatting

Standing

0.08

0.18

0

0

(m/s)(m) (°)

 

When the robot assumes squatting and standing postures, it is at different heights, as depicted in Fig. 10. The left side of 

Fig. 10 illustrates the robot's equilibrium state with a leg height Ld = 0.08 m, while the right side shows the equilibrium state 

with a leg height Ld = 0.18 m. The initial conditions of the robot at variable height are presented in Table 4. Fig. 11 displays 

the control performance of the robotic system during forward movement in both crouching and standing states, achieving 

stability at varying heights. 

 

Fig. 10 The robot is in two states: squatting and standing 
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Fig. 11 Squatting-standing simulation test renderings (squatting on the left, standing on the right) 
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4.3.   Decoupling-coupling simulation performance test 

Table 5 Simulation parameters 2 
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To investigate the impact of a decoupling system on the balance and steering performance of the robot, under the condition 

that the expected leg length, the expected velocity, and the expected yaw angle are the same, as shown in Table 5, the robot 

control system with and without a decoupling system is simulated and compared. Fig. 12 demonstrates that the decoupling 

system provides slight improvements in the balance performance of the robot while also accelerating the convergence speed 

of the yaw angle with reduced overshoot. 
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Fig. 12 Comparison of decoupling-coupling simulations 

5. Conclusion 

In this study, the wheeled inverted pendulum model of the bipedal wheeled robot which is equivalent to the legs-airframe 

centroid variable rod is linearized and decoupled, and the straight-line control subsystem and steering control subsystem are 

obtained. The straight-line control subsystem employs LQR control, while the steering control subsystem utilizes PID control. 

In the robot’s height control system, the method of PID-Feedforward is used to adjust the magnitude of the virtual force, while 

VMC is introduced to solve the hip moment to achieve height control. In MATLAB, a simulation platform for the robot was 

built to test the performance of the proposed control system. 

(1) Through MATLAB simulations, the feasibility of the LQR and VMC algorithms for the bipedal wheeled robot is validated, 

enabling precise control over the robot's leg height and facilitating obstacle avoidance in complex environments. 

(2) By comparing the simulation results of the robot control systems with and without a decoupling system, it is observed that 

the decoupling system provides slight improvements in the robot’s balance performance, and accelerates the convergence 

speed of the yaw angle with reduced overshoot. 
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Due to the limitations of the robot’s positioning, the jumping function of the robot is not analyzed in this study. In future 

research on the jumping function of this type of robot, a nonlinear spring virtual model will be derived based on the analysis 

of the robot's in-place leg hopping [23]. The wheel control algorithm based on the aerial dynamics model enables the robot to 

be controllable in the air, thereby realizing the robot's jumping function. 

Due to limitations of the LQR algorithm, the values of the weighting matrices Q and R are suboptimal, and the algorithm 

employed in this study fails to address system disturbances. In future research aimed at improving the algorithm proposed in 

this study, the Newton-Raphson method will be utilized to adjust the weighting matrices Q and R [24], and fuzzy algorithms 

will be introduced to enhance the system's resistance to disturbances. 
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