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Abstract 

Electrocardiography is considered as a powerful technique for assessing heart condition. To study cardiac 

disorders, it is essential to localize and extract the QRS complex: the prominent region within the electrocardiogram 

signal. Since the QRS complex has various morphologies and is usually contaminated by severe overlapping spectral 

noise, accurate detection is a complicated task. This paper proposes a reliable method based on the Dual-Tree 

Wavelet Transform, which uses a threshold process to select the QRS frequency components and reduce the 

overlapping noise. The QRS deflections are then emphasized using squaring and moving average operators. The 

chosen decision rule is simple and based on the variance of the signal. The proposed method was tested on the 

MIT-BIH Arrhythmia database, and the algorithm showed high accuracy detection results compared to those of 

other recently published works. 
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1. Introduction 

 

Fig. 1 A normal ECG waveform [1] 

The electrocardiogram (ECG) is a transthoracic representation of the heartbeat’s electrical activity over time. It is a 

non-invasive technique used by physicians to monitor and control heart activity in a clinical setting. The ECG trace covers 

various components that are represented by P-QRS-T waves [1], as shown in Fig. 1. Starting from the first deflection (the 

P-wave), it is produced from atrial depolarization and lasts up to 0.12 s. Next comes the QRS complex: the most important 

feature and largest component of the ECG signal. The QRS complex begins with the Q-onset and ends with the S-offset. It 
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results from the electrical forces engendered by ventricular depolarization. The normal duration of the QRS complex is up to 

0.1 s. When ventricular repolarization occurs, the T wave appears and remains for about 0.18 s [2].  

All clinical features are essential to physicians seeking to recognize and diagnose heart conditions, in particular, the 

temporal localization of the QRS complex. The identification of QRS subfractions mediated by its mathematical signal 

decomposition is of particular utility for semiautomatic devices delivering therapies that require proper identification. Thanks 

to recent emerging technologies that offer efficient computational tools, numerous complex diagnostic and prognostic tasks 

can be implemented to help physicians in their practice and interpretation. However, the proper detection of QRS subfractions 

is not a simple undertaking, as the ECG signal is usually corrupted by various background noises. Moreover, the heartbeat 

could change the shape and characteristic patterns that are due to the various morphologies of normal and abnormal ECG 

traces. A high-precision QRS complex recognition algorithm that is able to identify various QRS subfractions, even in the 

presence of noise, is hence required. A large number of studies have focused on detecting and extracting the QRS complex. 

Tompkins [3-4] carried out some early work in this field. Recent research has been based on mathematical models [5], sparse 

derivatives [6], entropy [7], filtering techniques [8], correlation analysis [9], and kurtosis [10]. Many of the latest methods are 

based on the discrete wavelet transform (DWT) [11–15], as it can detect local, transient or intermittent components in the ECG 

signal. To further minimize computation time, researchers [16,17] have investigated the DWT in both ECG noise removal and 

ECG features delineation, based on an optimal selection of wavelet functions and decomposition levels. While favorable 

outcomes have been achieved, the DWT has several drawbacks in important areas such as oscillations around singularities, 

shift variance, aliasing, and lack of directionality [18,19]. The dual-tree wavelet transform (DT-WT) has been utilized to 

overcome these limitations and to provide an efficient QRS detection algorithm. 

In the present work, a reliable QRS detection method is proposed based on the DT-WT. The signal was decomposed into 

multi-resolution levels to select the most prominent frequency band of the QRS complex. A threshold criterion was applied to 

reduce the overlapping noise within the QRS regions. These regions were then boosted using simple operations. The decision 

rule was computed from the variance of the obtained signal. The paper is structured as follows: Section 2 gives the theoretical 

background of the wavelet domain and explains the reasons for using the DT-WT. Section 3 describes the proposed algorithm. 

The results are presented and discussed in Section 4. And Section 5 is the conclusion. 

2. The Comprehensive Theoretical Basis 

2.1.   Conventional wavelet transform 

Since its inception, the Wavelet Transform (WT) has become the most powerful tool for analyzing signals and images in 

many fields of research. Unlike the traditional Fourier Transform (FT), the WT is a time-frequency analysis method that can 

detect local, transient or intermittent components in the studied signal. The transformation is linear, allowing a signal to be 

refined into multi-resolution representations using a scaled and shifted form of the mother wavelet. The continuous form of 

this transform was initially formulated in the 1980s by Grossman and Morlet [20]. The Continuous Wavelet Transform (CWT) 

is expressed by a set of the inner product of the studied signal )(tx , with the shifted and scaled prototype wavelet [21]:  


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The transformed signal is a function of two variables, a  and  , that represent the scale and translation parameters of the 

mother wavelet )(t , respectively. Nowadays, the discrete version of this transform is widely used in digital systems, 
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including embedded systems. The DWT is sampled from the CWT by setting 
jaa 0  and 00 jka  where j  and k  are 

integers and 10 a  is a real number. For practical implementation reasons, these variables are adjusted on a dyadic grid such 

as 
ja 2  and 

ik2 . The mother wavelet becomes [21]: 

)2(2)(
)

2
(

, ktt j

j

kj  


  (2) 

The expression of the Eq. (2) finds its similarity in the filter bank (FB) theory [22]: 
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Here, Eqs. (3) and (4), which represent the approximation and detail coefficients of the WT, are associated with the high pass 

g(n) and low pass h(n) filters, respectively. The signal is down-sampled by two at each level j of the decomposition. The 

approximation sequence of a level j is used as an input to the next decomposition level (j+1). 

2.2.   Drawbacks of the discrete wavelet transform 

Despite its success in several areas of research, the DWT suffers from the following four shortcomings: oscillations, shift 

variance, aliasing and lack of directionality. These issues are illustrated and explained in detail in [23]. We give a brief 

description of each of these inconveniences. The oscillations problem occurs when the signal contains singularities. In Fig. 2, 

we took a unit impulse signal as the input signal. Computing the real DWT detail coefficients of the third decomposition level, 

we observed that the output wavelet coefficients tend to oscillate between positive and negative around this singularity. 

 

Fig. 2 The DWT coefficient oscillations due to singularity 

Shift variance is another serious problem that can lead to significant changes in the output DWT coefficients when time 

shifting the input signal. To illustrate this shortcoming, a shift variability test was applied to an input step signal [24]. A 

multiresolution analysis was then performed to the input step signal, as shown in Fig. 3. Clearly, the DWT coefficients (on the 

right) were sensitive to small translations of the signal. However, the DT-WT coefficients (on the left) were nearly 

shift-invariant. The aliasing problem of the DWT is caused by the use of non-ideal high pass and low pass filters, which 

compute the wavelet coefficients by a series of discrete-time down-sampling operations, producing other unwanted frequency 

components at each decomposition level. This problem is especially apparent when processing wavelet coefficients, as in the 

case of the threshold step. Lastly, the DWT lacks directionality. This issue concerns the multidimensional DWT, as in the case 

of image processing. Given that our work here involves a one-dimensional signal, however, we will not be discussing this 

shortcoming. 
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Fig. 3 DT-WT and DWT against shift variability test [24] 

2.3.   The dual tree wavelet transform 
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Fig. 4 Flowchart of the analysis FB used in DT-WT 

Kingsbury [24] was the first to introduce the Dual-Tree Wavelet Transform (DT-WT). One of the most improved 

versions of the DWT, the DT-WT offers new fundamental properties that overcome the limitations encountered by the DWT. 

Unlike the conventional DWT, the DT-WT is constructed using two separate real filters to give an analytic transform, as 

shown in Fig. 4. The real part of the complex wavelet coefficients is given by the first tree, while the second tree is responsible 

for the imaginary part. The idea behind the complex transform of this wavelet is based on the FT representation expressed as: 

)()()( titt gh    (5) 
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where 1i , )(th  is real and even whereas )(tg  is imaginary and odd. These are implemented so that )(tg  is the 

Hilbert transform of )(th  , ensuring the perfect reconstruction of the decomposed signal. 
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3. Research Method 

We propose a reliable method based on the DT-WT by which to accurately detect the QRS regions. Fig. 5 shows the 

process involved. Each step of the flowchart is explained in detail by the following subsections: 

 

Fig. 5 Flowchart of the proposed method 

3.1.   ECG signal decomposition 

The ECG signal was decomposed up to a specific level, depending upon the Baseline Wandering (BW) frequency and the 

sampling frequency. The selected decomposition level L  was calculated from the equation (8) [25], where )1( HzfBW   

represents the maximum frequency value that can reach the BW noise, and maxF  is the highest frequency components in the 

ECG signal that respects the Nyquist’s theorem. Here, ceil  is the ceiling function that gives the smallest integer greater than 

or equal to the result. 

max
2(log ( ))

BW

F
L ceil

f
  (8) 

3.2.   Threshold of the DT-WT coefficients magnitude 

According to [14], most of the QRS complex frequency components of both normal and abnormal beats are concentrated 

between 5-22 Hz, which corresponds to the DT-WT decomposition levels 4 and 5 for a sampling rate of 360 Hz. Unfortunately, 

ECG signals are contaminated by several noises that overlap the QRS frequency band. Hence, the threshold process of these 

two levels is of paramount importance. A comprehensive study [18] recently stated that the impact of the choice of threshold 

estimators, threshold value, and the appropriate wavelet decomposition level to remove different types of artifacts. In this work, 
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we tested all the threshold estimators, with the Hard function found to be the best option. The magnitude of the detail 

coefficients of levels 4 and 5 was quantified according to the following formula, given in [26]: 

2log( )

log( 1)
j j

N
Th

j



 (9) 

where N  denotes the length of the original ECG signal, j  is the standard deviation of the j-th decomposition level (4 and 5) 

expressed as [27]: 

,( )

0.6745

d j

j

MAD M
   (10) 

Here, MAD represents the median absolute deviation of the detail coefficients magnitude jdM , . 

The remaining decomposition levels were set to zero, as they fell outside of the QRS frequency band. It should be noted 

here that the eighth approximation level was also set zero to eliminate baseline shift from the signal. 

3.3.   The reconstructed waveform 

All the processed detail coefficients, along with the approximation coefficients, were then used to reconstruct the signal. 

The reconstructed waveform was obtained by using the inverse DT-WT on the decomposed threshold coefficients. To clarify 

this step, Fig. 6 shows an ECG signal with baseline drift collected from a segment of record n°113 (160-180 s) from the 

MIT-BIH Arrhythmia database. We performed the steps described in subsections 3.1 and 3.2 to provide the threshold 

eight-detail coefficients magnitude and the corresponding approximation coefficients magnitude. The reconstructed waveform 

given in Fig. 6 was acquired by applying the inverse DT-WT to the modified coefficients. 

 

Fig. 6 The reconstructed waveform from the inverse DT-WT reconstruction step 

3.4.   Squaring and moving average operators 

To localize the QRS region, the reconstructed waveform required further processing. The squaring stage (a nonlinear 

operation) was used to emphasize the beats and reduce the remaining noises. All the samples in this step had positive values. 

The signal was then smoothed by using two cascade moving average windows. The width of these two windows was selected 

in accordance with the physiological refractory inter-beat interval of 200 ms, which is approximately equal to 75 samples in the 

case of a sampling frequency of 360 Hz. As shown in Fig. 7, using only one moving average window is insufficient, as the 
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output signal at this stage has flat extrema. Thus, the second moving average window was necessary to boost the localization of 

peaks. The obtained signal at this stage was shaped like the envelope of the reconstructed waveform. 

3.5.   Local maxima detection 

Finally, the algorithm’s last step was to extract the QRS regions. Normally, a threshold value is used to identify the 

accurate beats. This value is selected carefully according to the developed algorithm. For this technique, the variance of the 

obtained signal was used as a threshold criterion, expressed as: 








N
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i xx
N

T
1

2

1

1
 (11) 

where ix  denotes the samples of the obtained signal length of N  and x  represents the mean of this signal. 

Once the threshold value was confirmed, the minimum peak distance was chosen empirically as 150 samples covering 

nearly the entire triangle-like shape in the envelope. Finally, the threshold value and the minimum peak distance are used as 

two input parameters to determine the R peaks. 

 

Fig. 7 Waveforms obtained from squaring and moving average operators 

4. Results and Discussion 

To analyze the performance of the proposed algorithm and to compare the results with other works, it was necessary to 

investigate a standard database. The outcome of the algorithm should also be verified by an annotated database that has been 

previously assessed by expert cardiologists. For these reasons, the MIT-BIH Arrhythmia Database [28] comprised of 48 

records sampled at a frequency of 360 Hz with 11-bit resolution over a range of 10 mV was selected. The whole dataset was 

tested for the proposed method, except for recording n° 207, from which a duration of 142.5 s was excluded due to Ventricular 

Flutter (VF) intervals [14]. Comparison between the estimated R peaks location and the annotation file were performed by 

using the ECG-kit toolbox developed by Demski [29]. 
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4.1.   Statistical evaluation metrics 

To validate the detection effectiveness and to demonstrate the quality of the analysis, it was necessary to refer to the 

statistical parameters able to describe the reliability of the proposed method. These metrics – sensitivity, positive predictivity, 

and detection error – were defined, respectively, as: 

(%) 100
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Se
TP FN

 


 (12) 

(%) 100
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PP
TP FP

 


 (13) 

(%) 100
FP FN
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
   (14) 

where TP is the correctly recognized detected beats (True Positive) and FN the correctly undetected beats (False Negative). FP 

is falsely detected beats (False Positive), and TB represents the total annotated beats in the analyzed ECG signal. 

4.2.   Evaluation of results and discussion 

Using all of the previously described parameters, the proposed method was evaluated using the entire MIT-BIH 

Arrhythmia database records. The algorithm was implemented using MATLAB R2016b software. Table 1 summarizes the 

algorithm performance under the given statistical metrics. The total beats considered in each record is also given. For each 

record, the total beats were taken in respect to the maximum number of samples that could be used according to the wavelet 

dyadic length decomposition. Table 1 shows that almost all records had excellent results, with the exception of records such as 

116, 203, 208 and 232. The reasons for the bad R peaks localization in these records will be discussed in the suitable course. 

 

Fig. 8 Delineation of R peaks for ECG record 116 from the MIT-BIH Arrhythmia database 

Before we demonstrate the results qualitatively by illustrating some ECG signals (Figs. 8-16), we should clarify the 

representation used in the Figures. The top subplot denotes the resulting waveform and the corresponding threshold indicated 

by dotted line (--). The bottom subplot represents R peaks localization (∆) found by our algorithm versus the cardiologists’ 

annotation delineated by vertical lines (|). As shown in Fig. 8, the number of false negative beats presented in record 116 were 

mainly caused by small, almost invisible beats that were under the threshold level. Record 203 was corrupted by 

high-frequency noise, and had a significant number of multiform premature ventricular complexes, producing the remarkable 

FN. However, the detection error in this record was greatly reduced comparing with other recently published methods 

[5,7,8,10]. Record 208 also contained some small amplitude beat pulses and a very short inter-beat interval, leading to 

detection errors. The high number of false positive beats observed in record 232 was due to QRS-like artifacts. 
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Table 1 QRS detection results for the MIT-BIH Arrhythmia database 

Tape Total beats TP FP FN Se(%) PP(%) DER(%) 

100 2,272 2,272 0 0 100.00 100.00 0.00 

101 1,865 1,865 0 0 100.00 100.00 0.00 

102 2,187 2,187 0 0 100.00 100.00 0.00 

103 2,084 2,084 0 0 100.00 100.00 0.00 

104 2,229 2,228 3 1 99.96 99.87 0.18 

105 2,572 2,570 3 2 99.92 99.88 0.19 

106 2,027 2,019 1 8 99.61 99.95 0.44 

107 2,137 2,135 0 2 99.91 100.00 0.09 

108 1,763 1,761 4 2 99.89 99.77 0.34 

109 2,532 2,532 0 0 100.00 100.00 0.00 

111 2,124 2,123 0 1 99.95 100.00 0.05 

112 2,539 2,539 0 0 100.00 100.00 0.00 

113 1,794 1,794 0 0 100.00 100.00 0.00 

114 1,879 1,879 3 0 100.00 99.84 0.16 

115 1,953 1,952 0 1 99.95 100.00 0.05 

116 2,412 2,387 0 25 98.96 100.00 1.04 

117 1,535 1,535 2 0 100.00 99.87 0.13 

118 2,278 2,278 0 0 100.00 100.00 0.00 

119 1,987 1,987 0 0 100.00 100.00 0.00 

121 1,863 1,863 1 0 100.00 99.95 0.05 

122 2,476 2,476 0 0 100.00 100.00 0.00 

123 1,518 1,518 0 0 100.00 100.00 0.00 

124 1,619 1,619 0 0 100.00 100.00 0.00 

200 2,601 2,600 2 1 99.96 99.92 0.12 

201 1,963 1,962 0 1 99.95 100.00 0.05 

202 2,136 2,135 0 1 99.95 100.00 0.05 

203 2,980 2,957 1 23 99.23 99.97 0.81 

205 2,656 2,655 0 1 99.96 100.00 0.04 

207 1,860 1,858 2 2 99.89 99.89 0.22 

208 2,955 2,933 1 22 99.26 99.97 0.78 

209 3,005 3,005 0 0 100.00 100.00 0.00 

210 2,650 2,648 1 2 99.92 99.96 0.11 

212 2,748 2,747 0 1 99.96 100.00 0.04 

213 3,250 3,244 0 6 99.82 100.00 0.18 

214 2,262 2,256 0 6 99.73 100.00 0.27 

215 3,363 3,363 0 0 100.00 100.00 0.00 

217 2,208 2,204 0 4 99.82 100.00 0.18 

219 2,154 2,154 0 0 100.00 100.00 0.00 

220 2,048 2,047 0 1 99.95 100.00 0.05 

221 2,427 2,427 0 0 100.00 100.00 0.00 

222 2,483 2,483 2 0 100.00 99.92 0.08 

223 2,605 2,604 0 1 99.96 100.00 0.04 

228 2,053 2,048 9 5 99.76 99.56 0.68 

230 2,256 2,256 0 0 100.00 100.00 0.00 

231 1,571 1,571 0 0 100.00 100.00 0.00 

232 1,780 1,780 19 0 100.00 98.94 1.07 

233 3,079 3,071 0 8 99.74 100.00 0.26 

234 2,753 2,753 0 0 100.00 100.00 0.00 

Total 109,491 109,364 54 127 99.90 99.94 0.16 

It should be noted that the proposed algorithm did bring good results for record 105, which usually has a significant error 

rate in the majority of detection methods found in the literature. This performance can be seen in Fig. 9, which illustrates the 

detection accuracy of the algorithm for record 105, even in the presence of high background noise. Fig. 10 shows a portion of 

record 104 that has severe muscle artifacts. Even with a high signal-to-noise ratio, the proposed algorithm was able to easily 

eliminate these artifacts. Fig. 11 illustrates another ECG scenario taken from record 201. This record presents not only 
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variations in the inter-beat intervals, but also a very small amplitude of some QRS complexes. Despite these variations, the 

proposed method was able to efficiently localize the QRS complexes. The additional window used in the resulting waveform 

of Fig. 11 zooms into a small QRS complex to demonstrate the important role of threshold value selection. 

 
Fig. 9 Delineation of R peaks for ECG record 105 with artefacts from the MIT-BIH Arrhythmia database 

 
Fig. 10 Delineation of R peaks for ECG record 104 with muscle artifacts from the MIT-BIH Arrhythmia database 

 
Fig. 11 Delineation of R peaks for ECG record 201 with small peaks from the MIT-BIH Arrhythmia database 

The ECG records shown in Figs. 12-16 represent various arrhythmia ECG signals. The visual QRS subfractions detection 

is also given. Fig. 12 shows our method’s QRS subfractions detection for a segment of the Atrial Fibrillation (AF) arrhythmia 

record 217 containing a fusion of paced beat and normal beat, as well as premature ventricular contraction. A run of 
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Ventricular Tachycardia (VT) taken from record 207, which has a mixture of Left Bundle Branch Block (LBBB) and Right 

Bundle Branch Block (RBBB), is illustrated in Fig. 13. The ECG signal for record 200 is another case of VT sequence along 

with ventricular bigeminy. The detection of QRS subfractions for this record is given in Fig. 14. Our algorithm is able to detect 

QRS subfractions even when the ECG signal presents a fusion of ventricular and normal heartbeat, as shown in Fig. 15. 

Another ECG scenario presenting ventricular tachycardia and atrial fibrillation taken from record 221 was tested on our 

algorithm, as shown in Fig. 16. Hence, our algorithm is able to handle a variety of ECG arrhythmias, moreover, we can affirm 

that our method has the capacity to be of clinical use in the future. 

 
Fig. 12 Delineation of R peaks for ECG record 217 from the MIT-BIH Arrhythmia database 

 
Fig. 13 Delineation of R peaks for ECG record 207 from the MIT-BIH Arrhythmia database 

 

Fig. 14 Delineation of R peaks for ECG record 200 from the MIT-BIH Arrhythmia database 
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Fig. 15 Delineation of R peaks for ECG record 208 from the MIT-BIH Arrhythmia database 

 

Fig. 16 Delineation of R peaks for ECG record 221 from the MIT-BIH Arrhythmia database 

4.3.   Performance comparison of the proposed QRS detection method 

Table 2 Performance comparison with conventional and recently published high-quality QRS detection methods 

Method Year Total beats TP FP FN Se(%) PP(%) DER(%) 

[3] 1985 109,809 109,532 507 277 99.75 99.54 0.71 

[4] 1986 109,267 108,927 248 340 99.69 99.77 0.54 

[5] 2016 109,494 - 108 137 99.87 99.90 0.22 

[6] 2013 109,452 109,314 127 138 99.87 99.88 0.24 

[7] 2016 109,965 - 163 273 - - 0.39 

[8] 2015 109,494 - 353 614 99.43 99.67 0.88 

[10] 2016 109,488 - 428 509 99.50 99.56 0.93 

[12] 2014 116,137 - 308 192 99.81 99.70 0.49 

[14] 2012 109,494 109,101 193 393 99.64 99.82 0.54 

[15] 2012 19,098 19,022 76 40 99.60 99.50 - 

[30] 2012 109,495 108,568 856 928 99.15 99.18 1.69 

[31] 2016 109,491 109,331 574 160 99.85 99.48 0.67 

[32] 1995 104,184 104,070 65 112 99.89 99.94 0.17 

Proposed 2017 109,491 109,364 54 127 99.90 99.95 0.16 

To provide a rigorous performance comparison, the results acquired from the proposed method should be set alongside 

various conventional QRS detection methods and recently published high-quality QRS detection methods. The database we 

used was the same as that of the comparative proposals. Although the work from [15] used a minimal number of resources 

from the MIT-BIH Arrhythmia database, we have included it as a reference for comparison purposes. The statistical metrics 

results in Table 2 demonstrate the robustness and reliability of the proposed algorithm. The recently introduced mathematical 
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detection model in [5], which surpasses that of other works, is comparable to our method. However, it is clear that the proposed 

method achieves a high performance since the number of undetected beats FN of our algorithm is smaller than the FN found in 

[5]. Furthermore, the number of falsely detected beats FP is very low comparing to all the other listed works, including the 

method used in [15] that was analyzed for minimal beats. The attained detection error value, which evaluates the overall 

accuracy of the algorithm, was lower than the methods cited in Table 2 (0.16%). Thus, we can assert that the proposed method 

succeeds in achieving high detection accuracy. Interestingly, the method is able to adapt to the non-stationarity nature of the 

ECG signal. Similarly, it is capable of detecting the QRS complex components with different morphologies, even in some 

challenging ECG data scenarios. What’s more, it can hence be used in situations where ECG data from only one lead is 

available, such as in an ambulatory ECG. 

5. Conclusions 

A robust and reliable method based on DT-WT was proposed to detect the QRS complexes in ECG signals. First, the 

ECG signal was refined into a multi-resolution representation. Then, levels containing QRS frequency components were 

retained while the other levels were discarded. To emphasize the beats and reduce the remaining noise, the ECG signal was 

further processed using squaring and moving average operators. The decision rule used was simple and robust, making the 

extraction of various QRS morphologies possible. The whole MIT-BIH Arrhythmia database was investigated to test and 

compare the proposed algorithm with other works. The performance of the QRS detection method achieved high results 

comparing to existing methods, with a sensitivity of 99.88%, a positive predictivity of 99.95% and a detection error of 0.16%. 
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