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Abstract 

A wireless rechargeable sensor network (WRSN) enables charging of rechargeable sensor nodes (RSN) 

wirelessly through a mobile charging vehicle (MCV). Most existing works choose the MCV’s stop point (SP) at 

random, the cluster’s center, or the cluster head position, all without exploring the demand from RSNs. It results in 

a long charging delay, a low charging throughput, frequent MCV trips, and more dead nodes. To overcome these 

issues, this paper proposes a hybrid metaheuristic algorithm for stop point selection (HMA-SPS) that combines the 

techniques of the dragonfly algorithm (DA), firefly algorithm (FA), and gray wolf optimization (GWO) algorithms. 

Using FA and GWO techniques, DA predicts an ideal SP using the run-time metrics of RSNs, such as energy, delay, 

distance, and trust factors. The simulated results demonstrate faster convergence with low delay and highlight that 

more RSNs can be recharged with fewer MCV visits, further enhancing energy utilization, throughput, network 

lifetime, and trust factor. 

 

Keywords: wireless rechargeable sensor network (WRSN), mobile charging vehicle (MCV), stop point (SP), 
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1. Introduction 

A wireless sensor network (WSN) consists of a variety of sensors [1] that are interconnected through wireless technology 

and find applications in diverse fields such as field surveillance, agriculture, and environmental monitoring [2]. To fulfill their 

intended purpose, these small sensors are deployed across different locations. The sensor nodes wirelessly transmit data to the 

base station (BS) with the help of intermediary sensor nodes. In some cases, a sensor node can function as both a data router 

and a data originator. Conversely, a sink or BS collects data transmitted by the sensors. The collaborative nature of sensor 

nodes is a unique characteristic of WSN. Ensuring seamless data routing while extending the lifespan of a WSN is both crucial 

and challenging.  

Due to recent advancements in wireless power transfer (WPT) technology [3], one of the variants of WSN, wireless 

rechargeable sensor network (WRSN) [4], has grabbed the interest of the research community as it enables the sensor nodes 

to work indefinitely. When a node’s battery is exhausted in the WRSN, a mobile charging vehicle (MCV) with an energy 

transmitter is dispatched to charge the required nodes for a specific time. The MCV returns to the BS to recharge its battery to 

address future charging requests. With sufficient battery power, WRSN successfully supports long-lasting sensor serviceability, 

enabling the network to continue functioning until the end of time and facilitating a long lifespan by lowering the number of 

dead sensors. Assorted applications in the fields of engrained infrastructure sensing, motion detection, farming, military 

services, forest fire detection, etc., are also made possible by WRSN. 
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The charging mode can be either single-node charging or multi-node charging. In single-node charging [5], the MCV 

goes to every node separately for charging, whereas in multi-node charging [6], the MCV collaboratively charges many nodes 

at an instance. Single-node charging suffers from charging delay and the increased number of dead nodes. The single-node 

charging scheme puts more strain on the MCV and is less scalable than multi-node charging. It also extends the time required 

to charge the sensor nodes. By maximizing the number of RSNs charged during each MCV trip, multi-node charging lowers 

the proportion of dead nodes in the WRSN and speeds up charging.   

Due to this, the collaborative charging (multi-node charging) mode is preferred as it charges numerous nodes within the 

clusters. But, finding the stop point (SP) for the mobile charger within the cluster plays a vital role. Simply selecting the center 

point of the cluster will not help, as it does not consider the status of the neighborhood RSNs. Therefore, to cope with this, a 

dynamic selection of SPs is preferred to enhance the charging efficiency. If the cluster head (CH) selection is made dynamically 

based on the current network status, then the position of CH can be used as SP for the corresponding cluster. As a result, MCV 

goes to the CH position and charges the nearby sensor nodes. In addition, MCV collects the information from the CH and 

delivers it to BS. Consequently, MCV knows the up-to-date information about the cluster. Fig. 1 depicts the functioning of the 

WRSN environment. 

 
Fig. 1 Wireless rechargeable sensor network (WRSN) 

The remainder of the paper is organized as follows: Section 2 briefs about the related work along with their summarization. 

The proposed hybrid HMA-SPS algorithm is presented in Section 3. Section 4 demonstrates the simulation results and 

comparisons, and the final section provides the paper’s conclusion. 

2. Literature Review 

In general, many Metaheuristic algorithms [7] are used to solve a problem in the most efficient way possible. The use of 

metaheuristic algorithms in SP selection in WRSNs allows for flexibility and adaptability, as well as the handling of large and 

complex search spaces. In anchor point or CH selection, the metaheuristic algorithm should concentrate more on parameter 

selection to define the objective function. Ant colony optimization (ACO) [8] is a population-based metaheuristic approach 

for solving complex optimization problems. The simulated ants capture their positions and the efficiency of their solutions in 

the same way so that in subsequent iterations, more ants find better solutions. Particle swarm optimization (PSO) [9] is a bio-

inspired algorithm that solves a problem by generating a population of possible solutions, which are referred to as particles. 

The movement of each particle is controlled by its local best-known position, which is then updated when other particles 

discover better positions.  

The fruit fly optimization algorithm (FOA) [10] is a swarm intelligence optimization technique used to address continuous 

complicated optimization issues and determine optimal global solutions. The fruit fly outperforms other species in terms of 

smell and vision. The smell phase involves the software agents moving around the problem area using their sense of smell. In 
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the vision phase, they employ their vision to advance toward the ideal resolution. Dragonfly algorithm (DA) [11] is one of the 

recent optimization algorithms. It originates from the static and dynamic swarming behaviors of dragonflies. DA has proved 

its persuasiveness and superiority over several well-known meta-heuristics algorithms [7]. In the exploration phase of DA, 

dragonflies form sub-swarms and fly over different places in a static swarm. Dragonflies fly in larger swarms in the exploitation 

phase which cause swarms to travel in a single direction as the static swarm. 

The firefly algorithm (FA) [12] is a well-known swarm-based algorithm inspired by the flashing aspect of fireflies and 

their Levy flying movement, which has achieved prominence quickly. The unisexual fireflies will be attracted to another firefly, 

and their appeal is proportional to the brightness of light that they emit. As a result of the attraction, one firefly will be drawn 

to another that is brighter. If there isn’t another firefly with a light brighter than it, it will move in a random direction. Choosing 

the CH, clustering nodes, and managing the power of sensor nodes are all common uses of FA in WSN. 

Gray wolf optimization (GWO) [13-14] is a search-based optimization algorithm based on a wolf pack’s hierarchy, 

hunting techniques, and social interactions. It is more adept at searching for the best solution simultaneously using numerous 

agents in less time. It creates circle-shaped surroundings around the solutions that can be expanded to higher dimensions to 

determine the location of the prey. These algorithms, along with other algorithms, are summarized in Table 1. 

Table 1 Comparison of metaheuristic algorithms 

Algorithm Inspiration Advantages Disadvantages 

ACO [8] 
Ants are seeking a path between 

their colony and a source of food. 
Global exploration is a strong suit. 

In the process of exploitation, the 

results were unsatisfactory. Slow 

convergence speed and easy to 

premature 

PSO [9] 
Birds are flying and searching 

randomly for food. 

Computational time and parameter 

tuning are less. 

To some extent, the convergence 

velocity and searching precision are 

inadequate. 

FOA [10] Fruit flies search their prey. 
Simple to implement and easily 

adaptable. 

Easily falling into a local optimal 

solution, failing to traverse the 

problem domain. 

DA [11] 
Static and dynamic swarming of 

Dragonflies 

Have better convergence time, as it 

eliminates looking in non-

promising areas and locating into 

local optima. 

Due to the high exploitation rate, DA 

is readily trapped in local optima. 

FA [12] 
Firefly’s attraction to flashing 

light 

Suitable for usage in nonlinear and 

high-dimensional problems. 

It is challenging to arrive at an optimal 

solution in a fair amount of time. 

GWO [13-14] 
Leadership hierarchy and hunting 

mechanism of grey wolves 

Fast-seeking speed, high search 

precision, 
Inferior local searching 

In general, an anchor node or CH is selected based on the residual energy to assure full connectivity and reliability of the 

WRSN. Existing solutions manage to elect the anchor node or CH, but it is not energy efficient in some cases due to irregular 

distribution of CH. Due to the constraints of WRSN, selecting a better anchor node for inter and intra-cluster communication 

faces several challenges. In WRSNs, choosing a stop-point necessitates choosing between increasing network coverage and 

reducing node energy consumption. Many of the existing studies, however, only take into account one side of this trade-off 

and neglect to take the impact of stop-point selection into account. The primary objective of the proposed work is to predict a 

better SP in each cluster, so the proposed algorithm does not focus on CH selection or its responsibilities.  

This paper uses run time metrics such as distance, energy, trust factor, and delay to elect an anchor node whose position 

is considered an SP. This problem is well addressed with deterministic approaches in the literature. These approaches pave an 

efficient way to determine the best location for an anchor node or CH. To achieve improved accuracy and scalability than any 

one algorithm alone, hybrid algorithms can combine the strengths of various algorithms. Additionally, in WRSNs, hybrid 

algorithms can be created to conserve energy. The existing related work is briefly explained in section 2 which provides context, 

identifies research gaps, and demonstrates knowledge of the existing works. 
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From the above discussion, it is inferred that SP selection procedures in WRSNs typically confront two obstacles: (i) 

determining the best SP in each cluster for a given fitness function for enhancing the charging efficiency, (ii) building this 

fitness function with the dynamic and critical parameters by current network condition. To address this, the hybridization of 

metaheuristics algorithms [15] will be the better choice as it combines the benefits of different optimization algorithms by 

minimizing their limitations. It can be seen from Section 1.1 and Table 1 that DA, FA, and GWO will make better hybridization 

candidates. With these observations in hand, the following objectives are targeted in this paper. 

(1) Developing an efficient SP selection technique for collaborative charging of RSNs with minimal charging delay and 

prolonged network lifetime.  

(2) Designing an effective hybridization technique with DA, FA, and GWO and generating its fitness function for the hybrid 

technique with the aid of dynamic network parameters. This guarantees a better SP that minimizes charging delay with a 

few MCV trips. 

(3) Simulating the proposed hybrid model and comparing its performance with other existing algorithms to show its efficiency 

in terms of convergence rate, charging throughput, delay, and network lifetime. 

3. Related Work 

This section discusses various approaches that have addressed the charging scheme, including a summary of these 

approaches in Table 2. Xie et al. [6] utilized the reformulation linearization technique to optimize the path and travel time of 

the mobile charger. The cell structure was divided into hexagonal cells, with the middle point of each cell designated as the 

SP. The charging vehicle would commence from the utility station (US) or BS, travel to the middle point of the cells, and 

collaboratively charge the sensors in the corresponding cells.  

After completing the trip, the MCV would return to the US to recharge itself and remain idle until further requests are 

received. A joint optimization technique was employed to maximize the ratio of idle time to trip time. The proposed multi-

node charging scheme has demonstrated improved charging efficiency and scalability. However, it does result in an increased 

number of SPs for a limited number of nodes. 

Xie et al. [16] addressed the charging problem as a non-linear program (NLP) and recast it as a mixed integer linear 

program (MILP) using discretization. The network is taken as a 2D plane, and the charging space is divided into hexagonal 

cells. The middle point of the cell is considered SP, where the MCV travels through an optimal path to the SP for charging the 

RSNs. Even though a cell contains one energy-depleted node among very few RSNs, the charger needs to go to the middle of 

the cell to replenish that single RSN, thus increasing trip time. 

He et al. [5] proposed an on-demand charging method that allocates a time slot for serving each node. Based on the 

geographical priority of RSNs, the charging trip is estimated. The SP is assumed as the nearest point of each energy-depleted 

node. However, estimating the better trip plan is a challenging task in a fair amount of time. 

Han et al. [17] adopted the K-means clustering algorithm to divide the network into clusters. The US calculates the 

positions of the anchor nodes in each cluster based on the energy dispersion. Each cluster’s anchor point is visited by two 

MCVs traveling in opposite directions with the shortest Hamiltonian cycle. After the current tours of two MCVs, a semi-

Markov model for energy prediction is proposed for changing the anchor nodes for the next tour, which is quite complex.  

Khelladi et al. [18] translated the SP calculation problem of MCV into a clique partition problem. During the clique 

formation, there is a good chance for overlapping their PRDs in a single point, which is considered an SP for that clique. It 

facilitates the MCV to charge all nodes in the clique. Though the number of SPs is reduced, overlapping SP regions results in 

inappropriate SP selection for certain RSNs. 
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Lin et al. [19] proposed a threshold-based on-demand charging scheme and tested it in a circular and square-shaped 

network. In the first case, MCV chooses a random SP in this circular area and charges all RSNs in its charging range at the 

same time. Whereas in the second case, the middle point of the square is considered as SP to charge all the RSNs in the square. 

The SP selection is unseemly poor in both cases, with increased SPs for limited RSNs. Han et al. [20] exhibited a collaborative 

charging algorithm and adopted a gradient descent optimization approach to select SP in each cluster. If there are more energy-

depleted nodes, then the optimization approach models RSNs as discrete particles to choose MCV’s good SP. The clustering 

of RSNs is enhanced through the use of an optimization algorithm. However, managing the MCV to locate the sub-MCVs 

presents significant challenges and complexity. 

Han et al. [21] addressed the energy replenishment problem in rechargeable sensor networks (RSNs) by formulating it as 

an optimization problem. Their objective was to identify optimal SPs while minimizing the number of non-functional nodes. 

The network is partitioned into clusters based on residual energy and distance criteria. The CH for each cluster is selected 

based on high energy levels and assigned as the SP for that cluster. Although this approach reduces the number of non-

functional nodes, it may encounter SP selection challenges during periods of congestion. 

Wang et al. [22] proposed an optimal scheduling scheme for the MCV to maximize its vacation time. The network is 

divided into clusters based on the distances between sensor nodes. The Floyd algorithm is employed to determine the shortest 

distance between each node, which is then designated as the SP for the MCV to charge the nodes within each cluster. This 

scheme is well-optimized for dynamic topology. However, it can be time-consuming due to the unnecessary movement of the 

MCV. A comparison of the related works is presented in Table 2. 

Table 2 Related work 

References Network division SP Objectives Disadvantages 

He et al. [5] No division Near the point of each cell 
Priority-based charging 

scheme. 

Random increased 

number of SPs. 

Xie et al. [6] Hexagonal cells Cell’s middle point 
Pathfinding between SPs 

using RLT. 

Increased number of SPs 

for limited nodes. 

Xie et al. [16] Hexagonal cells Cell’s middle point 

Averaging the energy 

transfer efficiencies is 

experimented. The 

traveling path is 

constructed. 

Static clustering with an 

increased number of SPs 

for limited nodes. 

Han et al. [17] Clusters The Anchor point of CHs 

SPS selection in the 2D 

domain and Markov 

model for energy 

prediction have been 

constructed. 

Extraneous MCV 

movement to charge a 

single-node of a cluster. 

Khelladi et al. [18] Clique Overlapping point 
To reduce SPs using 

clique algorithm. 

Complex and 

inappropriate to include 

certain RSNs. 

Lin et al. [19] 
Circular region 

and square grids 

Random points in circular 

regions and midpoints in 

square grids 

On-demand charging path 

construction. 

Random increased 

number of SPs for limited 

nodes. 

Han et al. [20] Cluster 
Near the point of each cell 

or gravitational point 

SPA using gradient 

optimization. 

Complex gravitational 

SPs selection. 

Han et al. [21] Cluster CH point 

Uneven cluster-based SP 

selection and energy 

replenishment. 

SP was selected based on 

only residual energy and 

distance factors. 

Wang et al. [22] 
Subnetwork as 

clusters 
Center location 

SP selection to maximize 

the vacation time of 

MCV. 

Extraneous MCV 

movement to charge a 

single-node of a cluster. 

From the above discussion, it is inferred that single-node and collaborative charging methods have their strengths and 

weaknesses. In single-node charging mode, the MCV movement is increased with increased charging time in the charging 

area. Whereas in collaborative charging, not all the energy-depleted RSNs are recharged due to improper selection of SPs. 
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Consequently, these issues trigger more MCV trips, charging delays, and lesser charging throughput, thus failing to prolong 

the network lifetime. To mitigate the problems described above and to address the objectives mentioned in Section 1.2, the 

following contributions are given by this paper. 

(1) For predicting better SPs in each cluster, this paper proposes an efficient SPS for collaborative charging of on-demand 

RSNs with fewer charging tours.  

(2) The proposed approach hybridizes three metaheuristic algorithms, DA, FA, and GWO, to elect an anchor node that 

becomes SP in that cluster. To enrich this selection, the fitness function of this hybrid approach considers the crucial run 

time metrics such as energy, delay, distance, and trust. This assists in identifying and recharging all energy-depleted RSNs 

before running out of energy.  

(3) The hybrid algorithm is evaluated with 100 RSNs in a 100 × 100 charging area to show its performance over other 

traditional existing models. 

4. Proposed Hybrid Metaheuristic Algorithm for Stop Point Selection (HMA-SPS) 

For a better selection of SPs, a hybrid optimization algorithm is proposed to select an anchor node with the aid of run-

time decision metrics. Its position will be the SP for MCV. The proposed HMA-SPS hybridizes the concept of FA, DA, and 

GWO algorithms. Though these algorithms possess many advantages individually, they suffer disadvantages like delayed 

convergence and curtailing internal memory. However, this hybridization achieves better convergence and increases the active 

nodes, as discussed in the following sections. Table 3 lists a few significant mathematical notations along with the descriptions 

that go with them. 

Table 3 Mathematical notation 

Notation Explanation 

CAr Charging range 

Ofn Objective function 

Rp Pth Sensor node (RSN) 

E(Rp) Energy of Pth (RSN) 

BS Base station 

CHc Anchor node 

L Total number of clusters 

Rser Packet service rate 
 

4.1.   WRSN system model 

 
Fig. 2 WRSN system model 

WRSN comprises a certain number of RSNs randomly deployed over an m × m dimensional area. These RSNs are 

distributed among C1, C2, …, and Cn clusters. The proposed algorithm predicts the SP for each Ci intending to charge more 

energy-exhausted RSNs during a visit. The estimated SPs need not be in the center of the cluster, and they may be anywhere 
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in the cluster based on the requirement. Emax is the maximum residual energy of each RSN (R). The RSNs with the minimum 

energy Emin send the charging request to MCV through their corresponding anchor nodes. After receiving the requests, MCV 

gathers the information in terms of energy, distance, trust, and delay for each of the RSNs. With this information, MCV predicts 

the SP for each cluster and starts the trip. Once the MCV reaches SP, it collaboratively charges RSNs within its charging range 

CAn. When the journey is over or the MCV itself runs out of energy, it returns to BS. The MCV’s journey and scheduling play 

a significant role in the RSNs’ timely charging, which prolongs their battery life [23-24]. The recharged MCV becomes idle 

in BS until it receives further requests. The Fig. 2 depicts the WRSN system model. 

4.2.   Constructing objective function for the proposed HMA-SPS 

Most of the existing work considered the residual energy of RSNs and distance factors for SP selection [25]. The proposed 

algorithm seeks to forecast SPs more precisely to increase charging throughput. For that, additional parameters are taken into 

account to construct an objective function.  

( )1m nfnO f fτ τ= + −  (1) 

Eq. (1) gives the minimized objective proposed function with additional parameters, such as trust factor (for assessing the 

dependability of RSNs) and delay (for slowing down faster data transmission). 

1

1 n

p
p

n R BS
n

f
=

= −  (2) 

where � is a mathematical constant and �� calculates the summation of distance from each sensor node �� to the BS as in Eq. 

(2). 

The parameter �� calculates the weighted sum value with the better values of distance, energy, delay, and trust values of 

RSN,  

1 2 3 4= × + × + × + ×m energy trustdis delayf C OPT C OPT C OPT C OPT  (3) 

1 2 3 4 1+ + + =C C C C  (4) 

In Eq. (3), each of the decision metrics OPTdis, OPTenergy, OPTdelay, and OPTtrust is multiplied with their corresponding constant 

parameters C1, C2, C3, and C4, respectively, and they are estimated by satisfying the following Eq. (4). By altering weights, 

the optimization process considers these parameters’ significance. In the subsequent subsections, the effects of the decision 

metrics and their estimations are covered. 

4.2.1.   Energy (OPTenergy) 

As the energy factor directly influences the network lifetime, it is considered a primary and inevitable metric in most 

processes. If the SP is selected nearer to more energy-depleted RSNs, the MCV moves to this SP and charges these nodes first 

and faster. The other 2-hop RSNs within CAr will be recharged with some extra time due to the distance between RSNs and 

MCV. The proposed HMA-SPS algorithm implements the first-order radio model [26] for their energy dissipation calculations. 

The objective function of the energy factor is calculated by 

−

−

=
m energy

energy

n energy

OPT
OPT

OPT
 (5) 

where OPTm-energy and OPTn-energy denote the cluster’s residual and deleted energy, respectively. If OPTm-energy and OPTn-energy of 

Eq. (5) [25] attain more CH and energy, then the value of OPTenergy will be higher than one. If the consumed energy increases 
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more than the remaining energy, then the better value will be lesser than one resulting in the inconsistency of the network. 

Therefore, this is considered to select SPs to balance OPTenergy that should not get reduced than 1.  

The deviations of node energy and unit value are the conditions for achieving the reduction criterion which is given by 

( ) ( ) ( )
1&

1 ;  1
= ∈

= − × < <
L

n
p c c

p p r

nE r E R E CH r CH  (6) 

where E(CHc) is the energy of the anchor node, which is the SP for MCV, E(Rp) is the energy of the pth RSN, and E(Rr) is the 

energy of the rth RSN, respectively.  

( )- 1=
= cCH

m energy r
OPT nE r  (7) 

( ) ( )- 1 1= =
   

  
= × ×

n n
c cCH CHn

n energy c p rp rOPT CH Max E R Max E R  (8) 

In this case, the better SPS procedure results in a lower value of OPTm-energy in Eq. (7). Since the minimum value is considered 

in SP selection, MCV will charge the nearby nodes faster than faraway ones. Thus, the SP is selected to be the minimum 

energy level node to gain energy more quickly during recharging [8]. 

4.2.2.   Distance (OPTdis) 

( )

( )

dis m

dis

dis n

OPT
OPT

OPT
=  (9) 

( ) 1 1

cN CH r r
p c cdis m p r

OPT R CH CH BS
= =

= − + −   (10) 

( ) 1 1

N N

p rdis n p r
OPT R R

= =
= −   (11) 

The fitness function for the distance factor is computed in Eq. (9) [25]. Here OPTdis(m) calculates the distance between all 

the nodes as in Eq. (11), and OPTdis(n) calculates the distance from the sensor node to its SP and then to BS as in Eq. (10). N is 

the total number of clusters of the WRSN. 

4.2.3.   Delay (OPTdelay) 

As the chosen SP is the anchor node of the cluster, the increased number of nodes in a cluster will increase the delay 

resulting in congestion during intra-cluster communication and in sending the charging request to MCV since on-demand 

charging requests collected by the anchor node should arrive at the MCV quickly to schedule the charging rapidly. The fitness 

value calculation considers the delay factor and is evaluated 

( )1=
=

cCH r
cr

delay

CHMax
OPT

L
 (12) 

where L is the total number of clusters and Max in Eq. (12) is the maximum count of nodes at the SP to notice the density of 

the cluster. 

4.2.4.   Trust (OPTtrust) 

The reliability of an SP is calculated based on the packet service ratio and distance factor. The lower the collision at SP, 

the higher the SP’s reliability. The trust factor mainly depends on the packet service ratio PSR and is calculated by 

= ser
SR

scd

P
P

R
 (13) 
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where Rser is the packet service rate and is computed from the packet service time Tser. Rscd is the packet schedule rate 

,      

,  1

µ

β

<


=

=

= ×
ser SRscd

ser SRscd

if

if

R R P

R R P
 (14) 

where 0 < µ < 1, 0 < β < 1 are constants. 

The fitness function of the trust factor is computed based on direct and indirect trust. The direct trust Dtrust is calculated 

between any sensor node Ni and its corresponding anchor node CHi. In contrast, the indirect trust IDtrust is calculated between 

the remaining nodes RNi of the cluster and its anchor node CHi and is measured through the sum of all nodes. The direct trust 

Dtrust and indirect trust IDtrust are given by 

( )
( )
( )

,
×

= =
↔

i SR

trust i i

i i

E N P
D CH N

Dis CH N
 (15) 

( ) ( ), ,= ×trust trust i i trust i iID D CH RN D RN N  (16) 

where �	
�� is the energy of any sensor node Ni, 
��	��� ↔ 
�� gives the distance between an anchor node and a sensor 

node. The final trust factor, OPTtrust, which combines direct and indirect trust is computed by 

( )1 ζζ + − ×= × trust trusttrust IDOPT D  (17) 

Thus, the better value of these four parameters is calculated for all RSNs to compute the objective function of the proposed 

hybrid system. 

4.3.   Proposed hybridization approach for SPS 

The proposed HMA-SPS algorithm enhances the performance of DA by integrating GWO and FA with its exploration 

(Phase I) and exploitation (Phase II) steps, and is depicted in Fig. 3. During the exploration phase of DA, each agent moves 

independently and explores the region for searching a food source with the aid of FA. Whereas in the exploitation phase, the 

agents move in groups, and their movements are controlled by DA. Towards the target positioning for identifying the food 

source, GWO is adopted by DA to make faster target acquisition. 

 
Fig. 3 Depiction of the proposed algorithm 
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The proposed SPS approach initializes the dragonfly population, and then the fitness value using the objective function 

Ofn of each agent is calculated. 

( )1
3

α γβ+ +
+ =

X X X
X i  (18) 

After evaluating the fitness value of all search agents or members of the population in the current iteration i, the top three 

solutions are obtained by GWO termed as α, β, and γ to find a better position as in Eq. (18) for the next iteration. Consequently, 

the remaining search agents update their positions by the best search agents’ locations. 

Then the adversary and food source are updated using DA that enables the sensor nodes to move towards the nearby 

anchor node to form a cluster. The two vectors, step VS and position VP of DA are evaluated for updating the location of 

dragonflies in an exploration space and completing their movements. More specifically, the step vector reveals the dragonfly’s 

movement, and the position vector reveals the location of the dragonfly, and these vectors are determined by 

( ) ( ) ( )1 i i i i iS SV t aSE bAL cCO dAT eDT wV t+ = + + + + +  (19) 

( ) ( ) ( )11 + ++ =P P St V tV t V  (20) 

These vectors are used to update the position P of dragonflies in an exploration space and to wrap up their movements, 

where a is the separation weight, b is the alignment weight, and c denotes cohesion weight. The food factor is represented by 

d, the adversary factor is represented by e, w symbolizes the inertia weight, and the iteration counter is denoted by t. With 

these constants, initial parameters in DA such as separation SEi, alignment ALi, cohesion COi, attraction ATi and distraction 

DTi are calculated for the further movement updation.   

The separation parameter SEi is evaluated by 

1=
= − −

N

i jj
SE Y Y  (21) 

where Yj means the jth position of the neighboring member, Y denotes the current individual’s position, and N is the number 

of neighboring individuals.  

Alignment ALi is calculated using the corresponding equation 

1=
=
 eN

jj

i

e

Q
AL

N
 (22) 

where Qj is the velocity of the jth neighboring person. Furthermore, the formula for cohesiveness COi is presented in 

1=
= −
 eN

jj

i

e

Y
CO Y

N
 (23) 

where Yj represents the location of the jth adjacent individual, Ne means the neighbor count, and Y represents the current 

individual’s position. 

Attraction ATi towards a food resource is calculated by 

+← −iAT Y Y  (24) 

where �� represents the location of the food source and Y represents the current person’s location. 
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Distraction DTi from an adversary is stated in 

−← +iDT Y Y  (25) 

where �� denotes the adversary’s current location and Y is the current location of individuals. 

During the position update, if the dragonfly has no neighbors Ne, the traditional levy update is used to update its position, 

but in the proposed HMA-SPS algorithm, the FA algorithm is utilized to do the position update STi. Can be expressed by 

( ) ( ) ( ) ( ) ( )1 , ε 
 + = + − +i i j i iST t ST t ATT i j ST t ST t r  (26) 

2

0
−= ycATT ATT e  (27) 

where �� is the random number. In Eq. (26), the three parameters, such as the present location of ith firefly (RSN), attraction 

(ATT), and a random walk involving a variable r, is used to update the anchor node position as SP with the help of firefly 

movement. ATT portrays the attraction factor of fireflies, and ATT0 represents the level of attraction at c = 0. When ATT0 = 0, 

the movement is solely determined by random walks. The variable y has a significant impact on convergence speed. c is the 

distance between two fireflies fik and fjk, and is given by 

( )
2

1

=

=
= −

k n

ij ik jkk
C v f f  (28) 

The letter n denotes the dimensionality difficulties. Another more beautiful firefly j attracts the ith firefly’s movement. 

To summarize all these steps, for all the flies or agents (RSNs), the fitness value is determined using the objective function 

(Eq. (1)). At each round, the agents move towards the best result based on the four factors in the proposed objective function 

to obtain the SP. Before starting a trip, the proposed algorithm selects this better point as an SP, and the node at the point is 

chosen as an anchor node for that round, which will then collect cluster data. Once MCV comes to the SP of the cluster, the 

anchor node passes information about the cluster for a future update. The detailed algorithm is given in Algorithm 1. 

Algorithm 1: Hybrid metaheuristic algorithm for stop point selection (HMA-SPS) 

 
Input (for RSN): Initial Population IP, packet service ratio ���, inertia weight w, separation weight s, alignment weight 

a, cohesion weight c, food factor f, enemy factor e, position p, neighbor radius Rne, food source Sf, and adversary Ad. 

 Output (SP): Separation H, alignment B, cohesion G, attraction F, distraction E, and fitness for SP ��� , 

1 Initialize IP 

2 While (end condition) 

3  While (IP ≤ n) 

4   ��� ← ��� + 	1 − ���� 

5  End while 

6  For all IPi do 

7   Get α, β, γ with GWO then 

8    	� + 1� ←  ! +  " +  #
3  

9   Update Sf  & Ad 

10   Update ���, w, a, b, c, d, and e 

11  End for 

12  For IP ← 1 to n do 

13   %�� ← − & � − �'
(

')*
 

14   +,� ← �±. 

15   ��� ← ∑ .012034
(2

− �  

16   +,� ← �� − � 

17   
,� ← �� + � 

18   Update Rne 
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19   If (DFi+1 == 1) then 

20    56	7 + 1� ← 	8%�� + 9+:� + ;��� + <+,� + =
,�� + >56	7� 

21    5�	7 + 1� ← 5�	7� + 56	7 + 1� 

22   Else 

23    %,�	7 + 1� ← %,�	7� + +,,	�, @�A%,'	7� − %,�	7�B + C�� 
24   End if 

25  End for 

26 End while 
 

5. Simulation Results and Analysis 

The conventional FA, DA, and GWO algorithms are simulated to predict the SPs in WRSN to evaluate the performance 

of the proposed HMA-SPS algorithm. The proposed HMA-SPS algorithm is also compared with some of the benchmark 

algorithms namely DWDP [19] and MNC [6]. For all these algorithms, network energy, delay, active nodes, and trust factor 

are measured and compared with the proposed algorithm. The benchmark algorithms are also implemented in MATLAB by 

adjusting their parameters up to the proposed algorithm. 

These algorithms are simulated using MATLAB R2016b on an Intel(R) Core(TM) i7-6700 CPU 3.40 GHz RAM 16 GB. 

Simulation is carried out with 100 sensor nodes deployed over a 100 m × 100 m square area with a centralized BS. The initial 

energy of each node is set up to 2J. The energy of the power amplifier is set at 0.0013 nJ/bits/m2. The energy of the transmitter 

and receiver is set at 0.05 µJ/bit. Also, the energy of data aggregation is assumed as 0.5 µJ/bit. After certain trial and error, the 

α, β, and γ values of GWO are taken as [0.25,0.2,1]. By taking into account the previous works and numerical trials, the value 

of ζ in calculating the trust factor and the value of t in calculating the objective function are taken as 0.25 respectively. 

5.1.   Convergence analysis 

 

(a) For 15 rounds 

  

(b) For 100 rounds(traditional) (c) For 100 rounds 

Fig. 4 Convergence analysis 
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Figs. 4(a) and 4(b) depict a comparison of the cost function of the proposed HMA-SPS algorithm and other algorithms 

(FA, DA, and GWO). According to the experimental results, the proposed model outperforms the other compared strategies 

in terms of outcomes. Fig. 4(a) shows the analysis for the first 15 rounds, and Figs. 4(b) and 4(c) show 100 rounds. Compared 

to GWO, the HMA-SPS model exhibits high-cost results from iterations 1 to 3 can be attributed to updating the agents’ 

positions. Then it is gradually decreased and becomes constant after some rounds resulting in faster convergence than the 

existing algorithms. The proposed HMA-SPS algorithm produces superior results than the existing DWDP and MNC 

algorithms and is depicted in Fig. 4(c). Compared to DWDP and MNC algorithms, HMA-SPS has fewer SPS, which lowers 

the cost function and improves system performance. 

5.2.   Residual energy analysis 

The residual energy of the entire network at the end of each round is measured for the algorithms FA, DA, and GWO and 

plotted in Fig. 5(a) and 5(b) for the first 15 rounds and  100 rounds, respectively. The energy dissipation in the proposed HMA-

SPS algorithm is reduced by searching for a better SP for MCV, which increases the residual energy of the network. Compared 

to the current DWDP and MNC algorithms, the proposed algorithm has increased the network’s residual energy by featuring 

a reduced charging delay and more charging nodes for each cluster. The existing MNC algorithm increases unnecessary 

charging cycles by periodically charging all of the nodes in its partitioned cells or cluster cells. As a result, the network uses 

more energy, and RSNs with higher energy levels are charged more frequently than necessary.  

When using the DWDP algorithm, fewer on-demand RSNs are charged for each cell at each MCV trip, which results in 

longer wait times for nodes to recharge and lower overall network energy. Fig. 5 shows the residual energy of the network is 

more for the proposed algorithm than other existing algorithms. This results in a longer network lifetime. This is primarily due 

to the SPs using the hybridization approach quickly reaching their ideal positions and reducing energy loss. 

 

(a) For 15 rounds 

  

(b) For 100 rounds(traditional) (c) For 100 rounds(related) 

Fig. 5 Network energy 
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5.3.   Delay analysis 

Fig. 6 demonstrates the superiority of the presented HMA-SPS model in terms of delay in the SP selection process. The 

obtained results show that the proposed model has a significantly lower delay compared to the FA, DA, GWO, DWDP, and 

MNC models. This reduction in delay decreases the energy dissipation of the system, thereby increasing the network’s lifetime. 

The proposed model’s delay is less and approaches a constant value after fewer rounds. In each round of charging tour, more 

RSNs are recharged in each cluster, thus reducing the number of MCV trips and charging delay. However, fewer RSNs are 

recharged in each cell in MNC and DWDP than in HMA-SPS, increasing the number of MCV trips and charging delay. 

 

(a) For 15 rounds 

  

(b) For 100 rounds(traditional) (c) For 100 rounds(related) 

Fig. 6 Delay 

5.4.   Number of active nodes 

The number of active nodes is high in the proposed HMA-SPS than FA, DA, and GWO as depicted in Figs. 7(a) and 7(b). 

Due to the better position update and SPS, the energy dissipation and delay of the clusters will be lower. More RSNs are 

grouped in each cluster by the proposed HMA-SPS algorithm, increasing the number of nodes charged in each MCV round. 

However, there are fewer nodes in each cell in MNC and DWDP, which lowers the number of charging nodes during each 

charging round. This resulted in a higher number of alive nodes for the HMA-SPS algorithm than the existing algorithms 

(DWDP and MNC) and is shown in Fig. 7(c). The hybridization in HMA-SPS shows faster convergence in selecting better 

SPs than the existing algorithms. The distance factor enhances the packet relay, thus increasing the number of alive nodes, 

thereby increasing the network’s lifetime. 
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(a) For 200 rounds 

  

(b) For 600 rounds(traditional) (c) For 600 rounds(related) 

Fig. 7 Number of active nodes 

5.5.   Trust factor 

The trust factor is calculated by considering the amount of energy and the level of congestion. Trust enhances the direct 

and indirect reliability of the cluster. In Figs. 8(a) and 8(b), the trust factor value is increased by the proposed algorithm, 

whereas it is reduced in other existing algorithms (FA, DA, and GWO). The limited SP in DWDP causes the MCV to receive 

numerous on-demand requests, which worsens the congestion and brings down reliability. Frequent MCV trips and periodic 

charging reduce the service rate in MNC by creating a demand for charging among RSNs. The diminishing of this factor also 

increases the delay of the network. It means that nodes in the HMA-SPS algorithm are more reliable than nodes in the existing 

algorithms, which increases the robustness and throughput of the proposed network. The increased service rate of the proposed 

HMA-SPS makes it possible to achieve a higher trust factor than DWDP and MNC, as shown in Fig. 8(c). 

 

(a) For 15 rounds 

Fig. 8 Trust factor 
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(b) For 100 rounds(traditional) (c) For 100 rounds(related) 

Fig. 8 Trust factor (continued) 

6. Conclusion 

This study presents an HMA-SPS to enhance charging efficiency in WRSN. The algorithm combines FF, GWO, and DA 

to predict improved SPs within each cluster based on the energy, distance, delay, and trust factor of RSNs. By selecting these 

SPs, a greater number of RSNs can be recharged in fewer MCV trips. 

The proposed algorithm is extensively simulated and evaluated using various metrics, including network energy, delay, 

the number of active nodes, and trust factor. The key findings are as follows: 

(1) Comparative analysis with existing approaches demonstrates that the proposed algorithm outperforms others in terms of 

extending network lifetime.  

(2) The proposed algorithm effectively maintains high network energy levels, thereby increasing the number of active network 

nodes.  

(3) The proposed system significantly reduces delay, resulting in enhanced charging efficiency.  

(4) The higher trust factor achieved by the proposed HMA-SPS ensures reduced MCV trips and improved on-demand 

charging. 

It is worth noting that the proposed work focuses on static nodes and does not consider the dynamic nature of RSNs. Future 

efforts will aim to address this limitation by incorporating dynamic parameters for SP selection, CH selection, and MCV 

scheduling, specifically tailored for dynamic RSNs. 
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