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Abstract 

This study aims to propose a novel deep learning framework, i.e., efficient DenseNet, for identifying diabetic 

retinopathy severity levels in retinal images. Diabetic retinopathy is an eye condition that damages blood vessels in 

the retina. Detecting diabetic retinopathy at the early stage can avoid retinal detachment and effects leading to 

blindness in diabetic adults. A thin-layered efficient DenseNet model has been proposed with fewer training 

learnable parameters, leading to higher classification accuracy than the other deep learning models. The proposed 

deep learning framework for diabetic retinopathy severity level detection has an inbuilt automatic pre-processing 

module. Afterward, the efficient DenseNet model and classifier will provide data augmentation and higher-level 

feature extraction. The proposed efficient DenseNet framework is trained and tested using 13000 retinal fundus 

images within the diabetic retinopathy database and combined with the k-nearest neighbor classifier demonstrating 

the best classification accuracy of 98.40%. 
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1. Introduction 

Diabetic retinopathy (DR) is one of the main reasons for vision loss among diabetic patients. DR leads to several other 

vision complications such as cataracts, open-angle glaucoma, diabetic macular edema, neo-vascular glaucoma, and retinal 

detachment. The initial stage of DR does not cause visible symptoms except trouble reading. Severe DR leads to bleeding in 

the retinal blood vessels, causing blurred or distorted vision. Thus, screening for DR in the initial stage is important to avoid 

scarring since the formation of aberrant cells in the retina can cause serious vision problems. 

DR has become so prevalent that it is estimated to affect 29 million people before 2050 [1]. The prevalence of diabetes is 

11.8% of the population over the age of 50 [2]. Diabetes is more prevalent among people aged 20-80, accounting for 12.8% 

of the global population. The global statistics on DR are alarming and expected to remain high in Middle East countries, North 

Africa, and western Pacific nations [3]. Mild non-proliferative diabetic retinopathy (NPDR) is the initial stage of DR, 

characterized by tiny areas of inflammation in the retinal vessels, and this swelling area is called microaneurysms. There is a 

5% risk that mild NPDR will progress to proliferative diabetic retinopathy (PDR) within a year [4]. Vision is not affected at 

this stage, but blood sugar and cholesterol levels should be continuously monitored. 

In moderate NPDR, there is a risk of swollen retinal vessels and accumulation of blood in the macula. This phase is also 

called pre-proliferative retinopathy which can lead to diabetic macular edema and severely affect vision. Severe NPDR is also 

known as proliferative retinopathy. When the flow of blood from the retina is blocked, it can lead to creating dark spots. An 
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increase in the risk of vision impairment at this stage is crucial that can result in retinal detachment. Abnormalities in the 

growth of fragile new blood vessels occur in an advanced stage of PDR. As the retinal veins are fragile, there is a higher chance 

of fluid leakage, which can result in dangerous blurriness, a narrowed field of vision, and even blindness. 

 Deep learning, machine learning, and ensemble models have been recently developed to identify the severity level of DR 

[5]. Deep neural networks (DNN) are artificial neural networks with more than one hidden layer, as shown in Fig. 1. These 

networks use mathematical modeling to process complex data and require a large number of training datasets to classify 

millions of data. 

 

Fig. 1 Basic framework of DNN 

 Detection of DR using DenseNet-65 based Faster-RCNN was proposed to classify and localize DR lesions from the retinal 

images [6]. A deep learning ensemble approach with five deep convolutional neural networks (CNN) models such as ResNet50, 

Inceptionv3, Xception, Dense121, and Dense169 was used to encode features and develop the classification for multiple stages 

of DR, which yielded a validation accuracy of 70% [7]. 

Birajdar et al. [8] presented the detection and classification of DR using an AlexNet architecture of the CNN, which was 

trained on a fundus image database containing various examples of retinal hemorrhage and micro-aneurism. This makes the 

process of classification and localization of DR precise. Gao et al. [9] proposed a DR classification using efficient CNN [9]. 

The retinal images were pre-processed using auto cropping techniques and then the efficient CNN model was implemented to 

categorize the retinal images in the database that yielded an accuracy of about 83%. 

Zhang et al. [10] proposed an automated identification and severity grading of DR using DNNs. The severity level was 

deciphered by applying classification techniques that rendered high recall and specificity values. Deshpande and Pardhi [11] 

proposed an automatic detection of DR using visual geometry group (VGG16) architecture, where the blindness detection 

dataset was used as the training dataset with 3668 retinal images. Fundus photography was used to acquire retinal images and 

the CNN-VGG16 model was utilized to identify stages of DR in retinal images. The framework was tested using 1728 images 

that were not included in the training dataset and could achieve a precision rate of about 74.58%. Barros et al. [12] attempted 

a machine learning-based DR severity detection for glaucoma detection. The model is comprised of a data augmentation unit 

along with image processing, feature engineering, and classification modules. This study aims to introduce a novel deep-

learning network that can screen DR, indicating the severity level as well. To classify the intensity levels of DR, an efficient 

DenseNet model has been proposed for feature extraction from retinal images 

2. Database Description 

The Kaggle dataset for DR used in this research is the Asia-Pacific Tele-Ophthalmology Society (APTOS) image dataset, 

which contains 5590 retinal images collected from Asia. By data augmentation, the number of retinal images is increased to 

13000, 80% of the data is used for training and the remaining 20% of the data is used for testing the proposed model. Thus, 

10400 retinal images constituted the training set, while 2600 images constituted the test set. The images under different classes 

are as follows: Class 0: 4560 images, Class 1: 1250 images, Class 2: 2510 images, Class 3: 2100 images, and Class 4: 2580 

images. Among the 13000 retinal images. 7410 retinal images were augmented under different classes, viz. Class 0: 2490 

images, Class 1: 825 images, Class 2: 1355 images, Class 3: 1250 images, Class 4: 1490 images. 
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Data augmentation is implemented by using the horizontal flip, vertical flip, and zooming techniques as shown in Figs. 

2(a)-(c). The DR classification methodology includes retinal image data collection from the Kaggle database. This is followed 

by the pre-processing stage. The proposed deep learning model is built and trained on the retinal images. Following the training 

phase, the deep learning model is in the pilot mode to test its efficacy in the classification of DR severity levels over unknown 

test data. 

   

(a) Horizontal flip (b) Vertical flip (c) Zooming 

Fig. 2 Image augmentation techniques 

Table 1 shows the classes and observations of the DR severity level. The images have been rated from 0 to 4, based on 

the five severity levels: Class 0: corresponds to the healthy retina, Class 1: corresponds to mild cases of DR, Class 2: moderate, 

Class 3: severe, and Class 4: PDR. For variability in the APTOS dataset, retinal images had been collected from several clinics 

using a variety of cameras over a long period. These images had been reviewed by trained doctors before the publication of 

the APTOS dataset [13]. 

Table 1 Description of the diabetic retinopathy dataset 

DR stages Observations Severity level 

Class 0 No microaneurysm No DR 

Class 1 Presence of a Single microaneurysm Mild DR 

Class 2 Hemorrhage, microaneurysms, and white spots Moderate DR 

Class 3 Serious hemorrhage and microaneurysms Severe DR 

Class 4 Neovascularization PDR 
 

3. Proposed Efficient DenseNet Mechanism 

The efficient DenseNet framework, a novel deep learning model is proposed for effective feature extraction and accurate 

grouping of DR severity levels. The process flow of DR severity level detection using the efficient DenseNet is illustrated in 

Fig. 3. The retinal images from the dataset were pre-processed using the auto-cropping approach of Ben Graham’s pre-

processing algorithm [14]. The flipping techniques include the interchange of rows and columns while the zooming technique 

introduced pixel interpolation. The distinguishing features in the images were improved after pre-processing, which helps to 

train the efficient DenseNet model. The efficient DenseNet framework adopts an automatic feature learning technique to assess 

if the pre-processed image has been impacted by DR or not. 

The efficient DenseNet framework for multi-class classification is presented in Fig. 4, with the following hyper-

parameters: the baseline filter size was set to 32, and the filter size was increased by a factor of two at each block. In a multi-

class framework, batch normalization was adopted with dropout at the hierarchical layers at every block. Furthermore, instead 

of using the standard rectified linear unit (ReLU) activation function, the leaky_ReLU activation function was employed, 

which reduced the diminishing gradient effect. 

By lowering the number of pixels in the output from the preceding layer, the max-pooling layer is commonly added to 

the efficient DenseNet model to minimize the dimensionality of the retinal image. After each max-pooling layer, a dropout 

layer was introduced to improve the performance of the proposed efficient DenseNet model by removing data overfitting. In 
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the fully connected layers FC1, FC2, and FC3, the number of neurons was set to 2048, 512, and 128 sequentially. The sigmoid 

layer was introduced at the output layer with 5 class probabilities instead of the software layer. As a result, the proposed 

efficient DenseNet model minimizes the overall computational complexity and maintains a higher classification accuracy. 

Feature maps of the previous layers are utilized as inputs to each new layer, along with the feature maps. Convolutional 

networks with dense connectivity have several clear advantages such as eliminating the vanishing-gradient issue, improvement 

of feature transfer from one layer to another, feature reuse, a significant reduction in the tuning parameters, and less 

computational complexity [15]. 

 

Fig. 3 The pipeline of the proposed method using efficient DenseNet 
 

 

Fig. 4 System overview of DR recognition based on the Efficient DenseNet 
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4. Experimental Baseline Deep Learning Model 

Various deep learning networks have been experimented as baseline models for feature extraction and classification of 

the severity levels of DR. The deep learning networks include ResNet50, VGG16, VGG19, ResNet101, MobileNet, 

MobileNetV2, InceptionV3, InceptionResNetV2, DenseNet-169, DenseNet-121, and XceptionNet. The features extracted 

from these deep neural nets are used to train and test three classifiers: k-nearest neighbors (k-NN), support vector machine 

(SVM), and the random forest model. 

4.1.   ResNet50 

CNNs with 50 layers are commonly used ResNet50 model. A residual network (ResNet) is an artificial neural network 

(ANN) that builds a network by stacking residual blocks one on top of the other [7]. ResNet is constructed in layers, but the 

fundamental architecture is retained. And Resnet50 is a 50-layered deep neural network. The test accuracies over the features 

extracted by the ResNet50 are presented in Table 2. 

Table 2 Evaluation of ResNet50 

Model 
Accuracy 

(%) 
F1 score 

Kappa 

coefficient 
Recall Precision 

k-NN 85.17 0.8 0.81 0.75 0.85 

SVM 87.27 0.8 0.81 0.77 0.87 

Random 

forest 
86.67 0.8 0.81 0.77 0.87 

 

4.2.   VGG16 

VGG16 model has 16 convolutional layers and a fairly homogeneous architecture, making it appealing. It features only 

3x3 convolutions [16] with many filters, similar to AlexNet. Although it has a higher time complexity, it is one of the most 

popular models for extracting unique features from images. The performance of the VGG16 model with the classifiers is 

displayed in Table 3. 

Table 3 Evaluation of VGG16 

Model 
Accuracy 

(%) 
F1 score 

Kappa 

coefficient 
Recall Precision 

k-NN 87.27 0.83 0.81 0.87 0.81 

SVM 87.27 0.8 0.81 0.87 0.82 

Random 

forest 
86.67 0.8 0.81 0.87 0.86 

 

4.3.   VGG19 

VGG19 is a variant of the VGG network with deep learning CNN architecture for image classification. It has been built 

with 19 layers in all [17]. It has 16 convolution layers and 3 fully connected layers. Additionally, the framework has five max-

pooling layers and one softmax layer. Other VGG variations include VGG11, VGG16, and VGG19. Table 4 shows the 

classification accuracies. 

Table 4 Evaluation of VGG19 

Model Accuracy (%) F1 score Kappa coefficient Recall Precision 

k-NN 88.77 0.84 0.82 0.89 0.82 

SVM 85.45 0.89 0.88 0.85 0.86 

Random forest 83.94 0.88 0.85 0.84 0.86 
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4.4.   ResNet101  

ResNet101 is a 101-layered CNN framework, which is a pre-trained network [18-21] trained with over a million images 

from the ImageNet database. Here, the ResNet101 is trained over healthy retinal images and the images depicting DR. After 

training, it, yields rich feature representations for the retinal images. The performance of the feature classification from the 

ResNet101 model is presented in Table 5. 

Table 5 Evaluation of ResNet101 

Model 
Accuracy 

(%) 
F1 score 

Kappa 

coefficient 
Recall Precision 

k-NN 84.24 0.89 0.85 0.84 0.88 

SVM 87.27 0.82 0.81 0.87 0.85 

Random forest 80.3 0.81 0.81 0.85 0.88 
 

4.5.   MobileNetV2 

The MobileNetV2 design is based on an inverted residual structure, with narrow bottleneck layers serving as the input 

and output of the residual block [18]. Standard residual models employ symbolic representations on the input side, whereas 

the MobileNetV2 does not. Table 6 presents the efficacy of MobileNetV2. 

Table 6 Evaluation of MobileNetV2 

Model 
Accuracy 

(%) 
F1 score 

Kappa 

coefficient 
Recall Precision 

k-NN 80.0 0.85 0.86 0.85 0.85 

SVM 80.61 0.88 0.88 0.81 0.84 

Random forest 82.42 0.86 0.87 0.82 0.88 
 

4.6.   MobileNet 

MobileNet is a variant of CNN, open-sourced by Google, and is a pre-trained model which is ideal to be trained over a 

given image database [16]. It is an incredibly condensed and agile classifier. MobileNet is a depth-wise separable convolution 

network. It dramatically reduces the number of parameters compared to other networks with regular convolutions of the same 

depth. The test accuracy, F1 score, Kappa coefficient, recall, and precision of the models are presented in Table 7. 

Table 7 Evaluation of MobileNet 

Model 
Accuracy 

(%) 
F1 score 

Kappa 

coefficient 
Recall Precision 

k-NN 86.36 0.83 0.88 0.86 0.81 

SVM 81.82 0.86 0.85 0.82 0.81 

Random forest 81.51 0.87 0.85 0.82 0.85 
 

4.7.   InceptionV3 

InceptionV3 is a variant of the CNN used as a deep learning network for image classification [7]. The model has been 

successfully trained on 8, 128, and 512 parameters and yielded good feature representation at 170 epochs. Table 8 shows the 

performance of the classifiers, recorded with the features of InceptionV3. 

Table 8 Evaluation of InceptionV3 

Model Accuracy (%) F1 score Kappa coefficient Recall Precision 

k-NN 84.55 0.89 0.83 0.85 0.88 

SVM 83.64 0.87 0.89 0.84 0.83 

Random forest 80.0 0.85 0.82 0.76 0.79 
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4.8.   InceptionResNetV2 

The InceptionResNetV2 CNN model has been pre-trained with over a million images from the ImageNet database [17]. 

It is a 164-layered network that categorizes images into 1000 separate groups. The InceptionResNetV2 is trained on retinal 

images in this study, and useful features are retrieved for classification. As shown in table 9, the classifiers performed better 

when they are trained with the InceptionResNetV2 features. 

Table 9 Evaluation of InceptionResNetV2 

Model Accuracy (%) F1 score Kappa coefficient Recall Precision 

k-NN 89.09 0.82 0.81 0.89 0.8 

SVM 82.42 0.85 0.84 0.82 0.83 

Random forest 82.42 0.85 0.84 0.82 0.83 
 

4.9.   DenseNet-169 

The DenseNet-169 is a deep learning network with 169 layers. Although it has many hidden layers, it retains a lower 

parameter count compared to other deep neural networks. Thus, the architecture is well-suited for medical image classification. 

It also deals with the vanishing gradient problem [7] and facilitates better feature extraction for classification, as shown in 

Table 10. 

Table 10 Evaluation of DenseNet-169 

Model Accuracy (%) F1 score Kappa coefficient Recall Precision 

k-NN 87.58 0.83 0.82 0.88 0.82 

SVM 87.27 0.81 0.80 0.87 0.89 

Random forest 87.27 0.81 0.80 0.87 0.86 
 

4.10.   DenseNet-121 

For visual object recognition, DenseNet-121 is a new neural network framework [7]. It is similar to ResNet but mitigates 

the representation capacity issue in ResNet by introducing multi-layered feature concatenation DenseNet. It helps solve the 

vanishing gradient impact on weight updation in deep-layered neural networks. As shown in Table 11, it produces better 

classification features and is shown to give optimal classification performance. 

Table 11 Evaluation of DenseNet-121 

Model Accuracy (%) F1 score Kappa coefficient Recall Precision 

k-NN 86.67 0.8 0.81 0.87 0.82 

SVM 87.27 0.8 0.80 0.87 0.82 

Random forest 87.27 0.8 0.80 0.87 0.82 
 

4.11.   XceptionNet 

The XceptionNet retains the deep CNN architecture. Its weights are adapted by depth-wise separable convolution, 

introduced by Qummar et l. [7]. XceptionNet is one of the most used image classification models and is capable of delivering 

cutting-edge features for classification. As shown in Table 12, it aids in improving the classification accuracy of the SVM and 

random forest models. 

Table 12 Evaluation of XceptionNet 

Model Accuracy (%) F1 score Kappa coefficient Recall Precision 

k-NN 83.94 0.87 0.80 0.84 0.82 

SVM 87.27 0.81 0.80 0.87 0.82 

Random forest 87.27 0.83 0.80 0.87 0.82 
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5. Results and Discussion 

A summary of the proposed efficient DenseNet model’s evaluation compared to all the baseline models is presented in 

Table 13. The test accuracy of each model is compared. The proposed efficient DenseNet framework acts as a competitive 

generative model, yielding the best features for classification than the experimented baseline models. All three classifiers, viz. 

the k-NN, SVM, and random forest produced higher classification accuracies with the features extracted from the proposed 

efficient DenseNet model. 

Table 13 Accuracy Comparison of the efficient DenseNet and the baseline models 

Deep learning models k-NN SVM Random forest 

Proposed efficient DenseNet 98.40 90.30 92.62 

ResNet50 85.15 87.27 86.67 

VGG16 87.27 87.27 86.67 

VGG19 88.77 85.45 83.94 

ResNet101 84.24 87.27 80.30 

MobileNetV2 80.00 80.61 82.42 

MobileNet 86.36 81.82 81.52 

InceptionV3 84.55 83.64 80.00 

InceptionResNetV2 89.09 82.42 82.42 

DenseNet-169 87.58 87.27 87.27 

DenseNet-121 86.67 87.27 87.27 

XceptionNet 83.94 87.27 87.27 
 

It can be inferred from Table 13 that the efficient DenseNet-based feature extraction has improved the accuracy scores of 

the k-NN, SVM, and random forest classifiers. Furthermore, when the efficient DenseNet combined with the k-NN classifier, 

it yielded the highest classification accuracy of 98.40% with a better confusion matrix as displayed in Fig. 5. The performance 

metrics such as confusion matrix, model loss, precision, recall, and F1-score are also measured to evaluate the proposed 

efficient DenseNet model against the baseline models. The proposed efficient DenseNet model could automatically extract 

higher-level features from the input retinal images, making the analysis and classification easy. Thus, the proposed framework 

is chosen for automatic feature engineering and superior performance concerning classification accuracy. 

 

Fig. 5 Confusion matrix of the final classification 
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The loss of the efficient DenseNet model in terms of the number of epochs is plotted in Figs.6 and 7, and the evaluation 

metric values are displayed in Table 14. Figs. 6-7 represent the accuracy and loss over the training and testing sets of the 

proposed efficient DenseNet model. The overall test accuracy of the proposed model reaches 98.40% at the 50th epoch. 

  

Fig. 6 Accuracy of the training set and testing set Fig. 7 Loss of training and testing set 

The model loss, test accuracies, precision, recall, F1-score, and Kappa coefficient at each progressive epoch of the 

proposed efficient DenseNet framework with a fixed batch size of 512, are presented in Table 14. The proposed model achieves 

the best outcome at 50 epochs. 

Table 14 Performance metrics of efficient DenseNet model 

Epoch Loss Accuracy Precision Recall F1 score Kappa coefficient 

0 0.29 0.71 0.81 0.82 0.83 0.80 

1 0.18 0.82 0.83 0.85 0.86 0.82 

2 0.18 0.85 0.85 0.86 0.88 0.84 

3 0.18 0.88 0.88 0.89 0.91 0.87 

4 0.17 0.89 0.91 0.92 0.93 0.87 

5 0.17 0.91 0.94 0.95 0.95 0.88 

6 0.16 0.93 0.94 0.94 0.93 0.89 

7 0.16 0.94 0.95 0.95 0.95 0.90 

8 0.15 0.95 0.95 0.96 0.96 0.90 

9 0.15 0.95 0.96 0.96 0.96 0.91 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

47 0.13 0.97 0.97 0.97 0.97 0.93 

48 0.12 0.98 0.98 0.98 0.97 0.93 

49 0.12 0.97 0.97 0.97 0.97 0.93 

50 0.11 0.98 0.98 0.97 0.98 0.93 
 
 

Table 15 Performance evaluation of baseline frameworks 

Study Year Model Test accuracy (%) 

Proposed model 2022 Efficient DenseNet 98.40 

Ayala et al. [19] 2021 DenseNet121 97.78 

Yi et al. [20] 2021 Residual attention EfficientNet 98.36 

Chen et al. [21] 2019 Two-stage training method 92.5 

Maswood et al. [22] 2020 EfficientNet B5 94.02 

Revathy et al. [23] 2020 

SVM 68 

k-NN 76 

Random forest 90 
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As depicted in Table 15, the proposed efficient DenseNet model performs well in unique feature extraction for accurate 

classification of the severity levels of DR, and it has enhanced the efficacy of DR screening. Moreover, the computational 

complexity [24-29] has been reduced compared with the baseline models. The metrics such as precision, recall, and F1 score 

are used to monitor the grading of DR by the efficient DenseNet model as depicted in Table 16, along with the trainable 

parameters in Table 17. 

Table 16 Performance metrics for DR severity level 

Stages of DR Precision Recall F1 score 

No DR 0.95 0.97 0.96 

Mild DR 0.97 0.96 0.97 

Moderate DR 0.98 0.97 0.96 

Severe DR 0.97 0.96 0.97 

PDR 0.9 0.97 0.97 
  
 

Table 17 Parameters and computational time of the models 

Deep learning models Trainables Non-trainables Total parameters Computational time (sec) 

Proposed efficient DenseNet  91,107 89,603 1,80,710 16.52 

ResNet50 420,685 235,879 3,26,986 31.03 

VGG16 270,866 187,165 2,78,272 39.96 

VGG19 120,863 191,165 2,82,272 42.15 

ResNet101 420,651 235,877 3,26,984 89.65 

MobileNetV2 556,872 435,678 5,26,785 24.00 

MobileNet 623,544 354,679 4,45,786 22.68 

InceptionV3 164,957 126,780 2,17,887 46.53 

InceptionResNetV2 124,928 158,400 2,49,507 96.72 

DenseNet-169 411,106 199,573 2,90,680 652.03 

DenseNet-121 591,108 369,455 4,60,562 878.41 

XceptionNet 696,005 573,648 6,64,755 41.85 
  

6. Conclusions 

Since early detection of DR is crucial to avoid blindness, this study proposed a novel deep learning framework, namely 

the efficient DenseNet, for categorizing the severity levels of DR. The significant contributions of this research are as follows: 

(1) To classify the intensity levels of DR, an efficient DenseNet model has been proposed for feature extraction from retinal 

images. It is a thin-layered architecture that takes fewer training learnable parameters to train the model and renders higher 

classification accuracy than the other deep learning models. The model was trained to classify retinal images into 5 classes, 

viz. healthy, mild, moderate, severe, and PDR. When associated with the k-NN classifier, the efficient DenseNet, displayed 

a high test accuracy of 98.40% and exhibited a high kappa coefficient, precision, recall, and F1 score. 

(2) A modification in the existing dataset is done by data augmentation technique which increased the number of retinal 

images from 5590 to 13000 samples. Among the 13000 samples, 10400 samples (80% of the data) were used for training 

and testing the proposed model. 7410 samples were segregated by using the augmented technique and divided into 

separate classes, viz. Class 0: 2490 images, Class 1: 825 images, Class 2: 1355 images, Class 3: 1250 images, and Class 

4: 1490 images. 

(3) Also, eleven state-of-the-art deep learning models have been implemented to validate the efficacy of the proposed model. 

They were trained on the same retinal images to compare the proposed deep learning framework with the models in the 

literature. The proposed efficient DenseNet could outperform them in total learnable parameters, computational time, test 
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accuracy, and other evaluation metrics. Thus, the proposed model may be used as a medical aid by ophthalmologists in 

diagnosing DR precisely. It can facilitate the screening of DR accurately and early. 

In the future, experiments will be considered on multiple retinal datasets to estimate the outcomes and also intend to 

improve the technique in other eye-related disorders. Furthermore, the training and test dataset size would be varied to observe 

its impact on the model’s performance and generalization ability by using ensemble models and k-fold cross-validation. 
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