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Abstract 

Early detection of diabetes is crucial because of its incurable nature. Several diabetes prediction models have 

been developed using machine learning techniques (MLTs). The performance of MLTs varies for different accuracy 

measures. Thus, selecting appropriate MLTs for diabetes prediction is challenging. This paper proposes a multi-

criteria decision-making (MCDM) based framework for evaluating MLTs applied to diabetes prediction. Initially, 

three MCDM methods—WSM, TOPSIS, and VIKOR—are used to determine the individual ranks of MLTs for 

diabetes prediction performance by using various comparable performance measures (PMs). Next, a fusion approach 

is used to determine the final rank of the MLTs. The proposed method is validated by assessing the performance of 

10 MLTs on the Pima Indian diabetes dataset using eight evaluation metrics for diabetes prediction. Based on the 

final MCDM rankings, logistic regression is recommended for diabetes prediction modeling. 
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1. Introduction 

Diabetes is among the most prevalent and severe health conditions worldwide. According to the International Diabetes 

Federation [1], 537 million individuals globally have diabetes. This number is projected to increase to 643 million by 2030. 

Over 18% of global deaths can be attributed to four primary diseases, namely chronic respiratory diseases, cancer, 

cardiovascular disease, and diabetes, emphasizing their significance as major public health concerns [2]. Obesity, poor dietary 

habits, elevated blood pressure, genetic predisposition to diabetes, advanced age, physical inactivity, and lifestyle factors all 

contribute to diabetes. As the disease progresses, patients with diabetes are more likely to develop health complications, such 

as heart disease, nerve damage, stroke, kidney failure, and vision problems.  

Similar to many diseases, early diagnosis of diabetes is pivotal for managing diabetes and preventing its progression and 

severe symptoms. Diabetes is typically diagnosed either manually by medical professionals or through technology-driven 

methods. Each of these procedures has unique advantages and disadvantages. Although manual diagnosis by medical 

practitioners offers exceptional human insight, technological advancements have significantly improved this procedure, 

making it the predominant choice currently [1]. Technology-based approaches have the advantage of requiring less time and 

resources. In addition, in the early stage of the disease, technology can more efficiently identify the signs of diabetes than 

manual procedures while avoiding human error and complications. With the increasing availability of electronic health records, 

automated diabetes detection technologies have become increasingly appealing. 
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Studies have recently examined the performance of machine learning–based models in diabetes prediction and 

demonstrated their benefits in the healthcare industry [3-4]. Such models are widely used to predict not only diabetes but also 

other diseases. For example, Hussain et al. [5] examined the accuracy of four machine-learning models in the diagnosis of 

cardiovascular diseases. 

Machine learning algorithms can be used to establish models based on training data to make predictions or judgments 

without requiring extensive programming. The predictive capability of machine learning techniques (MLTs) considerably 

varies across several competing model performance measures (PMs). Furthermore, the widely accepted no-free lunch theory 

in computational intelligence refutes the existence of a single prediction strategy that can outperform other techniques across 

all competing model PMs for a specific application domain [6]. Thus, selecting the appropriate technique for building accurate 

diabetes prediction models is challenging. To address this challenge, this paper proposed a method to identify the most suitable 

MLT for diabetes prediction among various available MLTs. This method involved optimizing the performance of these MLTs 

by considering various PMs altogether. 

This research suggests an MCDM-based approach for choosing the most appropriate machine learning technique for 

diabetes prediction in the presence of several evaluation metrics. This study makes a variety of contributions, which can be 

summed up as follows: 

(1) This study presents a novel MCDM-based approach to identify the most appropriate MLT among various available ones 

for diabetes prediction. 

(2) In the proposed framework, three MCDM methods, namely the weighted sum method (WSM), a technique for order of 

preference by similarity to ideal solution (TOPSIS), and VlseKriterijumska optimizacija I kompromisno resenje (VIKOR), 

were initially applied to determine the individual ranking scores of MLTs for diabetes prediction performance based on 

multiple conflicting PMs. 

(3) Next, a fusion approach (rank position method (RPM)) was employed to determine the final rank of each MLT because 

of variations in ranks evaluated using the three MCDM methods. 

(4) To ensure the validity of the suggested framework, an experimental study was conducted to evaluate the diabetes 

prediction performance of 10 MLTs over the PID dataset, considering eight evaluation metrics. 

(5) This paper also performed the Bayesian sign test to demonstrate that the MLT for diabetes prediction modeling 

recommended by the proposed MCDM-based approach significantly outperformed other MLTs. 

The remainder of the paper is structured as follows. Section 2 presents the literature review. Sections 3 and 4 discuss the 

proposed framework and experimental study, respectively. Section 5 presents the results and discussion. Section 6 concludes 

the paper. 

2. Literature Review 

Numerous studies globally have utilized various strategies to improve and evaluate the capability of MLTs for predicting 

diabetes. Birjais et al. [7] applied three machine learning models, namely logistic regression (LR), Naive Bayes (NB), and 

gradient boosting, for diabetes prediction with the Pima Indian diabetes (PID) dataset. The authors used three PMs to measure 

the performance of these models: specificity, sensitivity, and accuracy. LR predicted diabetes with an accuracy, specificity, 

and sensitivity of 79.2%, 100%, and 77.8%, respectively. NB exhibited an accuracy, specificity, and sensitivity of 77%, 80.4%, 

and 66.6%, respectively. Gradient boosting demonstrated an accuracy, specificity, and sensitivity of 86%, 71.4%, and 81.5%, 

respectively. 
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Khanam and Foo [8] conducted a comparative study to examine the performance of the following seven machine learning 

models for diabetes prediction by using the PID dataset: linear regression, support vector machine (SVM), decision tree, k-

nearest neighbor (KNN), random forest (RF), AdaBoost (AB), and NB. They calculated accuracy, F-measure, recall, and 

precision to examine the performance of these models. 

Ramesh et al. [9] developed a model using an SVM for predicting diabetes. The authors used the PID dataset to validate 

their proposed model. Gupta et al. [10] developed two diabetes prediction models, namely quantum machine learning and deep 

learning models. An experimental study was performed using the PID dataset. The performance of the proposed models was 

examined by measuring the false detection rate, balanced accuracy, specificity, F1-score, recall, and precision. Houri et al. [11] 

developed diabetes prediction models using a decision tree and XGBoost. 

Ganie and Malik [12] compared six MLTs, namely artificial neural network, RF, NB, decision tree, SVM, and LR, for 

diabetes prediction. They indicated that NB and RF outperformed other machine learning models. Panda et al. [13] developed 

diabetes prediction models by using four MLTs, namely SVM, gradient boosting, KNN, and LR. They compared the 

performance of these models for diabetes prediction over the PID dataset by calculating the F1-score, recall, precision, and 

accuracy. 

Olisah et al. [14] proposed the 2GDNN framework for detecting diabetes. Their proposed framework adopts Spearman 

correlation for feature selection and polynomial regression for imputing missing values to increase predictive performance for 

diabetes detection. The authors compared the performance of the suggested model 2GDNN with RF and SVM over two 

diabetes datasets: the laboratory data of the medical city hospital (LMCH) and the PID dataset. The authors used four PMs for 

comparison: accuracy, F1-score, sensitivity, and precision. They reported that their proposed method, 2GDNN, outperformed 

RF and SVM. 

Azit et al. [15] used SVM, artificial neural network, LR, and chi-square automatic interaction detection to predict diabetes. 

They compared the performance of these models in terms of six PMs, namely specificity, sensitivity, classification error, 

accuracy, negative predictive value, and positive predictive value.  While no single machine learning model excelled in all six 

PMs, SVM emerged as the most suitable choice by performing best in five of them. 

Tasin et al. [16] developed a system to automatically predict diabetes using different machine learning approaches, a 

private dataset of 203 female patients in Bangladesh, and a PID dataset.  They addressed class imbalance using adaptive 

synthetic sampling (ADASYN) and synthetic minority oversampling technique (SMOTE). The authors used MLTs such as 

RF, LR, KNN, SVM, decision trees, and various ensemble techniques to ascertain which algorithm yields the best prediction 

outcomes. Recently, Aguilera-Venegas et al. [17] found that for diabetes patient classification, machine learning models 

performed better than traditional statistical methods. They compared four machine learning methods, KNN, RF, neural 

networks, and decision tree techniques, for diabetes prediction by measuring accuracy.   

The following observations were made after thoroughly reviewing the literature for diabetes prediction using MLTs: 

(1) Most researchers have demonstrated the use and efficiency of MLTs for diabetes prediction modeling. 

(2) In some cases, researchers have used only single PMs to evaluate MLTs. Some studies have considered multiple PMs to 

evaluate MLTs for diabetes prediction. However, these studies have not considered the simultaneous optimization of all 

PMs. 

(3) No study has recommended the most suitable diabetes prediction model considering various PMs.  

This study proposed a multi-criteria decision-making (MCDM)-based framework to recommend MLTs for diabetes 

prediction in the presence of multiple PMs by considering simultaneous optimization of all PMs. To the best of the authors’ 

knowledge, no study has identified the most suitable MLT for diabetes prediction using MCDM. However, MCDM has been 
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used to evaluate MLTs for solving other prediction problems. For example, in a recent study, Chowdhury et al. [18] utilized 

the concept of MCDM to select MLTs for predicting COVID-19 disease. Song and Peng [19] evaluated various machine-

learning algorithms for predicting financial risk. Kumar and Kaur [20] proposed the MCDM-based evaluation of different 

machine-learning algorithms for software reliability prediction. Ali et al. [21] presented a precise MCDM method that 

empirically assesses and ranks classifiers, allowing end users to select the highest-ranked classifier for their application to train 

and create classification models. 

3. Proposed Method 

This paper proposes a novel MCDM-based approach to evaluate MLTs for diabetes prediction. Various PMs and accuracy 

were considered in this approach. MCDM is a well-known technique for selecting the most appropriate alternative among 

available ones based on various criteria [22]. Numerous MCDM methods have been used in the literature, and all of them use 

a decision matrix as the input for ranking alternatives. These matrices represent alternative performance relative to evaluation 

criteria. 

Because the proposed approach involved various PMs (evaluation criteria), the selection of the most suitable machine 

learning model (alternative) for diabetes prediction was modeled as an MCDM problem. The proposed methods involve the 

following major steps: 

(1) Train different MLTs for diabetes prediction by using the diabetes dataset. 

(2) Measure the performance of MLTs for diabetes prediction by examining various PMs and present the results as a decision 

matrix.  

(3) Apply three MCDM methods, namely WSM, TOPSIS, and VIKOR, on the decision matrix to obtain the individual 

rankings of diabetes prediction models. 

(4) Apply the fusion approach (RPM) to determine the final rankings of diabetes prediction models. 

(5) Recommend the MLT with the highest rank for diabetes prediction. 

Fig. 1 presents an overview of the proposed approach followed by a detailed description. 

 

Fig. 1 Overview of the proposed approach 

Step 1: Train various available MLTs (let us call it m) by using the diabetes prediction dataset. 

Step 2: Measure the performance of MLTs in terms of various PMs (let us call it n.) 

Step 3: Construct the decision matrix Dm×n., where each entry dij represents the predictive capability of diabetes detection for 

the ith MLT on performance measure j. 

Step 4: Apply the three MCDM methods on the decision matrix Dm×n to obtain the ranks of MLTs for diabetes prediction. To 

obtain reliable rankings, this study employed three MCDM methods, namely WSM, TOPSIS, and VIKOR, which are 

thoroughly discussed in Section 4.4. 
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Step 5: The individual ranks of MLTs obtained using the three MCDM methods were fused to determine the final ranks using 

the RPM. The RPM considers each alternative’s position by each subordinate ranking technique [23]. In this study, 

alternatives were MLTs used for diabetes prediction modeling and subordinate ranking techniques were three MCDM 

methods. The RPM is based on the RPM score. The RPM score for each MLT (MLTi) was employed to obtain the final 

ranks as follows: 

( )
( ) ( ) ( )

1
RPM

1 rank WSM 1 rank TOPSIS 1 rank VIKOR
iMLT =

+ +
 

(1) 

where rank (WSM), rank (TOPSIS), and rank (VIKOR) represent the individual rankings of MLTi produced by three MCDM 

methods WSM, TOPSIS, and VIKOR respectively. 

Step 6: Assign the final rank to the MLTs based on the RPM score determined in Step 5.  Lower RPM scores result in higher 

ranks. The MLT with the highest rank is then recommended for diabetes prediction modeling. 

4. Experimental Setup 

To validate the proposed framework, an experimental study was conducted, and the effectiveness of 10 MLTs was 

compared for predicting diabetes by using a diabetes dataset, considering eight PMs. In the subsequent subsections, the diabetes 

dataset, PMs, MLTs, and MCDM methods are discussed in detail. 

4.1.   Diabetes dataset 

This section is divided into two subsections. Section 4.1.1 presents a detailed description of the diabetes dataset, including 

the total number of observations, total number of attributes, and type of attributes. Section 4.1.2 describes the preprocessing 

of the dataset. 

4.1.1.   Description 

This study used the PID dataset [16] that has been widely employed in previous studies [2, 7-10, 13-16] for developing 

diabetes prediction models. This dataset was used to identify American Pima Indians with diabetes. All patients in the PID 

dataset are women and at least 21 years old. The dataset contains the details of 768 patients, with their nine attributes (Table 

1): number of pregnancies, age (years), diastolic blood pressure (mmHg), body mass index (BMI), skin fold thickness (mm), 

serum insulin level (μU/mL), glucose level (mg/dL), diabetes hereditary factor pedigree function, and outcomes. The attribute 

“outcome” was considered a dependent or target variable, whereas the remaining eight attributes were included as 

independent/feature variables. The diabetes attribute “outcome” is a binary value, where 0 indicates the absence of diabetes 

and 1 indicates the presence of diabetes. 

Table 1 The attributes of the PID dataset 

Attribute Description Type and measurement Mean 

Pregnancy Number of times the female is pregnant Numeric 3.8 

Age Age of the person Numeric (years) 33 

BP Diastolic blood pressure Numeric (mmHg) 69.1 

BMI Body mass index Numeric (kg/m2) 32 

Skin thickness The thickness of the triceps skin fold Numeric (mm) 20.5 

Insulin Serum insulin level after 2 hours Numeric (μU/mL) 79.8 

Glucose 2-hour plasma glucose level during an oral glucose tolerance test Numeric 120.8 

Pedigree Diabetes pedigree function Numeric 0.47 

Outcome Target variable (0: non-diabetic, 1: diabetic) Nominal - 



 International Journal of Engineering and Technology Innovation, vol. 14, no. 1, 2024, pp. 29-43 34 

4.1.2.   Preprocessing 

Preprocessing aids in data transformation, facilitating the development of a more accurate machine-learning model. 

Preprocessing involves several tasks, such as filling in missing values, handling outliers, and feature selection. The likelihood 

of missing values or outliers in any secondary data retrieved from a repository is relatively high. The possibility of missing 

values in data increases for a medical dataset [7]. Before 2011, the PID dataset in the UCI machine learning repository had no 

missing values [7]. However, the zeros that have replaced missing values are biologically impossible to have various attributes 

at these places, such as age and blood pressure. The number of missing values in the PID dataset is listed in Table 2. 

Table 2 The number of missing values in the PID dataset 

Attribute Pregnancy Age BP BMI Sick thickness Insulin Glucose Pedigree 

Number of missing values 0 0 35 11 227 374 5 0 

Numerous approaches may be applied to handle missing values in the dataset. For dealing with missing values in the PID 

dataset, this study used KNN imputation. KNN imputation replaces missing values in a dataset by using the KNN method. The 

application of KNN imputation for discrete, continuous, categorical, and ordinal data makes it a superior technique for handling 

all types of missing data. Eliminating outliers when using distance-based algorithms, such as SVM and LR, is essential [2]. 

The outliers have been removed using the interquartile range (IQR) method. 

4.2.   Machine learning techniques 

In this study, 10 MLTs were considered for diabetes prediction. These MLTs are NB, LR, SVM, KNN, AB, Bagging, 

decision table (DT), decision stump (DS), RF, and OneR. The performance of these MLTs was evaluated considering the eight 

PMs as described in the following section. 

4.3.   Performance measures 

For the evaluation of MLTs, eight PMs were calculated: sensitivity, accuracy, F-measure, Matthews correlation 

coefficient (MCC), false positive rate (FPR), specificity, false negative rate (FNR), and receiver operating characteristic area 

under the curve (ROC-AUC). These PMs can be calculated in terms of true positive (TrPs), false positive (FlPs), true negative 

(TrNg), and false negative (FlNg). TrPs represent correctly classified positive class, FlPs denote incorrectly classified positive 

class, TrNg indicates correctly classified negative class, and FlNg represents incorrectly classified negative class. 

Accuracy: Accuracy is the proportion of all correctly classified observations to the total number of observations [24]. 

Accuracy
r s r g

r s g s r gl l

T P T N

T P F N F P T N

+
=

+ + +
 

(2) 

Sensitivity: Sensitivity is the proportion of correctly classified positive observations to all observations in the actual class as 

positive [24].  

Sensitivity r s

r s gl

T P

T P F N
=

+
 

(3) 

False positive rate (FPR): FPR is the proportion of incorrectly classified positive observations to all observations in actual 

class as negative [25]. 

FPR sl

s r gl

F P

F P T N
=

+
 

(4) 
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F-measure: F-measure presents the balance between precision and recall [25]. 

2
F-measure

2
r s

r s g sl l

T P

T P F N F P

×
=

× + +
 

(5) 

Matthews correlation coefficient (MCC): MCC is widely used for measuring the performance measure for measuring the 

performance of classifiers. The correlation between the target and prediction is measured using MCC [24]. 

( ) ( ) ( ) ( )
MCC

r s r g s gl l

r s s r s g r g s r g gl l l l

T P T N F P F N

T P F P T P F N T N F P T N F N

× − ×
=

+ × + × + × +  
(6) 

Specificity: Specificity [25] is the ratio of predicted false observations to the total number of observations that are identified 

as false. 

Specificity
r g

r g sl

T N

T N F P
=

+
 

(7) 

False negative rate (FNR): FNR is the proportion of incorrectly classified negative observations to all observations in actual 

class as positive [25]. 

gl

g r sl

F N
FNR

F N T P
=

+
 

(8) 

Receiver operating characteristic area under the curve (ROC-AUC): The ROC curve analysis compares the true positive rate 

and FPR in classification results, whereas AUC characterizes the ROC of a classifier. The classifier’s performance is more 

effective when the ROC-AUC score is higher [5]. 

4.4.   MCDM methods 

When decisions must be made based on conflicting criteria, various MCDM methods are available. Every MCDM method 

has benefits and drawbacks. Currently, no approach permits the selection of a specific MCDM method. This study used three 

MCDM methods, namely WSM, TOPSIS, and VIKOR, instead of a single MCDM method to produce a more trustworthy 

ranking of MLTs for diabetes prediction modeling. In the following subsections, all three MCDM methods are explained in 

detail. 

4.4.1.   WSM 

WSM is a widely used MCDM method for selecting the best alternative among different available alternatives in the 

presence of various criteria [26]. The steps for a detailed process are given below. 

Step 1: Use the decision matrix Dm×n. as the input, where each entry dij represents the predictive capability of diabetes detection 

for the ith MLT for performance measure j. 

Step 2: Normalized decision matrix NDm×n is obtained by,  

2

1

,  1  m n m

ij
i

ijd
j to n

d

ND ×

=

==

  
(9) 

Here, m represents the number of diabetes prediction models and represents the number of evaluation criteria. 

Step 3: Determine the total benefit of machine learning-based diabetes prediction models by using the following equation: 
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-

1

,  1,  2,  ,  
bc

tot benefit
i j ij

j

A w nd i m
=

= = …

 
(10) 

Here, wj represents the weight of the jth criterion (performance measure), and bc denotes the benefit criterion (performance 

measure). The benefit performance measure is a measure for which a maximum value is desired. The value of bc is six in this 

study. 

Step 4: Use the following equation to determine the total cost of machine learning-based diabetes prediction models.  

- cos

1

,  1,  2,  ,  
cc

tot t
i j ij

j

A w nd i m
=

= = …

 
(11) 

Here, wj represents the weight of the jth criterion (performance measure), and cc denotes the cost criterion (performance 

measure). The cost performance measure is a measure for which a minimum value is desired. The value of cc is two in this 

study. 

Step 5: Calculate the score of WSM by using the following equation: 

- - costo t benefitw s to t t
i i iA A A= −

 

(12) 

Here, ��
��

 represents the WSM score of the ith diabetes prediction model. 

Step 6: Use the WSM score to rank MLTs for diabetes prediction modeling. The highest rank is assigned to the MLT with the 

highest WSM score. 

4.4.2.   TOPSIS 

TOPSIS is a well-known MCDM technique used for rating available methods to address a decision problem with 

competing criteria [27]. This technique chooses the alternative that is closest to the ideal alternative. An ideal alternative is 

defined as the alternative with the best possible criterion value. The Euclidean distance is utilized as the distance measure. 

Below is a step-by-step procedure. 

Step 1: Use the decision matrix Dm×n. as the input, where each entry dij represents the predictive capability of diabetes detection 

for the ith MLT for performance measure j. 

Step 2: Normalized decision matrix ��×� is obtained by,  

2

1

;  1,  2,  ,  
ij

ij m

ij
i

d
v j n

d
=

= =


…

 (13) 

where each entry vij represents the normalized value of dij. Here, m represents the number of diabetes prediction models, and 

n represents the number of evaluation criteria. 

Step 3: Weighted normalized decision matrix 	�×� is obtained by,  

  ,  1  1  
ij ij j

v w andt i to m j to n= × = =

 

(14) 

where tij represents the weighted normalized value of dij. Here 
�  is the weight assigned to criteria j. 

Step 4: PISn×1 and NISn×1 (ideal solutions) 

The positive ideal solution (PIS) has the highest value that each criterion may achieve. Calculating the negative ideal 

solution (NIS) involves determining the least/worst value that each criterion may attain. PIS and NIS can be determined as 

follows: 
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1 2 3
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ij ij

n

NIS T j z T j z i to m

T T T T− − − −
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 (16) 

where z is related to benefit criteria and z' is related to cost criteria. 

Step 5: The Euclidean distances �
� from PIS and �
� by using the following equations: 

( )
2

1

,  1  
m

i ij j

j

T T i to mED+ +

=

− == 
 

(17) 

( )
2

1

,  1  
m

i ij j

j

T T i to mED− −

=

− ==   (18) 

Step 6: Calculate RCm×1 (relative closeness) 

( )

i

i

i i

ED
RC

ED ED

−

− +
=

+
 (19) 

Eq. (19) can be used to determine RC (how closely each alternative comes to negative and PIS.) 

Step 7: Ranking of alternatives (diabetes prediction models) 

Arrange alternatives (machine learning techniques for diabetes prediction modeling) in the decreasing order of RC value, 

based on the value of RC obtained in Step 6. The MLT with the maximum value of RC will be suggested as the most suitable 

MLT for diabetes prediction modeling. 

4.4.3.   VIKOR 

VIKOR is a widely used MCDM method. This method produces the ranking index of alternatives based on a particular 

measure of closeness to the ideal solution in the presence of conflicting criteria. Following is the detailed procedure of the 

VIKOR method [28]. 

Step 1: Construction of decision matrix as the input for the VIKOR method. 

[Description] same as described in Step 1 of WSM and TOPSIS in previous Sections 4.4.1 and 4.4.2, respectively. 

Step 2: Find the best ��
� and worst ��

� values for each criterion by using the following equations: 

  ,  max ,  min ;  1  ,  1  j ij j ij
ii

For benefit criteria d d d d j to n i to m
+ −= = = =

 

(20) 

  ,  min ,  max ;  1  ,  1  j ij j ij
i i

For cost criteria d d d d j to n i to m
+ −= = = =  (21) 

Step 3: Calculate the Si (utility measure) and Ri (regret measure) by using the following equations: 

( )
1

;  1  ,  1  
n

j j ij

i
j j j

w d d
S j to n i to m

d d

+

+ −
=

−
= = =

−
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(22) 

( )
max ;  1  ,  1  

j j ij

j
j j

i

w d d

d d
R j to n i to m

+

+ −

 −
 

−  

= = =  (23) 

where 
�  is the weight of criteria j. 
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Step 4: Calculate the values (��, �∗) and (��, �∗) by using the following relations. 

*max ,  min ;  1  i i
ii

S S S i to mS − = = =

 

(24) 

*max ,  min ;  1  i i
ii

R R R i to mR− = = =  (25) 

Step 5: Compute the value of the VIKOR index ��  for each alternative as follows: 

* *

* *

1
;  1,  2,  ,  

2

i i

i

S S R R
Q i m

S S R R− −

 − −
= + = 

− − 
…

 

(26) 

Step 6: Rank alternatives (in this study, diabetes prediction models) in the order of the ��  value, with a smaller ��  value 

indicating a higher rank. 

4.5.   Experimental design  

Fig. 2 presents a graphical representation of the experimental study design. The experimental study can be divided into 

two phases. In the first phase, diabetes prediction models were applied to obtain the results of eight performance measures. In 

the second phase, the MCDM ranking of MLTs was obtained. A detailed explanation is provided as follows. 

 

Fig. 2 Graphical representation of the experimental design 

Phase 1: This phase involved building diabetes prediction models by applying 10 MLTs described in Section 4.2 on the PID 

dataset. For building all 10 diabetes prediction models, the open-source tool Waikato Environment for Knowledge 

Analysis (WEKA) version 3.8.3 was used [29]. Next, the performance of the models was examined in terms of eight 

PMs (accuracy, sensitivity, FPR, F-measure, MCC, specificity, FNR, and ROC-AUC) as described in detail in 

Section 4.3. The results are stored in a 10 × 8 matrix. 

Phase 2: Ten diabetes prediction models were evaluated using three MCDM methods, as described in detail in Section 4.4. 

First, the 10 × 8 matrix obtained from Phase 1 was used as the input for all three MCDM methods for generating the 

individual ranks of all the ten diabetes prediction models. Next, the individual MLT ranks of MLTs obtained using 

the three MCDM methods were combined to obtain the final rank list by using the RPM described in Section 3. 

Finally, the diabetes prediction model with the highest rank was recommended.   

5. Results and Discussions 

This section is divided into two subsections. The first subsection presents the diabetes prediction results of 10 MLTs 

concerning eight PMs. The proposed MCDM-based method was applied in the second subsection to identify the most suitable 

MLT for diabetes prediction modeling. 
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5.1.   Results of diabetes prediction models for eight PMs 

This subsection presents the diabetes prediction results of 10 MLTs in terms of eight PMs as the output of Phase 1 (Fig. 

2) of the experimental study. The results are listed in Table 3 and presented in a pictorial form in Fig. 3, followed by a detailed 

discussion. 

Table 3 Results of diabetes prediction for the Pima Indian diabetes dataset 

Diabetes prediction models Accuracy Sensitivity FPR F-measure MCC Specificity FNR ROC-AUC score 

Naive Bayes (NB) 0.7630 0.6425 0.1560 0.6713 0.4678 0.8440 0.3881 0.8010 

Logistic regression (LR) 0.7721 0.5709 0.1200 0.6362 0.4801 0.8800 0.4291 0.8380 

Support vector machine (SVM) 0.7852 0.5410 0.1020 0.6250 0.4800 0.8980 0.4590 0.7200 

k-nearest neighbor (KNN) 0.7018 0.5299 0.2060 0.5536 0.3312 0.7940 0.4701 0.6500 

AdaBoost (AB) 0.7435 0.5522 0.1540 0.6004 0.4171 0.8460 0.4478 0.7815 

Bagging 0.7526 0.5784 0.1540 0.6200 0.4405 0.8460 0.4216 0.8110 

Decision table (DT) 0.7240 0.5448 0.1800 0.5794 0.3768 0.8200 0.4552 0.7820 

Decision stump (DS) 0.7188 0.5746 0.2040 0.5878 0.3747 0.7960 0.4254 0.6840 

Random forest (RF) 0.7435 0.5970 0.1780 0.6190 0.4267 0.8220 0.4030 0.7901 

OneR 0.7083 0.4739 0.1660 0.5314 0.3292 0.8340 0.5261 0.6540 

 

  

(a) Accuracy (b) Sensitivity 

  

(c) False positive rate (FPR) (d) F-measure 

  

(e) MCC (f) Specificity 

Fig. 3 Performance of 10 diabetes prediction models  
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(g) FNR (h) ROC-AUC 

Fig. 3 Performance of 10 diabetes prediction models (continued) 

As presented in Fig. 3(a), 3(c), and 3(f), the diabetes prediction model SVM outperformed other models in terms of 

accuracy, FPR, and specificity. Furthermore, as shown in Fig. 3(b), 3(d), and 3(g), the MLT NB outperformed all other MLTs 

in terms of accuracy measures, namely sensitivity, F-measure, and FNR. The LR and SVM exhibited comparable performance 

(Fig. 3(e)). The LR was identified as the most suitable model for diabetes prediction in terms of the ROC-AUC score (Fig. 3h). 

The results indicated that no diabetes prediction model demonstrated the best performance for all the eight PMs. This motivates 

the authors to use the MCDM methods for selecting the most suitable MLT for diabetes prediction modeling by considering 

eight PMs. 

5.2.   MCDM ranking 

The proposed MCDM-based framework (described in Section 3) was used to identify the most suitable MLT for diabetes 

prediction. The performance of each diabetes prediction model was optimized in terms of eight PMs as the output of Phase 2 

(Fig. 2) of the experimental study. Table 4 lists the ranks of 10 diabetes prediction models obtained after applying the proposed 

MCDM-based approach. WSM, TOPSIS, and VIKOR were applied to a 10 × 8 decision matrix (diabetes prediction results of 

10 MLTs for eight PMs) to calculate WSM, TOPSIS, and VIKOR scores, respectively. Next, the individual rank of each 

diabetes prediction model was determined for each MCDM method. According to WSM and TOPSIS procedures (explained 

in Sections 4.4.1 and 4.4.2), a higher score of the alternative diabetes prediction model results in a higher rank.  

In the case of VIKOR, a lower score of the alternative diabetes prediction model results in a higher rank. Using the RPM, 

the individual ranks of diabetes prediction models obtained using the three MCDM methods were combined to obtain the final 

rank list. The RPM [23] considers the position of each alternative according to each subordinate ranking technique. In this 

study, alternatives were diabetes prediction models and subordinate ranking techniques were WSM, TOPSIS, and VIKOR.  

The RPM score can be calculated using Eq. (1). Based on the calculated RPM score, the final ranks were assigned to diabetes 

prediction models.  Consequently, the ranking index for diabetes prediction models was established, favoring those with lower 

RPM scores. 

Based on the application of three MCDM approaches, the following inferences can be drawn (Table 4):  

(1) The individual ranks of all diabetes prediction models were determined by applying three MCDM methods, namely WSM, 

TOPSIS, and VIKOR.  

(2) Next, individual rankings were combined using the fusion approach to obtain the final ranks of diabetes prediction models.  

(3) LR is recommended as the most suitable diabetes prediction model because it has the highest final rank. 

A statistical test was conducted namely the Bayesian sign test to demonstrate that the diabetes prediction model: LR 

significantly outperformed other MLTs in diabetes prediction modeling. The entire methodology of the statistical test is 

presented in the subsequent subsection (Section 5.3). 
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Table 4 Recommendation of diabetes prediction models based on the MCDM-based proposed approach  

Diabetes prediction models 

Ranking produced by three MCDM methods 
RPM score produced by 

rank fusion method 

Final 

rank 
WSM 

score 

WSM 

rank 

TOPSIS 

score 

TOPSIS 

rank 

VIKOR 

score 

VIKOR 

rank 

Naive Bayes (NB) 0.1813 2 0.6678 3 0.184 2 0.7500 2  

Logistic regression (LR) 0.1869 1 0.8252 1 0 1 0.3333 1 

SVM 0.1808 3 0.757 2 0.2908 4 0.9231 3 

k-nearest neighbor (KNN) 0.1229 10 0.1665 10 0.9884 9 3.2143 10 

AdaBoost (AB) 0.1627 6 0.5547 5 0.3274 5 1.7647 5 

Bagging 0.1714 4 0.6217 4 0.2542 3 1.2000 4 

Decision table (DT) 0.1468 7 0.3669 7 0.6232 7 2.3333 7 

Decision stump (DS) 0.1397 8 0.3115 8 0.8344 8 2.6667 8 

Random forest (RF) 0.1658 5 0.5185 6 0.4514 6 1.8750 6 

OneR 0.1243 9 0.2513 9 1 10 3.1034 9 

5.3.   Statistical test 

The Bayesian sign test was performed to validate whether LR significantly outperforms other MLTs in diabetes prediction 

modeling. The Bayesian sign test, proposed by Benavoli et al. [30], involves the calculation of posterior probabilities obtained 

for the pairwise comparison of two methods. Three regions are defined in the Bayesian test: left, region of practical equivalence 

(ROPE), and right. The probability of the left region indicates that the left method is better than the right method and vice 

versa. The probability of the ROPE region indicates that the performance of both methods is equivalent. The results of the 

Bayesian test for LR against other diabetes prediction models are listed in Table 5. The posterior probability p (ROPE) of the 

LR model against all other diabetes prediction models was approximately equal to 0 (< 0.05), indicating that the performance 

of LR against other diabetes prediction models was distinguishable. Furthermore, the posterior probability p (left) of the LR 

model against all other diabetes prediction models was considerably high (> 95%). Thus, the MLT recommended by the 

proposed MCDM-based approach significantly outperformed other MLTs for diabetes prediction modeling. 

Table 5 Results of the Bayesian test in terms of posterior probabilities  

Logistic regression (LR) against P (left) P (ROPE) P (right) 

Naive Bayes (NB) 0.9677 0.0323 0 

Support vector machine (SVM) 0.9687 0.0313 0 

k-nearest neighbor (KNN) 0.9691 0.0309 0 

AdaBoost (AB) 0.9694 0.0306 0 

Bagging 0.9690 0.0310 0 

Decision table (DT) 0.9679 0.0321 0 

Decision stump (DS) 0.9694 0.0306 0 

Random forest (RF) 0.9693 0.0307 0 

OneR 0.9689 0.0311 0 

6. Conclusions 

This study proposed a novel MCDM-based approach to identify the best diabetes prediction model considering various 

PMs. The selection problem was modeled as an MCDM issue. Initially, three MCDM methods—WSM, TOPSIS, and 

VIKOR—were used to rank MLTs based on PMs. Next, a fusion approach (RPM) was employed to establish the final rank of 

each MLT. The proposed approach was tested using 10 MLTs, 8 PMs, 3 MCDM methods, and a diabetes dataset. The 

experimental results yielded the following conclusions: 

(1) Diabetes prediction performance results (as described in Section 5.1) of the 10 MLTs for the eight PMs indicated that no 

single MLT exhibited the best performance in terms of the eight PMs. Thus, it is necessary to evaluate diabetes prediction 

models by optimizing the eight PMs. 
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(2) Based on the final ranking obtained by the proposed MCDM-based method, LR was recommended as the most suitable 

diabetes prediction model because of its highest rank. 

(3) The proposed method can be extended as a future scope by applying MLTs over a large number of diabetes datasets. 

Moreover, hybridizing different MCDM methods may be another future research direction.  
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