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Abstract 

 The study presents a computer-based automated system that employs machine learning to classify pulmonary 

diseases using lung sound data collected from hospitals. Denoising techniques, such as discrete wavelet transform and 

variational mode decomposition, are applied to enhance classifier performance. The system combines cepstral features, 

such as Mel-frequency cepstrum coefficients and gammatone frequency cepstral coefficients, for classification. Four 

machine learning classifiers, namely the decision tree, k-nearest neighbor, linear discriminant analysis, and random 

forest, are compared. Evaluation metrics such as accuracy, recall, specificity, and f1 score are employed. This study 

includes patients affected by chronic obstructive pulmonary disease, asthma, bronchiectasis, and healthy individuals. 

The results demonstrate that the random forest classifier outperforms the others, achieving an accuracy of 99.72% 

along with 100% recall, specificity, and f1 scores. The study suggests that the computer-based system serves as a 

decision-making tool for classifying pulmonary diseases, especially in resource-limited settings. 
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1. Introduction 

Pulmonary diseases have emerged as a significant cause of the highest mortality in society. World Health Organization 

(WHO) categorizes the “big five” respiratory diseases, including asthma, chronic obstructive pulmonary disease (COPD), 

acute lower respiratory tract infections, lung cancer, and tuberculosis, are responsible for causing the deaths of over 3 million 

individuals globally each year. These respiratory diseases share identical symptoms, such as adventitious breathing, which can 

complicate the diagnostic procedure. Due to their severe consequences, an early and precise diagnosis of these types of diseases 

has become crucial [1]. 

Diagnosis of pulmonary illnesses can be done clinically in a variety of ways. Imaging techniques like chest X-rays, 

computer tomography scans, and magnetic resonance imaging are used to diagnose pulmonary diseases. Contrarily, adopting 

these imaging modalities presents several difficulties, including the risk of repeated exposure to harmful radiation, the expense 

of equipment, and the challenge of deploying these methods in remote areas. A spirometer is a common technique used to 

diagnose lung function. It measures the air inhaled and exhaled by the lungs and identifies irregular breathing patterns. 

However, this technique has challenges such as the cooperation of patients in forced breathing, and requires a professional 

operator. Due to its high cost, this device can be used only in clinical settings, needs regular calibration, and is inefficient in 

detecting obstructive-restrictive abnormalities [2]. 
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In recent years, detecting pulmonary disease through lung sounds (LSs) has been an area of interest in bioinformatics. 

LSs provide valuable information about pulmonary diseases and can be heard throughout the posterior and anterior regions of 

the chest. Auscultation is a cost-effective, non-invasive technique for hearing sounds of the lungs, heart, and internal organs 

of the body. The present technique utilizes a stethoscope, a common clinical tool used by healthcare professionals to listen for 

LSs and detect various pulmonary diseases. Conventional auscultation is widely used, but it has limitations in clinical 

applications and research suitability. These limitations are due to: (i) expertise needed to annotate LSs, (ii) inability to monitor 

continuously, and (iii) inherent inter-listener unpredictability. Therefore, an automated respiratory sound analysis could 

circumvent these restrictions with the help of an electronic stethoscope [3].  

LSs are categorized into two major classes: normal and abnormal (adventitious). Normal LSs are non-musical sounds 

produced by breathing over the chest wall and trachea in the frequency range of 150 to 1000 Hz. However, adventitious LSs 

are musical and can be continuous or discontinuous, occurring between 200 and 2000 Hz. Vesicular and bronchial LSs are 

typically observed in the absence of respiratory disorders. Abnormal sounds, often indicate complications in the lungs or 

airways. Examples of abnormal breath sounds include rhonchi, crackles, wheezing, and harsh stridor [4]. Identifying 

pulmonary diseases by computer-based analysis of these abnormal LSs leads to an automated computer-based pulmonary 

disease classification system. Combining the clinical method of auscultation with machine learning (ML) algorithms enhances 

the accuracy and efficiency of diagnosing lung illnesses. Significant efforts have been dedicated to the classification of lung 

disorders; most studies rely on publicly available online repositories. Only a limited number of studies involve real-time data 

collection from hospitals. The denoising is a preliminary step before proceeding to disease classification. 

In the proposed work, two denoising method VMD-DWT-based decomposition is also incorporated to further enhance 

the signal quality and denoise the respiratory signal. By employing two stages of denoising, the LS signal is free from noise, 

thus improving its overall quality and reliability. Mel frequency cepstral coefficients (MFCC) and gammatone frequency 

cepstral coefficients (GFCC) are employed for feature extraction. The MFCC and GFCC have gained popularity in processing 

various human sound signals, including voice, cardiac sounds, and certain LSs. These two feature extraction methods show 

promising outcomes in application to audio signals from the human body.  

Four ML models are compared in this work: LDA, k-NN, DT, and random forest (RF). These models are selected based 

on their distinct features, which include the LDA can effectively handle scenarios where the number of features is significantly 

larger than the number of training samples. k-NN is a versatile algorithm that can accommodate different proximity 

calculations. Its intuitive nature and memory-based approach make it easy to understand and implement. DT simplicity, as the 

decision-making process is visually and conceptually straightforward. The tree structure allows for easy interpretation and 

understanding of the classification process. RF is a powerful algorithm capable of performing regression and classification 

tasks. It generates reliable predictions that are easily interpretable. Additionally, RF can efficiently handle large datasets, 

making it suitable for scalability and computational efficiency. 

Therefore, this study aims to emphasize these aspects and identify an effective and reliable method for categorizing three 

major classes of diseases: asthma, COPD, bronchiectasis, and the normal category. The research gap from the literature review 

reveals that many studies lack in investigating the crucial steps of LS denoising before feature extraction and classification. 

Furthermore, the combination of cepstral features has yet to be explored in the literature. The proposed work addresses these 

gaps by implementing a two-stage approach for LS denoising, followed by combined cepstral feature extraction and 

classification using ML techniques. The contribution of the proposed study is as follows: 

(1) To denoise the collected LS signal by applying the variational mode decomposition technique and DWT to the raw data. 

(2) To extract combinations of MFCC and GFCC features to classify asthma, COPD, bronchiectasis, and normal LSs. 

(3) To examine various 4-class classifiers like LDA, DT, k-NN, and RF classifiers. 
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2. Literature Survey 

The automatic classification of pulmonary diseases based on LSs using different ML and deep learning approaches has 

been published in various studies [5]. Numerous publications have notable results in denoising LSs followed by feature 

extraction and pulmonary disease classification. However, many studies lack a solid experimental design, which causes 

exaggerated outcomes. The literature has employed several methods for lung sound denoising, feature extraction, and lung 

disease classification. Some of the methods used for the classification of LSs can be found in a recent paper as follows: 

Yan Shi et al. [6] utilized a wavelet-based denoising method to effectively reduce noise in LSs. By extracting wavelet-

based features and combining them with linear discriminant analysis (LDA) and backpropagation neural network algorithms, 

an impressive accuracy of 92.5% was achieved. Georgios et al. [7] proposed a methodology of convolutional neural network 

(CNN) and long short-term memory (LSTM) networks that implement focal loss for categorizing four classes of sounds. This 

hybrid model validated the result on the ICBHI 2017 dataset and achieved an accuracy of 76.39% using the hybrid CNN-

LSTM model. Acharya and Basu [8] applied the mel spectrogram in a hybrid convolutional neural network-recurrent neural 

network (CNN-RNN) architecture to classify four sound classes to achieve a score of 71.81%. Shuvo et al. [9] introduced a 

lightweight CNN architecture that utilizes a hybrid scalogram derived from continuous wavelet transform and empirical mode 

decomposition (EMD). This architecture was designed for respiratory disease classification and evaluated using the ICBHI 

2017 scientific challenge dataset, achieving an impressive accuracy of 99.20%.  

Acar Demirci et al. [10] employ Mel-frequency cepstral coefficients (MFCC), EMD, wavelet transform for feature 

extraction, and k-nearest neighbor (k-NN) to reach 98.8% accuracy. Gökçen [11] participated in a study on detecting COPD 

using empirical wavelet transform in conjunction with the Adaboost classifier. The study aimed to achieve a high level of 

accuracy and successfully reached an accuracy of 95.28%. Haider and Behera [12] conducted a study focused on denoising 

LSs using a combination of EMD, hurst analysis, spectral subtraction denoising, and wavelet packet decomposition to extract 

wavelet-based features. A decision tree (DT) classifier with wavelet features is employed to classify normal, COPD, and 

asthma conditions. This approach achieved an accuracy of 99.3% in classifying these respiratory diseases. Asatani et al. [13] 

introduced a respiratory sound classification that utilizes spectrograms as the primary feature representation. The study 

employed a convolutional RNN to perform the classification task. Rizal and Puspitasari [14] conducted a study to explore the 

combination of wavelet packet decomposition and discrete wavelet transform (DWT) for the classification of respiratory 

sounds. This study utilized a multilayer perceptron as a classification model to achieve an accuracy of 98.99%. 

3. Materials and Methods 

 

Fig. 1 Workflow of the proposed method 
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An overview of the theory and knowledge of the study basis is explained in this section. Fig. 1 illustrates the detailed 

block diagram of the steps involved in LS analysis for pulmonary disease classification. Since applying ML techniques directly 

to audio data is challenging, the signal is initially denoised by two different denoising techniques, followed by relevant feature 

extraction. Significant cepstral features like MFCC and GFCC are given to ML classifiers for accurate classification. The DT, 

k-NN, RF, and LDA classifiers are examined to identify the best outcome of the classifier. The following sections briefly 

explain the data collection procedure, denoising technique, feature extraction, and ML classifiers. 

3.1.   Experimental study 

The LS data for the proposed study was recorded in hospitals from patients with various diseases. Table 1 shows detailed 

demographic information about the patients. The pathological sounds were collected from the outpatient section, thoracic 

medicine department, Thanjavur Medical College and Hospital, Thanjavur, Tamil Nadu, India. 

Table 1 Demographic information of the patients 

Pulmonary 

condition 

Number of 

patients 

Number of 

recordings 
Age group Gender 

Mean±standard 

deviation 

Asthma 58 222 38-78 Male (14), Female (44) 48±12.5 

COPD 11 57 45-72 Male (8), Female (3) 52±13.6 

Bronchiectasis 25 54 36-58 Male (12), Female (13) 41±7.8 

Healthy 26 35 35-62 Male (15), Female (11) 55±5.2 

The data collection process was carried out according to existing clinical standards and agreed upon by the institutional 

ethical committee for human studies (Reg No. EC/NEW/INST/2020/1058). The LSs included 58 asthma patients, 11 COPD 

patients, 25 bronchiectasis patients, and 26 normal subjects, with 368 recordings. The patients were asked to relax in a sitting 

position before the recording procedure. Subjects were instructed to breathe normally and remain motionless to minimize 

motion artifacts during digital signal recording. 

 

Fig. 2 Recording procedure in hospital 
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The LSs are collected using a single-channel electronic stethoscope (3M Littmann model 3200) placed on the anterior 

and posterior sides of the chest wall. Pulmonologists recommend pathological patients and auscultation sites based on the 

disease in the outpatient department. All signals were bandlimited to 20 Hz to 2 kHz and recorded at a 4 kHz sampling 

frequency. The sounds are collected for 20 seconds and stored in .wav file format. The healthy subjects recruited for this study 

are non-smokers with no history of serious lung diseases. The collected LSs are stored in Littmann Steth Assist software 

installed on a laptop connected via Bluetooth. The validation of real-time acquired LS signal is compared with the publicly 

available online ICBHI 2017 dataset [4]. The LS analysis is performed on MATLAB 2021a software, installed on a Lenovo 

laptop with 8 GB RAM and an AMD Ryzen processor. Fig. 2 shows the recording procedure. 

3.2.   Signal preprocessing 

Pre-processing the collected data is the initial step before applying it to the next classification stage. Background noise 

and heart sound interference have been recorded with LSs from the hospital. These noises distort LS characteristics and lead 

to misdiagnosis. Therefore, it is essential to eliminate noise before feature extraction. Filtering between the specified frequency 

bands employs two filtering techniques: variational mode decomposition and discrete wavelet transformation techniques. The 

next section discusses the implementation of two denoising algorithms. 

3.2.1.   Variational mode decomposition 

Variational mode decomposition is a technique to decompose a signal into a sum of intrinsic mode functions (IMFs) 

called modes. These modes exhibit localization in both time and frequency [15]. VMD is founded on a variational principle, 

enabling the estimation of IMFs and their corresponding time-frequency properties in a mathematically well-posed and 

computationally efficient manner. For LS denoising, VMD can be employed by decomposing the LS signal into its constituent 

modes and eliminating noise-associated ones. Noise detection involves identifying modes with low energy in the LS frequency 

band and high energy in the noise frequency band. The identification of noisy modes is based on the computation of their 

instantaneous frequency values, which can be derived from the modes. Subsequently, these noise-related modes can be 

eliminated from the original signal to obtain a denoised LS signal. 

The general steps of the VMD algorithm include: 

Step 1: Set the signal as first IMF and residue as zero. 

Step 2: Iterate till the stopping criterion is met and the residue is zero. 

Step 3: Calculate Hilbert transform. 

Step 4: The signal is divided into an envelope and instantaneous frequency. 

Step 5: Define a Gaussian function using an envelope. 

Step 6: Define the cost function using a weighting function. 

Step7: Obtain IMF by minimizing a cost function. 

Step 8: Obtain residue by subtracting the IMF from the signal. 

Step 9: Signal is set as residue and the process is repeated. 

Step 10: Repeat the process until the stopping criterion is met and the residue is zero. 

3.2.2.   Discrete wavelet transforms 

The wavelet transform involves transforming a signal into a set of basic functions called wavelets. These wavelet 

functions form orthogonal groups and are variations of a single mother wavelet that are dilated, translated, and scaled. Wavelet 

transform is a technique used for signal analysis in the time-frequency domain. The signal undergoes decomposition into 
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different stages by passing through two half-bands of frequencies: the low-pass and high-pass band frequencies. This process 

yields approximation coefficients and detailed coefficients [16]. The first discrete mother wavelet, represented by h(n), is a 

high-pass filter, while its mirror image, g(n), is a low-pass filter. The high-pass filter produces detailed coefficients, while the 

low-pass filter generates approximate coefficients. Following signal filtering and adhering to Nyquist sampling criteria, the 

signal is down-sampled by a factor of two. 

In signal analysis utilizing wavelet transform, the selection of a suitable wavelet and determining the number of 

decomposition layers play a crucial role. Multiple wavelet types are available, and the most efficient one is chosen based on 

the specific application requirements. In this study, the Daubechies 4 (db4) wavelet is considered the mother wavelet and a 

hard threshold is applied to the detailed coefficients. The denoised signal is reconstructed using both the approximation and 

detailed coefficients. The dominant frequency of the signal influences the determination of the number of decomposition levels. 

The levels are carefully chosen to ensure that the wavelet coefficients retain the signal components that correlate strongly with 

the frequencies essential for signal classification. 

3.3.   Feature extraction 

The next stage is extracting features from the denoised signal to train a machine-learning model. The denoised data is 

converted into useful characteristics that aid the ML classifier in categorizing various diseases. Extracting useful information 

from signals is necessary to reduce the classifier computation time [17]. Respiratory disease detection reliability depends on 

properly identifying prominent features in the filtered signal indicating diseases. Physiological changes in the lungs mean an 

obstruction in the lungs. Patients with pulmonary diseases exhibit structural breathing cycle variations compared to healthy 

subjects. Since the LS signal is non-stationary and non-linear, one feature extracted from the data is insufficient to discriminate 

between diseases. A total of 26 features, including 13 MFCC features and 13 GFCC features, were derived from VMD-DWT-

filtered data. These extracted features are used to measure the asymmetric variations of the respiration signal based on the 

morphological changes observed in the abnormal condition. Noticeable changes can be observed between normal subjects and 

pathological patients. MFCC and GFCC feature extractions are shown in the next section. 

3.3.1.   Mel-frequency cepstral coefficients  

MFCC is a widely utilized technique for feature extraction in speech recognition and audio signal processing [17]. These 

coefficients are derived from the power spectrum of a speech signal. This spectrum transforms a Mel-frequency spectrogram 

through the application of a filter bank. Subsequently, the Mel-frequency spectrogram is converted into the cepstral domain 

using the discrete cosine transform (DCT). This transformation yields a set of coefficients representing the audio signal’s 

spectral envelope. It has been observed that the human perception of voice signals’ frequency components is not linear. To 

address this, the Mel scale was developed as a more suitable scale. The Mel scale converts frequencies on the hertz scale into 

a hierarchy where listeners perceive equal distances between pitches. The mapping is based on the observation that the 

perceived gap between lower frequencies is much larger than the perceived distance between higher frequencies. The Mel 

scale was designed to establish this more appropriate scale. The Mel frequency equation is expressed as follows. 

10( ) 2595 log 1
700

 
= + 

 

f
M f  (1) 

3.3.2.   Gammatone frequency cepstral coefficients  

GFCCs share similarities with MFCCs but are derived using a different type of filter bank called the gamma tone filter 

bank [17]. This filter bank offers a closer approximation of the human auditory system’s frequency response. Unlike 

spectrograms, which have certain limitations, gamma tone grams obtained from gamma tone filters are more suitable as they 



International Journal of Engineering and Technology Innovation, vol. 14, no. 1, 2024, pp. 85-102 91

closely resemble the human ear’s characteristics. The cochlea, a component of the human ear, possesses a membrane called 

the basilar membrane. When subjected to external sound, this membrane vibrates and generates energy corresponding to the 

incoming sound’s frequency. The design of the gamma tone filters aims to replicate the vibrations occurring in the human ear, 

producing the gamma tone gram. This auditory map resembles a spectrogram and provides valuable information about the 

acoustic response to different frequencies. The impulse response of gamma tone filters is represented by the equation below. 

This is denoted as the product of a gamma distribution and a sinusoidal tone centered at the frequency ��. 

( )21( ) cos 2 ;  0π π ϕ−−= + >qtn
m ctg pt e f t t  (2) 

3.4.   Classifier 

Lung disease classification is based on distinct features extracted from the cepstral domain features in the previous section. 

Four ML classifiers were trained and compared for pulmonary disease classification. The combined features were fed to four 

classifiers (LDA, DT, k-NN, and RF) to find the highest classification accuracy. 

3.4.1.   Linear discriminant analysis 

A supervised learning approach called LDA is used in ML for classification applications [12]. It is a method for 

determining the optimum linear combination of features for classifying a dataset into different classes. For LDA to function, 

the data are projected onto a lower-dimensional space with maximum class separation. This algorithm determines the directions 

in the feature space that effectively distinguish the various data classes. LDA has two assumptions: that the covariance matrices 

of the different types are equal and that the data is Gaussian. It also presumes that the data can be separated linearly, meaning 

that a linear decision boundary is enough to classify different classes. 

3.4.2.   Decision tree 

A predictive model known as a DT maps decisions and their outcomes in a tree-like structure. The nodes and branches of 

the DT reflect a decision or an attribute; each branch is a potential result or value. The tree’s root node serves as the initial 

choice or forecast, and the leaf nodes serve as the conclusion. They are especially helpful when there are a lot of variables and 

a complex decision-making process. The most crucial features are chosen, and the data is then divided into smaller groups 

depending on these attributes to create a DT. The objective is to build a tree that can correctly categorize or forecast results 

based on the input data [18].  

3.4.3.   k-nearest neighbor 

The number of nearest neighbors used to produce a forecast for a new data point is indicated by the “k” in a k-NN. The 

method measures how far each new data point is from each training data point in the dataset. Following the selection of the k 

closest neighbors based on the calculated distances, the prediction is made using either the average value (for regression) or 

the most frequent class label (for classification) of the k closest neighbors. k-NN is a straightforward and efficient technique 

that can be used to solve specific types of problems, including those with few features or plenty of data [18]. 

3.4.4.   Random forest 

The RF method operates by building DT on each subset of the training data and characteristics. A greedy approach creates 

DT, which recursively separates the data according to the most important feature. This procedure is repeated until the tree’s 

maximum depth is reached or all samples at a certain node belong to the same class. The method aggregates the outcomes of 

each DT in the forest at prediction time to provide the final prediction. The final prediction is often the mean prediction for 

regression or the mode of the classes for classification [19]. 
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3.5.  Evaluation metrics 

The performance of two denoising techniques is evaluated using two metrics: signal-to-noise ratio (SNR) and mean square 

error (MSE) The SNR represents the ratio of signal power to noise power in dB. MSE is the quantity that measures the average 

of the square of the mean differences between predicted and actual values. To assess the performance of the classifier, accuracy, 

recall, precision, and f1 score are used, and they are given below. The dataset is split into 80% of the data for training and the 

remaining 20% for testing the proposed ML classifier. 10-fold cross-validation and a 20% holdout are used to evaluate the 

classifier's performance [19]. 

+
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+ + +

TP TN
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TP TN FP FN  
(3) 

=
+
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TP FP  
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=
+
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×
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+
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where true positives (TP) are events that are accurately classified into the relevant class. Events from other classes that are 

accurately classified are considered true negatives (TN). False negatives (FN) are events of the specified class that are 

mistakenly classified, and false positives (FP) are events that are incorrectly classified as the specified class. An accuracy 

under curve-receiver operating characteristics (AUC-ROC) curve is also obtained to visualize the performance of the classifier 

along with the four metrics mentioned above [20]. The training time and testing time of all ML algorithms are also considered 

to evaluate the performance of a classifier. 

4. Results 

This section reveals the outcomes achieved in each stage of the proposed method. The decomposition outcome of two 

denoising techniques and their performance measures show the effective removal of artifacts. Followed by extraction of 

combined cepstral features. Finally, the performance of four machine learning algorithms in this section is illustrated using the 

respective confusion matrices and ROC curves. 

4.1.   Signal preprocessing 

The signal processing of the collected raw data is carried out in two steps. The raw LS is initially applied to the VMD 

technique, and the filtered signal is again given to DWT for further denoising to increase the SNR. Fig. 3 shows two stages of 

the denoising technique.  

 
Fig. 3 Two stages of denoising 

4.1.1.   Variational mode decomposition 

The collected signal contains noise, requiring the initial step to involve the removal of these noises from the raw LS signal. 

It is worth noting that the VMD algorithm is an iterative algorithm that decomposes the signal into a sum of IMFs at each 
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iteration. The number of IMFs obtained by the VMD algorithm is not predetermined and varies depending on the characteristics 

of the original signal and the specific noise present. The specific parameters and stopping criteria have also been adjusted 

based on the application and signal quality. Fig. 4 displays the time-domain representation of the original LS (COPD) signal. 

 
Fig. 4 Time domain representation of raw LS for COPD 

 

   

(a) Mode 1 (b) Mode 2 (c) Mode 3 

   

(d) Mode 4 (e) Mode 5 (f) Mode 6 

Fig. 5 Graphical representation of Mode1 to Mode 6 obtained by VMD technique 

The VMD algorithm decomposes raw LS data into different modes and residues. Fig. 5 displays the six modes generated 

by applying the VMD algorithm to raw LS data. The raw LS is sliced into 1.5 seconds of data for analysis and reconstructed 

to 20 seconds of data after filtering. The fast Fourier transform (FFT) is applied to each decomposed mode to determine the 

dominant frequency of all modes. 

   

(a) Mode 1 (b) Mode 2 (c) Mode 3 

   

(d) Mode 4 (e) Mode 5 (f) Mode 6 

Fig. 6 Graphical representation of frequency spectrum of Mode 1 to Mode 6 obtained using VMD technique 

Fig. 6 shows the frequency spectrum of all modes obtained using FFT. Each mode's dominant frequency helps to identify 

the region of interest in LS. Mode 1, with a lower frequency of 40 Hz, falls below the region of interest and it is eliminated for 

signal reconstruction. Mode 2 and Mode 3 have 94 and 2140 Hz within the LS frequency range, respectively. As these two 
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modes fall within the region of interest, these two modes are considered for signal reconstruction. Mode 4 has a frequency of 

3566 Hz, Mode 5 has 4279 Hz, and Mode 6 has a very high frequency of 6537 Hz as their dominant frequency. Since these 

three modes have frequencies exceeding 3000 Hz, they are discarded in the subsequent signal-filtering stage. For the next level 

of decomposition, IMFs with a dominant frequency of 100 to 2000 Hz are considered. The reconstructed signal using Modes 

2 and 3 is presented in Fig. 7. The SNR of the reconstructed signal is 12.6 dB, which is relatively low. Further, DWT-based 

filtering is required to reduce noise on the reconstructed waveform in the subsequent filtering stage. 

 

Fig. 7 Time domain representation of denoised signal using VMD 

4.1.2.   Discrete wavelet transforms 

The DWT denoising method encompasses signal decomposition, coefficient thresholding, and reconstruction. The VMD-

reconstructed signal is given as input for further denoising through a DWT-based method. The VMD-reconstructed signal is 

decomposed into four levels within the 94 to 2140 Hz frequency band. The waveforms obtained using DWT decomposition 

are illustrated in Fig. 8. Different wavelets with various thresholds are tested on the signal using a trial-and-error approach to 

achieve the optimal denoising output. Among these, the db4 wavelet applied at the fourth level of decomposition with a soft 

threshold produces superior output. Subsequently, the signal is reconstructed using approximation and detailed coefficients 

with a soft threshold. Fig. 9 displays the time-domain representation of the denoised signal, demonstrating a significant 

reduction in high-frequency noise. The SNR increases from the initial filtering stage, ensuring a near-perfect reconstruction of 

the denoised signal. 

 

Fig. 8 Decomposition using DWT output at level 4  
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Fig. 9 Graphical representation of denoised signal using DWT 

Table 2 illustrates the metrics obtained after denoising using VMD and DWT. The table shows metrics obtained for one 

LS from each category of disease. The MSE values indicate the difference between the denoised signals and the original noise-

free signals and the MSE error should be as small as possible. The MSE obtained after VMD for healthy individuals is 0.0765. 

Further denoising using DWT results in an MSE of 0.0075. This indicates that the proposed method achieves better denoising 

performance with minimal signal loss, as evidenced by the smaller MSE values. Similarly, the pattern repeats for other diseases. 

To assure the quality of the signal, another metric SNR is measured which should be as high as possible. The SNR obtained 

after VMD is 15.68 dB whereas after applying DWT the SNR has increased to 19.47 dB. Hence two stages of the denoising 

method effectively reduce noise while preserving the strength and quality of the LS signal. 

Table 2 Evaluation metrics of the VMD-DWT denoising method 

Metrics/Diseases MSE after VMD MSE after DWT SNR after VMD (dB) SNR after DWT (dB) 

Asthma 0.0852 0.0202 12.81 16.78 

COPD 0.0185 0.0154 14.59 18.96 

Bronchiectasis 0.0845 0.0185 14.99 19.57 

Healthy 0.0765 0.0075 15.68 19.47 

4.2.   Feature extraction 

In the classification of lung diseases, features play a vital role as they serve as distinguishing characteristics used by the 

classifier. Extracting significant features from the LS signals is essential to ensure accurate differentiation between the various 

classes. However, due to the non-stationary nature of LSs, a single feature alone is inadequate for precise categorization. Hence, 

multiple features were extracted for this study. At this stage, 13 MFCC and 13 GFCC features were extracted from denoised 

LS signals. It is possible to comprehensively represent signal characteristics by capturing relevant information about the 

spectral envelope and auditory perception of LSs. By incorporating these 26 features, the classifier can effectively analyze and 

classify the different classes of lung diseases. 

4.3.   Classification 

 

Fig. 10 Class split of audio files into training and testing datasets 
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This study employs four ML algorithms, namely LDA, DT, k-NN, and RF, to classify pulmonary diseases. The 

performance of these algorithms is evaluated using 10-fold cross-validation and a 20% holdout method, where 80% of the data 

is used for training and 20% for testing. Fig. 10 shows the class-wise split of audio files for training and testing. Fig. 11 shows 

the confusion matrix of all classifiers for the ICBHI dataset. Table 3 displays the evaluation metrics obtained for both datasets: 

ICBHI and hospital collected dataset. The metrics resulting for both datasets are closer to each other except for a few models. 

The difference between the metrics of both datasets is that a large data imbalance is observed in the ICBHI dataset, as it 

contains only one asthma sound and a maximum number of COPD sounds. RF achieved superior results with a remarkable 

accuracy of 99.72%, 100% recall, 100% precision, and a 100% f1 score. 

  

(a) LDA (b) k-NN 

  

(c) DT (d) RF 

Fig. 11 Confusion matrix of ICBHI dataset 

Table 3 Evaluation metrics of four ML classifiers 

Classifier/Metrics Dataset LDA k-NN DT RF 

Accuracy (%) 
ICBHI dataset 92.2 96.9 99.3 99.72 

Hospital collected dataset 82.88 97.28 99.18 99.72 

Recall (%) 
ICBHI dataset 84.38 83.77 91.1 81.02 

Hospital collected dataset 90.45 95.26 96.94 100 

Precision (%) 
ICBHI dataset 96.06 96.06 82.07 97.62 

Hospital collected dataset 81.56 97.62 98.12 100 

F1 score (%) 
ICBHI dataset 88.15 87.95 84.39 99 

Hospital collected dataset 84.45 97.63 99.85 100 

AUC micron average 
ICBHI dataset 0.92 0.93 0.91 0.92 

Hospital collected dataset 0.93 0.69 0.82 0.97 

AUC macro average 
ICBHI dataset 0.91 0.94 0.82 0.95 

Hospital collected dataset 0.91 0.62 0.82 0.97 

These metrics indicate the effectiveness of the RF algorithm in accurately classifying the different pulmonary diseases. 

Fig 12 shows the confusion matrix of four models for the hospital-collected dataset. Fig 13 shows the training time and testing 

time required by the four models for the hospital-collected dataset. From the figure, it is evident that LDA requires more 

training time compared to other models. On visual interpretation, it is observed that RF needs less time for both testing and 

training the dataset. Fig. 14 shows the AUC-ROC curve of four models for the hospital-collected dataset. Upon comparing the 

AUC-ROC curves and confusion matrix of all four classifiers, it is observed that RF outperforms the others in classifying 

various disease classes. 
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(a) LDA (b) k-NN 

  

(c) DT (d) RF 

Fig. 12 Confusion matrix of hospital collected dataset 

 

 

Fig. 13 Training time and testing time of four ML models 

 

 

(a) LDA 

Fig. 14 AUC-ROC curve for hospital collected dataset 



 International Journal of Engineering and Technology Innovation, vol. 14, no. 1, 2024, pp. 85-102 98 

 

(b) k-NN 

 

(c) DT 

 

(d) RF 

Fig. 14 AUC-ROC curve for hospital collected dataset (continued) 

5. Discussion 

This article presents a series of experiments conducted to evaluate the effectiveness of an adventitious respiratory sound 

classification system. The proposed approach offers a cost-effective and non-invasive technique for distinguishing between 
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asthma, COPD, bronchiectasis, and healthy categories based on LSs. A substantial number of data samples collected from the 

study participants were utilized in the analysis. To address the challenges of noise, which can significantly degrade signal 

quality, each respiratory sound undergoes denoising using two distinct techniques: variational mode decomposition and DWT-

based denoising. These techniques yield a high SNR value of 19.47 dB, enhancing the quality of the LSs. A total of 26 cepstral 

features were extracted from the MFCC and GFCC coefficients, with 13 features obtained from each coefficient. These features 

serve as inputs to a four-ML classifier. The article compares the performance of four different classifiers, namely DT, LDA, 

RF, and k-NN, to determine the best classifier with the highest classification accuracy. 

The existing literature on pulmonary disease classification primarily focuses on COPD, normal lung function, and asthma 

detection. This research gap makes it challenging to directly compare the findings of this study to those achieved using similar 

methodologies. Nonetheless, this study represents a novel step in the direction of screening for COPD, asthma, bronchiectasis, 

and normal category. The proposed technique outperforms previously published methods regarding pulmonary disease 

classification in terms of accuracy, precision, recall, and f1 score. Table 4 demonstrates its superior performance in classifying 

the feature vector generated through this pre-processing stage. Despite the challenges in directly comparing methodologies, 

this research contributes to advancing pulmonary disease classification and demonstrates promising results of 99.72% accuracy. 

Table 4 Performance analysis of the proposed method with existing works 

Reference Classes Features Method Results 

Elsetrønning et al., 2020 [21] 
Crackle and no 

crackle 

Higher-order statistical, 

spectral features, MFCC 

EMD, enhanced 

empirical mode 

decomposition 

(EEMD), DWT, k-NN 

Accuracy: 84.38 

Jung et al., 2021 [22] Crackle and wheeze 
Short Time Fourier 

Transform, MFCC 

Depth-wise separable 

convolution neural 

network 

Accuracy: 85.74 

Rani et al., 2021 [23] 
Bronchial, crepitation, 

wheezing, and normal 

Chroma short-time 

Fourier transform (STFT), 

spectral centroid, spectral 

roll-off, zero crossing 

rate, MFCC 

Artificial neural 

network (ANN) 
Accuracy: 95.6 

Brunese et al., 2022 [24] 

Asthma, 

bronchiectasis, 

bronchiolitis, COPD, 

pneumonia, and lower 

or upper respiratory 

tract infection 

Chromagram, root mean 

square, spectral centroid, 

bandwidth, spectral roll-

off, tonnes, MFCC, zero 

crossing rate 

Neural network 

algorithm 
Accuracy: 98 

Neili and Sundaraj, 2022 [25] 
Healthy, chronic, and 

non-chronic 
Gammatonegrams 

Deep neural network-

VGG16 
Accuracy: 67.97 

Jaffery et al., 2023 [26] 

Normal, 

bronchiectasis, 

bronchiolitis 

MFCC DWT, k-NN Accuracy: 99.3 

Proposed work 

COPD, asthma, 

bronchiectasis, 

healthy 

MFCC and GFCC 

VMD-DWT, LDA 

Accuracy: 82.88 

Recall: 90.45 

Precision: 81.56 

F1 score: 84.45 

VMD-DWT, k-NN 

Accuracy: 97.28 

Recall: 95.26 

Precision: 97.62 

F1 score: 97.63 

VMD-DWT, DT 

Accuracy: 99.18 

Recall: 96.94 

Precision: 98.12 

F1 score: 99.85 

VMD-DWT, RF 

Accuracy: 99.72 

Recall: 100 

Precision: 100 

F1 score: 100 
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Elsetrønning et al. [21] employed a combination of spectral, statistical, and MFCC features, utilizing the k-NN algorithm, 

which yielded an accuracy of 84.38%. Similarly, Jung et al. [22] trained a depth-wise separable CNN using a combination of 

STFT and MFCC features, achieving an accuracy of 85.74%. However, it is important to note that these works achieved higher 

accuracies, their focus was primarily on discriminating between the presence or absence of crackles rather than disease 

classification. Rani et al. [23] trained an ANN to distinguish between bronchial, crepitation, wheezing, and normal LSs. The 

author employed a set of time domains, spectral domain, time-frequency domain, and cepstral features in analysis, the study 

achieved an outcome of 95.6%. Since the study has a computational complexity more features are extracted for this work. 

Brunese et al. [24] implemented a neural network-based approach for multi-class disease discrimination using multiple features. 

This study achieved an impressive accuracy of 98%. 

However, the high accuracy was obtained solely from a publicly available repository, and the performance on real-world 

datasets may differ. Neili and Sundaraj [25] utilized gamma tone features and a deep neural network (VGG-16) to classify 

three disease categories. However, their approach yielded an accuracy of only 67.97%. The accuracy can be improved if the 

denoising technique is applied to the signal. A considerable number of existing studies have focused on analyzing data without 

conducting any denoising operations. Even when LS data is recorded using standard equipment, such as an electronic 

stethoscope, the resulting LS signal often contains noise. Hence denoising becomes a preliminary step in pulmonary disease 

classification. Few studies only involved LS denoising, Jaffery et al. [26] employed the DWT technique for denoising LS. 

Further, the study utilized MFCC features in conjunction with the k-NN algorithm, achieving an impressive accuracy of 99.3%. 

However, it is worth noting that the authors conducted their simulations using publicly available datasets. 

 The proposed work was experimented on real-time LS data recorded from the hospital and a robust denoising technique 

VMD-DWT was applied to eliminate noise. The denoising technique enhances the quality of LS samples, thereby improving 

the classification performance. The combined cepstral features, specifically MFCC and GFCC, yield superior results compared 

to higher-order statistical features and wavelet features. An RF classifier results in impressive metrics of 99.72% accuracy, 100% 

recall, 100% precision, and a 100% f1 score for pulmonary disease classification. This means that the RF model is achieving 

the best performance in terms of correctly identifying positive samples (recall), providing accurate positive predictions 

(precision), and achieving a balanced trade-off between precision and recall (f1 score). These scores typically occur when the 

model is well-trained and representative of the underlying population, the model has learned the patterns in the data accurately, 

and there is no overlap or ambiguity in the classification boundaries. By combining two denoising methods, and combined 

features, the model can learn more effective patterns from LSs, leading to improved classification of pulmonary diseases. 

6. Conclusion and Future Scope 

This paper presents an automated computer-based system using ML to classify pulmonary disease. The LS data collected 

from the hospital was employed in the study. To ensure high-quality data, two denoising techniques, namely variational mode 

decomposition and DWT, were employed to remove noise from LSs before feature extraction. The feature vector used for 

classification consisted of 26 cepstral features that aimed to comprehensively represent the LSs while keeping the 

computational cost low. Four ML models were trained and tested, with the RF classifier achieving remarkable results. The 

results show an overall accuracy of 99.72%, a recall of 100%, a precision of 100%, and an f1 score of 100% for the RF 

classifier. The proposed method significantly improves the classification of common lung diseases and can assist 

pulmonologists in their clinical diagnosis. However, it is important to acknowledge certain limitations of the study. One such 

limitation is the presence of data imbalance, which may impact the generalizability of the findings. The proposed work did not 

include a statistical significance analysis of LS features. These two limitations could be considered in future research 

investigations for enhanced outcomes. In future work, there are plans to develop a cost-effective portable stethoscope for 

effective LS acquisition to enhance pulmonary disease detection. 
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