
 International Journal of Engineering and Technology Innovation, vol. 3, no. 3, 2013, pp. 180-199  

 

A New Servo Control Drive for Electro Discharge Texturing System 

Industrial Applications Using Ultrasonic Technology  

M. Shafik
1,

, H. S. Abdalla
2
  

1
Faculty of Art & Design and Technology, University of Derby, UK. 

2
School of Architecture, Computing and Engineering, University of East London, London, UK. 

Received 21 April 2013; received in revised form 20 May 2013; accepted 10 June 2013 

 

Abstract 

This paper presents a new ultrasonic servo control drive for electro discharge texturing system industrial 

applications. The new drive is aiming to overcome the current teething issues of the existing electro discharge texturing 

system, servo control drive level of precision, processing stability, dynamic response and surface profile of the 

machined products. The new ultrasonic servo control drive consists of three main apparatuses, an ultrasonic motor, 

electronic driver and control unit. The ultrasonic motor consists of three main parts, the stator, rotor and sliding 

element. The motor design process, basic configuration, principles of motion, finite element analysis and experimental 

examination of the main characteristics is discussed in this paper. The electronic driver of the motor consists of two 

main stages which are the booster and piezoelectric amplifier.  The experimental test and validation of the developed 

servo control drive in electro discharge texturing platform is also discussed and presented in this paper. The initial 

results showed that the ultrasonic servo control drive is able to provide:  a bidirectional of motion, a resolution of 

<50μm and a dynamic response of <10msec. The electron microscopic micro examination into the textured samples 

showed that:  a clear improvement in machining stability, products surface profile, a notable reduction in the 

processing time, arcing and short-circuiting teething phenomena.  
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1. Introduction 

Level of precision, resolution, dynamic time response, robust stability of machining, miniaturisation of the parts and cost 

are the main design considerations of servo control systems, as these essential sceneries offer a selection of flexibility and open 

new possible commercial opportunities for servo drives technology industrial applications. Servo control drives using DC/AC 

servomotors have been known for more than hundred of years and have many applications in the areas of process and machine 

control. 

Machining and process control can be classified according to the level of precision and dynamic time response as normal 

machining, precision machining, high precision machining and ultrahigh precision machining. In the mid-1940s servo control 

drive using DC/AC servomotor technology were implemented in Electro Discharge Machining (EDM) applications. EDM 
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applications are classified as high precision machining. The main principle of operation of EDM is based mainly on a spark 

discharge between two conducting surfaces separated by a dielectric medium. The generated spark duration is on the order of 

microseconds and the inter-electrode gap size is of 10 to 100 micrometers. EDM is widely used in various applications including 

creating different complex and intricate shapes, slots, drilling holes, cutting and texturing. The specific texturing process known 

as Electro Discharge Texturing (EDT) generally has a multi rotary motor/ballscrew/slide/slideway arrangement in a small 

volume [1-3, 4]. The function being to focus as many electrodes into a given area as possible, given the limitations of the design 

constraints that is dominated by the physical size and volume of DC and or AC servomotors and the other kinematic elements 

required, to effect rotary to linear motion. Texturing is a process of creating irregularities, with regular or irregular spacing that 

tends to form patterns or texture on the surface. Texture contains roughness and waviness that can assist in providing the inherent 

quality of any subsequent paint finish, appearance and lifetime. Since the requirements of high precision and accurate machining 

of EDT applications never stop rising, much of the research has been concerned with the servo control feed drive level of 

precision, stability, dynamic response and surface profile of the textured products. Some authors have identified these issues [5-

6]. Some authors have undertaken an investigation into the pre-ignition stage in EDM machining [7], to maintain topography, 

increase workpiece surface profiles and lifetime [8-9]. Others focused on detecting an abnormal ‘arcing’ process and investigated 

new techniques to prevent this [6], monitoring the effective size of the electrode in EDM machining [10], development of surface 

damage monitoring system for EDM machining [11]. In fact success in presenting a realistic solution to these issues has been 

limited. Therefore there was a need to develop a new servo control drive using innovative technology that could provide high 

precision, fast dynamic response and robust stability. Piezoelectric ultrasonic motor (USM) technology offers many opportunities 

in the field of high precision servo positioning control [12-13]. It has been used widely in both instrumentation and machine tool 

applications such as, EDM [2], EDT [3], micro-machining [1-3], artificial prostheses [14], auto focusing drives for single-lens 

reflex cameras, rotary supports for video cameras and artificial heart actuators [15]. These applications show that piezoelectric 

USM servo control systems can be more effective than DC and or AC servomotor drives whenever high and ultrahigh precision 

level of control is required. This is due to their high resolution, high stiffness, large output force, compactness and quick dynamic 

response despite their limited positioning ranges. These distinctive features presented a challenge to design a new servo control 

feed drive using piezoelectric USMs technology to improve EDT servo control system degree of precision, dynamic response,  

performance and extend its capabilities to include more accurate machining. The structure of piezoelectric ultrasonic servo drive 

is mainly depends on the industrial application requirements [1-3, 16-26]. Potentially they offer a significant flexibility for 

position and feed-rate control [28-30]. They have compact size, high force density, simple mechanical construction, low weight, 

slow speed without additional gear or spindle, high torque, non-magnetic operation, freedom for constructional design, very low 

inertia, fast dynamic time responses, direct drive, fine position resolution, miniaturization and noiseless operation. These criteria 

give them the potential to replace electromagnetic motors arrangements in a number of industrial applications [2-3]. Demanding 

and careful examination for these applications reveals that there are apparent shortcomings. The first shortcoming is in regard to 

the dynamic time response of the motor and its transfer function. While a piezo-ceramic element (typically Lead zirconate 

titanate (PZT)) expands in direct proportion to the magnitude of the applied voltage, the USM on the other hand accumulates 

those displacements over time. Therefore the transfer function of the USM, relating the magnitude of the driving signal to the 

displacement is an integrator [31-32] and this shows a delay in the dynamic response of the USM, but it is not nearly significant 

as that in an electromagnetic servomotor. The second shortcoming is that because motion is transmitted through a friction force it 

will have a dead band due to the friction. Often USM does not move until the input signal is greater than 10% of the maximum 

allowed voltage to overcome the friction. Such a dead band limits the ability of a USM to accelerate quickly and position 

accurately [2-3, 31-32]. 



 International Journal of Engineering and Technology Innovation, vol. 3, no. 3, 2013, pp. 180-199 182 

 

Copyright ©  TAETI 

The development life cycle of ultrasonic servo control drive has passed through a number of stages. The first stage focused 

on an investigation into the possible available high precision motors technology that could meet the EDT system needs and 

overcome its current servo control drive machining procedure teething issues. The second stage concentrated on the investigation 

into the ultrasonic motors technology design methodology working principles, advantages and disadvantageous. This was 

followed by the design and development of a linear high precision ultrasonic motor, finite element analysis of the motor structure, 

initial practical tests to obtain the motor technical operating parameters and major characteristics, design of its electronic drive, 

integration of the control drive units. The final stage focused on the test and validation of the developed servo control drive in 

EDM/EDT system platform. 

2. Design, Analysis and Development of the Motor  

The development and design process of the proposed USM has been considered application needs such as type of motion, 

degree of resolution, level of precision, travelling speed, output force required, load capacity, torque, compactness, integration of 

the parts into the frame of the motor, fabrications of the parts, maintenance and sustainability. The design process of the linear 

USM have passed through a number of phases, the first phase focused on the motor structure that could meet the  EDT 

application requirements, structure, principles of motion, units design and integration into the motor frame.  

2.1. Structure of the USM 

The structure of the ultrasonic motor is shown in Fig.1. It consists of three main parts, which are the stator, rotor and 

sliding element. The stator is a single flexural vibrating transducer made from Lead Ziconate Titanate (PZT) piezoceramic 

material. The rotor is composed of the motor driving wheel and the shaft. The sliding element is made up of rectangular tube 

steel. The stator, rotor and sliding element jointly with the frame of the motor form the linear structure of the USM. The working 

principle of the motor is based on creating elliptical micro motions of surface points generated by superposition of longitudinal 

and bending vibration modes of oscillating structures [22-23]. By pressing the rotor against the driving tip of the stator, the micro 

motions are converted into a rotary and linear motion, through the friction between parts of the motor. However, to create a 

strong second bending vibration mode, the polarisation direction of the piezoelectric vibrator perpendicular to the electrodes, the 

piezoelectric ceramic vibrator was arranged as shown in Fig. 2. The longitudinal and bending vibration modes are coupled by 

asymmetry of the piezoelectric ceramic vibrator [21, 33-34]. The first surface of the piezoelectric transducer is segmented into 

four sub-surfaces, which were arranged electrically to provide two sub-electrodes, named A and B. The second surface is 

connected to the earth and is named electrode C. Then a single-phase AC signal with a wide frequency band is used to obtain the 

electrode natural operating frequency.  

Driving the electrode A and C by a single phase AC signal with a frequency closer to the resonant frequency of the 

vibrator provide one direction of motion and switching to electrode B, change the bending vibration mode by a phase shift of 180 

degrees which leads to reversing the direction of motions as shown in Fig. 3. Few authors have used these phenomena and 

succeeded to develop different structures to generate linear motion [22-23, 34-35]. Snitka [34] and Aoyagi et al [22] showed that 

the load of this type of motor depends on the contact point of the rotor, the dimension of the piezoelectric elements and material 

of the stator and the rotor. Snitka [34] proved that the pre-load pressing forces and friction between parts influence the degree of 

accuracy obtainable. Therefore, the material for the moving parts of the proposed motor has been carefully selected. It was also 

noticed that the slide element does not move until the excitation voltage reaches about half wave its maximum value, because a 
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single driving system with constant frequency is used to create both normal and thrust force. This reduces the fine micro 

resolution of the USM. The thrust force must overcome static friction between the motor parts, result of pre-load force, to allow 

relative motion between the stator and the rotor [28]. In the developed design a coil spring was used, to press the vibrating 

transducer against the rotor and enabled the pre-load force to be sensitively adjusted. 

 

Fig. 1 Proposed standing wave linear ultrasonic motor structure using a single flexural rectangular vibration transducer for 

electro discharge texturing system industrial applications 

2.2. USM Working Principles 

The working principles of the proposed USM is utilised the standing wave vibrations standards, which it has a fixed wave 

length. The concept is to exploit two oscillation modes of vibration, to obtain desired motion of the piezoelectric vibrating 

transducer longitudinal and transverse vibration modes, one vibration produces a normal force, while the other vibration 

generates thrust force, which is perpendicular to the normal force, resulting in a micro elliptical trajectory of motion, at the 

vibration transducer tip, by attaching the stator tip to the rotor using a coil spring. The micro elliptical trajectory is converted into 

a rotary motion, as shown in Fig. 3.  As the combination of two modes of vibrations creates a friction based driving force 

between the stator and the rotor at the contact tip, a movement in forward or backward direction was created depending on the 
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methodology used to electrify the piezoelectric ceramic transducer to generate two modes of vibrations. The linear motion was 

developed using the friction based driving force between the shaft and the sliding element of the motor as shown in Fig. 1. 

2.3. USM Modelling and Analysis Using Finite Element  

 

Fig. 2 Proposed ultrasonic motor stator arrangements and mechanism utilised to create two directions of motion using one single 

flexural vibration transducer  

 

 

Fig. 3 Practice utilised to create bidirectional of motion using transverse longitudinal and bending vibration modes at a frequency 

close to the vibration mode 

Modelling and analysis of ultrasonic motors is an essential step in the design and development life cycle of USM. They 

have many complicated and non-linear characteristics. There are two methods of modelling and analysis can be used to simulate 

and model piezoelectric USM’s [36-39]. These methods are the analytical analysis and finite element analysis (FEA) method. In 
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the current developed USM development process, ANSYS FEA software was used, to examine the proposed motor structure, 

investigate the material vibration modes, identify the transducer material, and obtain the technical operating parameters.  

It also helps to optimise the motor performance through investigating the variation of the displacement versus the 

frequency. Two types of FEA were used, model analysis and harmonic analysis. These offer two types of loads, the nodal and 

the pertaining to the element. In the nodal case the loads were applied to nodes of the element that do not have direct links with 

element properties. 

An USM model was build, based on a full consideration of the motor boundary condition and EDT industrial application 

requirements. The stator was defined as the active element and the rotor was defined, as the passive element. Fig 4 (a) and (b) 

shows the variation of displacement of the stator versus the frequency, for rotary and linear structure, of the motor. It illustrates 

the change of displacement versus the frequency. It also shows the resonant frequency of the current model - 42.2 kHz. This is 

helped to determine the vibration amplitude, thrust force and optimise motor structure performance. 

The analysis of motor linear arrangement model shows that there is some influences of the sliding element on the 

transducer deformation modes of vibration and the possible maximum displacement. The displacement of the transducer changed 

from 10.1125 µm to 3.0999 µm. This analysis enabled, to assess the motor possible generated amplitude of vibration, thrust force, 

material modes of vibration and the distribution of the vibration wave of the transducer. This helped to avoid design errors and 

avoid mishandling of the material deformation. Material deformation can produce a jerking effect that affects the resolution and 

degree of accuracy of the motor. Consequently, it could restrict the potential applications of the proposed USM motor and the 

ultrasonic servo drive fine position as a whole. The motor model-vibration modes for different input signal were determined.  

Figures 5 and 6 show the two modes of vibration for the motor, the transverse bending mode and longitudinal mode, at the drawn 

operating frequency. 

2.4. Design and Development of the USM Components  

The dimensions of the proposed USM parts was mainly based on the frequency ratio between the longitudinal mode Lf  

and the bending mode Bf , ,0.2/ BL ff   and ,1.0/ ld  as the internal nonlinear coupling of parametric vibration between two 

resonance modes was generated under these conditions [6]. The capacitance ratio and direction of vibratory displacement was 

also considered. 

Using the USM models shown in Figures 7 (a) and 7 (b), the relation between the torque T  and various acting forces on 

the rotor components this gives the following relationship: 

22

d
rF

D
RFT   (1) 

Where, RF  is the micro elliptical force produced using vibration transducer, rF  is the driving force transferred to the shaft 

using the following torque factor relationship
d

DAr  . Where, D  is the diameter of the driving wheel and d  is the diameter of 

the shaft.  
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Fig. 4 The ultrasonic motor stator displacement amplitude vs. the frequency for the developed USM (AC 50V) (a) for rotary 

USM structure and (b) for linear USM structure 
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(b) 



187 International Journal of Engineering and Technology Innovation, vol. 3, no. 3, 2013, pp. 180-199  
 

Copyright ©  TAETI 

 
Fig. 5 Ultrasonic motor linear structure model FEA transverse bending vibration mode (Frequency 42,200Hz and AC 50V) 

 
Fig. 6 Ultrasonic motor linear structure model FEA transverse longitudinal vibration mode (Frequency 42,200Hz and AC 50V) 

The torque factor of the USM and the diameter of the rotor (driving wheel and the shaft) were obtained. The transferred 

force to the shaft was determined using the following torque factor relationship: 

d

D

R
FrF   (2) 

This relationship shows that the torque factor rA  has to be carefully considered during the design process of the USM 

since it influences the efficiency of the driving force produced by the vibration transducer, the resolution of the motor and 

maximum travelling speed. 
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Fig. 7 Dynamic models utilised to design actual dimensions of the ultrasonic motor parts and optimise the bearing preload 

force on the motor linear structure 

The length of the shaft sl  was determined according to the allowable ratio of the
s

d
s

l , where sd  is the diameter of the 

shaft. This is to meet the conceptual view of the design for the proposed motor construction. This considered the properties of the 

material used to produce the shaft and the moment of inertia of the rotor. The moment of inertia of the rotor was considered to be 

small for fast dynamic time response and to obtain a maximum efficiency of the transferred driving force. The pre-load force 

acting in the shaft and locations of bearings of the sliding element was determined using the dynamic model shown in Fig. 7.  

0.0 xF  

bshsb FFF   
(3) 

Where: sbF , bF , shF  are the side spring slider, bearing and shaft acting forces, respectively 

From the model shown in Fig. 7-c, the bearing acting force bF  was obtained from the following relationship: 

sl
l

b
FX

sb
F   (4) 

Consequently the bearing acting force was found to be: 

sl
l

X

sb
F

b
F 

 
(5) 
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Substituting bF  into slider acting force: 

sh
F

sl
l

X

sb
F

sb
F   (6) 

Then the shaft acting force was determined using the relationship (7): 

)1(
sl

sbsh
l

X
FF   (7) 

In the design process of the USM the side spring slider was located in the middle between the shaft and opposite side 

bearing, to keep the acting force on the shaft, as minimum as possible (see Fig. 7 (c). The acting force on the shaft in this case 

was found to be half the slider pre-load acting force. Four pins and an interchangeable coil spring was used to house the vibration 

transducer as shown in Fig. 7 (a). The four pins were used to prevent interference transducer modes of vibrations. The spring was 

used to support the vibration transducer at the vibration tip. It was also used to keep the stator and rotor in contact. This enabled 

the vibration transducer to transfer the micro elliptical force, into rotational and linear motion using the friction between the 

USM parts. The optimum pre-load acting force was determined, by observing the USM travelling speed versus various forces, at 

the identified operating parameters i.e. voltage, current and frequency. It was clearly noticed that mishandling of the pre-load 

acting force influences the motor resolution, stiffness and torque. Two guide-ways were also designed and fixed to the top and 

bottom of the USM frame. This is to prevent the sliding element plane motion. Plane motion would affect the accuracy of the 

USM. The frame of the motor was part of the concept and was designed with a reliable layout to ensure compactness of the 

design, easy to integrate and maintain the parts of the USM. Fig 8 illustrates the USM and fabricated prototype. 

 

Fig. 8 Actual fabricated prototype of ultrasonic motor using a single piezoceramic PZT ultrasonic flexural vibration transducer  

2.5. Experimental Test of the Developed USM Prototype  

The parts of the developed USM prototype were assembled into the USM frame and series of experimental tests carried 

out. This was aiming to examine the definitive characteristics of the fabricated prototype and EDT industrial application 

requirements. Initial integration showed that there were some teething problems. These included irregular rotational and linear 

motion. These problems arise due to the inaccuracies in the manufacture of the parts of the USM. The irregular rotational speed 

was due to deviations on the roundness of the driving wheel and irregular travelling speed was from deviations in roundness of 

the shaft. The roundness of the driving wheel and the shaft were re-machined and retested. The concentricity of the produced 
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parts, such as the rotor, was also tested and showed no error.  The parts were reintegrated into the frame of the USM and a series 

of experimental test were conducted, to measure the characteristics of the USM. Fig 9 shows the block diagram of the test rig and 

Fig. 10 shows the actual system used to examine the prototype. An off-shelf piezoelectric driver was used, to supply the 

vibrating transducer with the AC voltage.  Various shapes of AC signal including sinusoidal, saw-tooth and square wave. A 

display unit, which comprised of a digital oscilloscope and PC computer, was deployed to trace the signal and determine the 

USM operating parameters. The travelling speed of the USM was measured via a speedometer. An electro microscope was used 

to measure the fine resolution of the USM. A programmable switching unit interfaced with a PC computer was used to control 

the USM directions of motion and to analyse the measured characteristics.  

 

Fig. 9 Block diagram of the test rig arrangement used to test and measure the characteristics of the developed ultrasonic servo 

drive prototype 

 

Fig. 10 Actual test rig arrangement used to test and measure the characteristics of the developed ultrasonic servo drive 

prototype 
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Fig. 11 The variation of the current in mA vs. input voltage of the developed USM prototype (no-load applied) 
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Fig. 12 The variation of the travelling speed in cm vs. applied load of the developed USM prototype 

The operating parameters were measured using the same arrangement shown in utilised during the FEA. The electrodes A 

and B were connected to a single phase AC power source, with a wide range of amplitude and frequency. A switching unit were 

used to regulate the AC input power for A, B and C electrodes. Fig. 11 shows the relationship between current and voltage of the 

USM prototype. This help to identify the nature of the USM load. It also helped to define the USM operating voltage and current. 

This was found to be: voltage: 50 to 100 volts and current: 50 to 100 milliamperes.   Then the travelling speed versus the 

amplitude and frequency of the AC input signal measured. This was achieved as follows: the frequency of USM driver was being 

altered incrementally. The speed of the USM was measured for each increment. It was noticed that during this process that the 

speed of the USM increased as the frequency of the driver increased. At one stage the USM reached a maximum speed and then 

the speed started to decrease dramatically. This process allows to obtaining the relationship between the travelling-speed versus 

the operating frequency. This shows that the operating frequency for the developed prototype for no-load was 40.7 kHz. The 

travelling speed versus the input voltage also established. It shows that the developed USM was able to provide a travelling 

speed of 28.0mm/s, and a resolution on the order of micrometers. The variation of the travelling speed versus the applied load 

was also measured at various loads, and is shown in Fig. 12. This showed that the developed prototype was able to carry a load 

up to 1.8Newton which meets the requirements for electro discharge texturing system industrial applications. The developed 

prototype had two directional of motion with un-similar characteristics as shown in Fig. 12.  It had a wide range of frequency 
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which enabled to control the travelling speed of the motor. Varying the frequency or the amplitude of the input signal controlled 

the traveling speed of the USM.  

3. Architecture of the USM Electronic Driver  

The design process of the developed USM piezoelectric driver passed through few steps. First the technical operating 

parameters have been identified using off-shelf piezoelectric driver unit. This is allowed to define the USM operating frequency 

(40.7 KHz), voltage (50: 100 volt) and current (50: 100-mamp). Then the right design approach has been identified for the driver 

circuit. The approach is to use two stages. The first stage is a DC/DC converter that is boost 18 volt input to 80 volt. The second 

stage is a piezo amplifier which consists of four output transistors, push-pull and bridge connected in order to achieve maximum 

amplitude. The input signal to the amplifier is generated by an oscillator, op-amp circuitry. The output from the oscillator is low 

pass filtered in order to achieve a sine wave signal. The sine wave is then voltage amplified by a transistor to approx 50V before 

it is connected to the USM.  

4. Experimental Test and Validation of the Servo Control Drive in EDT  

The ultrasonic Servo control drive has been incorporated, tested and validated in Electro Discharge Texturing System 

platform. The developed system evaluated compared to the existing system using AC and DC servo feed drive. This included, an 

investigation into the stability of the system, capability of control, processing time and surface finish of the textured products. 

This was carried out using various electro-texturing parameters, including level of current, on/off time and duty cycle. Fig 13 

shows the system installed in EDT A ELEKTRA R-50 ZNC model.  

 

Fig. 13 The developed ultrasonic servo drive installed in the EDM/EDT machine (A ELEKTRA R-50 ZNC model) 

5. Analysis and Discussion 

The Electro discharge Texturing system is a variation of the Electro discharge machining process. As with electro 

discharge die sinking, ED wiring, ED sawing and ED grinding, the major difference is in the configuration of the main elements 

of the machine. Here an experimental investigation into the current EDT-system and the developed control system using 

piezoelectric ultrasonic drive was conducted. The current system, using DC servo feed drive, was used for texturing different 

areas using various electro-machining parameters. Then the developed system, using piezoelectric ultrasonic feed drive, was 

used for machining using the same electro-machining parameters and similar conditions. Texturing different sampled was carried 
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out using the EDT machine. The levels of current, on-off time and duty cycle were used as main electro-machining parameters. 

The other machining parameters were selected as follows: The feed rate of the system in the case of auto position was 0.656 

mm/sec, speed of the roll was 6 rpm, SEN = 1:3 [Sensitivity of Z-axis speed], ASEN = 3-9 [Antiarc sensitivity], TW =1.0 sec 

[Sparking time], T = 0.5sec [Lifetime], Vg = 38: 50 volts [Gap voltage], Ig = 5 amperes [Gap current], Ib = 0. 0 [Prepulse spark 

current], POL=-ve [Polarity of machining] and Fp=0.2 bar [Flushing pressure]. The feed rate in the case of the piezoelectric 

ultrasonic control system was of the order of 5.1 mm/sec. An evaluation for both control systems was also conducted. This 

included stability of the system, surface profiles (roughness, Pc peak/cm), capability of the system to monitoring and control of 

the inter-electrode gap, and safety of machining process.  

The stability of the EDT-system can be measured from the inter electrode gap voltage and current in addition to the control 

signal obtained from the system control unit. Therefore the feedback signal and inter-electrode gap voltage variation were 

obtained at various electro-machining parameters. Figures 14 and 15 illustrate the variations of these signals for various electro-

machining parameters for both control systems. It shows the indication of the stability of machining for a period of 10 seconds. 

Fig 14 shows these variations for the existing control system using electric motor. Here it is notable that there is a clear 

instability on the feedback signal and the inter-electrode gap. Fig 15 shows the variation in the feedback control signal and inter-

electrode gap voltage for the developed system. This shows the stability of machining, remarkable reduction in the arcing and 

short-circuiting processes, which in turn may led to a clear reduction in the machining time when compared to the current system. 

It was also observed, during this investigation, that the increment in the required level of current had no major influence on the 

stability in the case of the piezoelectric USM system as in the case of the electric motor. Two factors showed an effect on the 

machining process, namely the sensitivity and the anti-arcing factor.  The capability of changing the machining parameters 

during machining process was used in this case to select the optimum values, which provided a stable machining. It was noticed, 

that mishandling the sensitivity and anti-arcing factors produced jerking effect, and lead to unstable machining which in turn 

increased the arcing and short-circuiting process. The arcing and short circuit processes leaded to poor surface profiles and 

increased the machining time of the process. This was clear in the case of the electric servomotor control system rather than the 

developed control system using piezoelectric USM. A scanning electron microscopic investigation into the textured surface using 

EDT-system for both systems of control using current and developed system were carried out.  Figures 16 and 17 show the 

scanning electron microscope image of the textured surface profiles using both control systems. These figures show the 

investigations into the surface profiles machined using a different duty cycle. It shows noticeably how the duty cycle was used to 

control the machined surface finish. It also shows the difference between the surface profiles obtained using piezoelectric USM 

system and electric servomotor system. It can be seen that there is a smooth surface obtained using the developed system.  

Figures 18 and 19 show a close investigation into the textured surface profiles for cross-section area 20 microns. This shows 

evidently the smooth surface finish obtained using piezoelectric USM control system compared with the EMM control system.  

A Taylor Hobson measuring system for surface finish was used to measure the roughness and peak count of the various 

machined areas along the roll. This was carried out a few times for each sample and the average of the degree of texture was 

determined. The relationships between measured degree of roughness and peak count of the textured surfaces using both systems 

for control and various electro-machining parameters are shown in figures 20, 21, 22 and 23. Figures 20 and 21 show the 

variation of the degree of roughness, versus peak current, and on-off time. This shows a close agreement with the previous 

results obtained in this area of machining. It can be seen that the degree of roughness of the textured surface using both 

techniques of control is increased as the peak current and the on-off time increased. There was a small deviation in the degree of 

roughness of the bands machined using the developed system when compared to the existing electric servomotor system [40-41]. 
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Figures 22 and 23 show the variation of the peak count versus the peak current and on-off time. Here it can be seen that the peak 

count decreased as the peak current and on-off time increased. These illustrates the potential advantages of the developed servo 

control drive using ultrasonic motor technology which are direct drive, fine position, high resolution, dynamic time response and 

compact size in comparison to a DC and or AC servomotors. The drive also offers the same kinematics capability as a rotary 

motor/ballscrew/slide/slideway arrangement and is controllable within the limits that DC/AC servos operate [42-43]. This is in 

addition to its compactness, sustainable design structure and low cost compared with any other motor technology arrangement. 

This has brought the fruition to the EDT servo control drive and overcomes the aforementioned teething issues.  

 

Fig. 14 Feedback control signal and inter-electrode gap voltage variation for EDT machining using the current DC servo control 

system [gap current 5A, gap voltage of 38 volts & duty cycle 8µsec] 

 

Fig. 15 Feedback control signal and inter-electrode gap voltage variation for EDT machining using the developed piezoelectric 

USM control system [gap current 5A, gap voltage of 38 volts & duty cycle 8μsec] 
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Fig. 16 EDT surface finish obtained using DC servo control feed system using current level of 6 amperes, ‘on’ time of 50 sec, 

duty cycle of 4 sec  

 

Fig. 17  EDT surface finish obtained using USM servo control feed system using current level of 6 amperes, ‘on’ time of 50 sec, 

duty cycle of 4 sec 

 

Fig. 18 EDT surface profiles from the DC control system and operating parameters, current of 6 amperes, ‘on’ time of 50 sec 

and duty cycle of 12 sec 
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Fig. 19 EDT surface profiles from the USM control system and operating parameters, current of 6 amperes, ‘on’ time of 50 sec 

and duty cycle of 12 sec 

  

Fig. 20 The measured degree of roughness vs. the machining 

parameters for both systems of control using DC 

servomotor and USM technology 

Fig. 21 The variation of the measured peak count vs. various 

peak current for both systems of control using DC 

and USM technology 

  

Fig. 22 The variation of the measured degree of roughness vs. 

on time for both systems of control using DC and 

USM technology 

Fig. 23 The variation of the measured peak count vs. on/off 

time for both systems of control using DC and USM 

technology 
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6. Conclusions  

A new ultrasonic servo control feed drive for EDT System industrial application has been developed. The developed servo 

control drive offers high level of precision, high resolution, high stiffness, large output force, compactness and quick dynamic 

response despite its limited positioning ranges. These features overcomes the current EDT servo control teething issues and 

improve the system level of precision, stability, dynamic response and surface profile of the processed products. FEA has been 

used in the ultrasonic servo drive design development process. It has been used to examine the USM structure, material 

deformation and determine the operating parameters of the USM. A prototype of the ultrasonic servo drive was fabricated and 

the experimental tests to check the drive reliability for EDT System carried out. The results showed that the developed prototype 

operating parameters for no-load were: frequency: 40.7 KHz, voltage: 50: 100 voltage and current: 50: 100 m-amperes. The test 

also showed that the drive is able to provide:  a reversible directional of motion, no-load travelling speed equal to 28.0mm per 

second, maximum load of 1.8 Newton, a resolution <50μm and a dynamic response in the order of microseconds. The developed 

ultrasonic servo drive has been tested and validated in EDT System platform. The experimental results showed that a significant 

improvement in the stability of machining when compared to the existing system using DC/AC servomotor. This was verified by 

examining the electrode movements, the inter-electrode gap voltage, current and feedback control signals.  

The electron microscopic investigation into the surface profiles using both systems of control showed that there was a 

visible improvement in the surface profiles textured using the USM servo control system. A notable reduction in the arcing and 

short circuit process was also observed. The relationship between the electro texturing parameters and surface profiles roughness 

was obtained and this showed a close agreement with the existing system with miner deviation in the degree of roughness. These 

results demonstrate the ability of the developed system using the ultrasonic servo control drive to be implemented in various 

industrial applications wherever, a high level of precision, micro-resolution and fast dynamic time response is required. It 

presented a breakthrough in the EDT system technology and has made good economic and commercial impacts since the system 

have been implement by a number of companies around the world. 
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