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Abstract

Traditional crop pest detection methods face ttadlehge of numerous parameters and computationidnma
it difficult to deploy on embedded devices with ilied resources. Consequently, a lightweight netvisan effective
solution to this issue. Based on you only look of¥@®LO)Vv5, this paper aims to design and validaligl@weight
and effective pest detector called pest-YOLO. Fiastandom background augmentation method is pezpts
reduce the prediction error rate. Furthermore, dilMbletV3-light backbone replaces the YOLOv5n bamidn to
reduce parameters and computations. Finally, thes@ational Block Attention Module (CBAM) is integted into
the new network to compensate for the reductioacturacy. Compared to the YOLOv5n model, the p&3t-&
model's Parameters and Giga Floating Point OperatiGFLOPS) decrease by about 33% and 52.5% signtfy,
and the Frames per Second (FPS) increase by apmtety 11.1%. In contrast, the Mean Average Pregisi
(mAP50) slightly declines by 2.4%, from 92.7% to 3.
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1. Introduction

Chinais a major agricultural country with overdQ4&ommon crop diseases and pests. The characteaspest disasters
include fast outbreaks and enormous losses [1]refbie, timely and accurate detection of pestsgnes farmers to avoid
losses and increase crop yields through approppegeentive measures. In 2023, the General Offfcth@ Ministry of
Agriculture and Rural Affairs issued the notice’2023 Action Plan to Ensure a Good Harvest as 8giFood from Pests”.
Crop diseases and insect pests such as wheatmiteorn are estimated to reappear in 2023. Teetafl area reached 3.15
billion acres with a year-on-year increase of 249¢ld losses exceeded 360 billion kilograms. Majiseases and insect pests
in rapeseed and soybean are estimated to occi®imillion acres, an increase of 15% year-on-ytbaeatening grain harvest

and vegetable oil self-sufficiency [2].

Traditional pest monitoring relies on manual idicdition by insect experts or technicians, whiclnighly subjective
and labor-intensive [3]. Recently, machine visignipment that integrates image processing and mkteammunication has
been widespread. Computer vision technology prevalaew method for surveillance of crop pests,ifsagmtly improving
monitoring efficiency [4]. The intelligent pest éetion system integrates artificial intelligendg tnternet of Things (1oT),
and big data technology to realize crop pest slianeie [5]. In the system, cameras with artifidigelligence algorithms

automatically capture pest images and detect pHsésdetection results are transmitted throughrifiotely.

In recent years, deep learning algorithms have lagygied widely in computer vision, including peigtection and
classification [6]. Deep learning-based methodsh@@monstrated robust performance, rendering thenoftimal solution
for agricultural pest detection [7]. Therefore sthiaper proposes a lightweight pest detection mbdélcovers a wide range

of crop areas, achieving a balance between accaratgpeed. The main contributions of this paper ar
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(1) Arandom background data augmentation method jsqz@d to compensate for the lack of background @nagufficient
background images can reduce the number of falsgiy@instances, thereby increasing the detectimuracy of the
model.

(2) A more lightweight backbone, MobileNetV3-light, ébtained by appropriately reducing the channel remds the
MobileNetV3-small backbone layers. The MobileNetM@it backbone replaces the you only look once (\Opi5n
backbone, reducing the parameters and computatfcthe detection model significantly.

(3) After replacing the backbone, the Convolutionaldl@ttention Module (CBAM) is integrated into thew network to
compensate for the decline in detection accuracy.

(4) By exploring agricultural 10T technology, a pestaigion framework covering numerous crop areasapgsed to meet

the practical industry application.

The rest of this paper is organized as followstiSr@ presents a review of recent relevant litekatSection 3 details
the methodology employed in this study. Sectionrdsents the results and discussion. Finally, calicturemarks are

proposed in Section 5.

2. Related Works

Although deep learning-based pest detection methads made significant progress, there are stithisé shortcomings
in their practical application in industry. Firstigome methods involve randomly capturing highdtggm pest images of
crop areas through high-definition cameras. Thegesaare then transmitted to servers with considem@amputing power
for pest detection. Although these methods achieigh detection accuracy, their detection speedelatively slow.
Furthermore, uploading numerous pest images teesefor processing significantly increases thedgmatting bandwidth

consumption of I0T, thereby limiting pest detectameas.

In addition, some methods utilized models with maaeameters and computations to improve detectioaracy. The
models necessitate the detection terminal to bipgd with considerable computing power and grapiemory. As a result,
these terminals are expensive and difficult to dgmn a large scale in agricultural 10T. Furtherengoublic pest datasets
suffer from the problem of missing background insmgad an adequate number of pest images, leadimisged detection

and false detection.

In 2023, Liang et al. [8] utilized Visual GeometBroup (VGG)16 and ResNet50 to establish a recagnitiodel with
18 diseases of four crops: apple, corn, grapet@ndto. Single-crop and multi-crop multi-diseastgedgon models were built
through data preprocessing, data augmentation,m@dea optimization, and cross-validation. The psgzb method

demonstrated a recognition accuracy rate of 96%ghwivas superior to that of ResNet50.

Ju et al. [9] proposed a method based on the maskiseéncoding learning paradigm for agriculturapcdisease and
insect pest classification in 2024. The proposethoteaddressed the accuracy shortcomings of egideiection algorithms.
The input crop image was subjected to local ransamtent masking, semantic feature extraction, dotad context
reconstruction of high-dimensional mapping. Thedtgm entirely mined implicit representations dffinlevel semantics of
images to train a more robust model with fewer dataples. Compared to the ResNet50 baseline netthalstatistical

accuracy rate of the proposed method increased 9#8% to 95.24%.

In 2023, Yang et al. [10] selected the Keras fraorvin TensorFlow to implement an image classifarasystem. The
focal loss function was adopted to solve the pmobdé low recognition accuracy caused by imbalandatdsets. ResNet50,
ResNet101, MobileNetV2, and VGG16 were utilized faature extraction backbones to identify seven diseases,
respectively. The ResNet50 with the focal loss fimmcachieved 98.06% top-1 classification accurdayo and Hu [11]
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developed a pest detection system in 2024. Thersysbmbined deep learning and 10T technologiesdimote detection of
pests and diseases, thereby improving the effigieiqest control work. The system utilized the Y@I5 network and
transfer learning to train and learn the charasties of forest and farmland common pests, themathieving efficient

detection and identification.

Given the limitations of fruit farmers’ ability identify pests, Wang and Xu [12] proposed a methad can effectively
detect multiple categories of pests in 2023. Tlippsed method used the single-stage object dategdtiorithm, YOLOV5s,
for navel orange pest detection, achieving a Meagrdge Precision (mAP50) of 81.46% for nine typigsest detection. Liu
et al. [13] proposed a rice disease and pest fittion model called multi-scale dual branch (MSEResNet in 2023. The
model utilized a multi-scale dual-branch structbased on ResNet. Based on the ResNet model, CorividsXual blocks
were introduced to optimize the calculation projoorof residual blocks. A dual branch structure wasstructed to extract
disease features of different sizes from the imjistase image by adjusting the convolution kerizel sf each branch. The
MSDB-ResNet achieved a recognition accuracy of @.,lwhich was 2.42 percentage points higher thamtlyinal ResNet

model.

In 2022, He et al. [14] proposed an improved mefloogest detection based on YOLOV5. The proposethad utilized
weighted bidirectional feature fusion technologetwich the semantic information of feature mapalldevels and modified
the adaptive anchor calculation method to imprdwe accuracy. The mAP50 of the proposed model readtg23 in 20
economic forest pest categories, and the modekinée speed achieved a Frames per Second (FP&Pofr62022, Aladhadh
et al. [15] proposed an ef cient pest detectionmoettthat accurately localized the pests and claddifiem according to their
desired class label. The YOLOv5s model was enhatftedgh several modifications, such as extendiagtoss-stage partial
network (CSP) module, improving the select kerr&K)(in the attention module, and modifying the risclile feature

extraction mechanism. Compared to the YOLOvV5 mdtiel proposed model achieved the best experimsulise

Assiri et al. [16] proposed an automated insecat&in and classification using the Pelican optatian algorithm with
deep learning called AIDC-POADL in 2024. FirstlgetAIDC-POADL technique employed the DenseNet-12ti@hto learn
complex features within the input images. Furtheemdhe hyperparameter selection of the DenseNetrhddel was
developed through the use of the Pelican optinomagilgorithm. Finally, the multilayer perceptron ageb distinguished the
insects into various classes. The experimentabouws indicated that the AIDC-POADL method yieldagerior recognition

results compared to other approaches.

In 2024, Hussain and Srikaanth [17] proposed alfaveland fertility algorithm with a deep learnibgised automated
rice pest detection and classification (FFADL-ARPDR€:hnique. Firstly, the FFADL-ARPDC employed kelal filtering to
remove noise and enhance contrast. Furthermorggeisnaf rice crops were processed using the NASNgéLdeep learning
architecture to extract image features. Finallg, tiodel accurately categorizes 14 types of pegtg @ Elman recurrent
neural network (ERNN). The FFADL-ARPDC model exceedisting pest detection methods with an accuoa®y.58.

3. Methodology

Firstly, a pest detection framework was proposestaon the agriculture 10T. Secondly, a random ¢paknd data
augmentation method was employed to obtain divieaskground images. Thirdly, the pest-YOLO algoritiwais proposed
by replacing the YOLOv5n backbone and integratifgA®Is.

3.1. Detection framework

The integration of agricultural IoT technology withirtual private network (VPN) technology was intigated to

establish reliable and secure network connectionddtecting pests in large areas [18]. The VPhldishes a private network
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on a public network for encrypted communicationefdiore, server resources in each crop area agrated through VPN
technology to form a distributed server clustet #1gergizes training of the pest detection modeale@-time pest detection

framework covering numerous crop areas based onOAGh was proposed in this paper, as shown in Fig. 1

‘ Distributed server cluster ‘ ,l
|
|
|

Cloud

computing

Fig. 1 Crop pest detection framework based on YC&Ov

First, the distributed server cluster leveragedpielic pest dataset to train an initial pest di@ecmodel. The model
was then transmitted to terminals in crop areagha&aloT. Additionally, terminals with the trainedodels conducted real-
time pest detection. Terminals only uploaded thted®n results to the server, significantly redgcithe bandwidth
consumption of the 1oT. Managers regularly colldateages in complex environments of various craaar These images
are annotated and used to train the new modelhwhareases the robustness of the detection modeihaproves detection

accuracy.

3.2. Data augmentation

Distortion

\

Fig. 2 Random background data augmentation method

This paper employed eight pest classes from thdiqU®102 pest dataset for model training: ricef ledler, grub,
wireworm, aphids, blister beetle, Miridae, Unas@sonensis, and Cicadellidae. IP102 was a large-bemchmark dataset
for pest identification, which annotated 102 pegéegories using the PASCAL VOC format [19]. Therefdhe dataset labels
were converted to YOLO format. Image rotation, Epatransformation, and distortion methods weredu$er data
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augmentation to increase the robustness of thectiimiemodel. Since certain pests exhibit a simdatoration to the

background, a specific number of background imageshelp the trained model minimize the impacthef background.

Therefore, crop background images, such as crag,reems, leaves, etc., were added to the dataseduce false positive
prediction results, thereby increasing detectiocueacy. Since the background image contained nectieh objects, this
paper proposed a random background data augmeniaéthod to compensate for the lack of backgroomaes, as shown
in Fig. 2.

The official guidance of YOLOV5 for achieving optihtraining outcomes recommends incorporating apprately 1%
to 10% of background images to mitigate the fatsstive rate. Therefore, 50 background images wellected. In addition,
the translation method in the OpenCV library wasdug achieve spatial transformation of images.il&iiy, the rotation
method was used to achieve the rotation of im&jes.and cosine functions map pixels to achievgehstortion. Moreover,
the scale, crop, flip, rotation, and affine tramsfation methods were employed to facilitate theyeapd-paste of images.
Finally, 50 new background images are randomly gead using the above methods. The final datasgaiteed 5,904 images,
consisting of a training dataset of 5,000 imagekaawalidation dataset of 904 images. The totallmenof labels in the dataset
was 7,403, and the number of labels for each pass$ evas 190, 676, 533, 1,395, 1,013, 1,268, 5#61a782, respectively.

3.3. Pest-YOLO structure

The structure of the proposed lightweight pest-YQi@del is shown in Fig. 3. This structure contahes same three
modules as YOLOv5nN: the backbone for feature etitlacthe neck for enhancing feature extraction feadure fusion, and
the head for object prediction. First, data augmiort methods, such as image distortion, rotatspatial translation, and
random background, were used to increase the nuailieEining images. In addition, a MobileNetV3Higbackbone with
fewer parameters and computations was obtainegfppriately reducing the number of channels oMMiobileNetV3-small
backbone layers, and the new backbone replaced@®v5n backbone. Finally, CBAMs were effectivelytégrated into
the new backbone to obtain the backbone of the @10 model. Similarly, the pest-YOLO neck was ab&al by inserting
CBAMs after concatenation layers from the YOLOv&tk The head of pest-YOLO used the same head 4©OV&h to

predict objects.

YOLOvV5n head ‘ ‘ Ll
prediction ~ \ g

— Feature map X3  ~ . P Improved neck M
\
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|
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Fig. 3 Pest-YOLO structure
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3.4. Replacing backbone

Based on the MobileNetV3-small backbone, this pdipeher reduced the number of parameters and ctatipns by

appropriately reducing the number of channels erttiddle feature layer of the backbone to obtamNfobileNetV3-light

backbone. A comparison of the two backbone strast(input size is 640 x 640) is shown in Table 1.

Table 1 Structure comparison of two backbones

Structure MobileNetV3-small backbone MobileNetV3-light backim
Output shape Parameters GFLOPsOutput shape Parameters GFLOPs
conv2d | 16 x 320 x 320 464 0.10 16 x 320 x 32 464 0.10
bneck 1 | 16 x 160 x 160 744 0.02 8 x 160 x 160 600 0.01
bneck 2 | 24 x 80 x 80 9,280 0.15 | 16x 80 x 80 4,064 0.06
bneck 3| 24 x 80 x 80 - - 16 x 80 x 80 - -
bneck 4 | 40 x 40 x 40 180,032 0.31 | 24x40x40 70,560 0.12
bneck 5| 40 x 40 x 40 - - 24 x 40 x 40 - -
bneck 6 | 40 x 40 x 40 - - 24 x 40 x 40 - -
bneck 7 | 48 x 40 x 40 - - 24 x 40 x 40 - -
bneck 8 | 48 x 40 x 40 - - 24 x 40 x 40 - -
bneck 9 | 96 x 20 x 20 680,040 0.30 | 48x20x 20 182,200 0.08
bneck 10/ 96 x 20 x 20 - - 48 x 20 x 20 - -
bneck 11| 96 x 20 x 20 - - 48 x 20 x 20 - -
conv2d | 576 x 20 x 2Q 56,448 0.02 288x 20 x 20 14,400 0.01
Total: 927,008 Total: 0.9 Total: 272,288 Total: 0.38

Fig. 4 The method of replacing the backbone
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Where the output shape is presented as channéght hewidth. In the bneck 1 structure, the numbfeoutput channels
was reduced from 16 to 8 with a decrease of 14damameters. In the case of the bneck 2 and 3 gtasg;tthe number of
output channels was reduced from 24 to 16, regpitira reduction of 5,216 in parameters. Similairiythe case of the bneck
4 to 8 structures, the number of output channetsneduced from 48 to 24, resulting in a reductibhG9,472 in parameters.
In the case of the last three bneck structuresyahaber of output channels was reduced from 9&teekulting in a reduction
of 497,840 in parameters. In the last convolutidagér, the parameters were reduced to 42,048ll¥inlae two backbones
had the same depth, while the final number of duthannels of the MobileNetV3-light backbone wadueed by half. The
MobileNetV3-small backbone had 927,008 parameteid @.9 Giga Floating Point Operations (GFLOPSs), leviihe
MobileNetV3-light backbone only had 272,288 parametnd 0.38 GFLOPSs.

Since the YOLOv5n backbone outputs three featunesno& 80 x 80, 40 x 40, and 20 x 20 sizes for syipset object
prediction, the replaced backbone also outputsethie®e-size feature maps. First, layers 0 to hefMobileNetV3-light
backbone replaced layers 0 to 4 of the YOLOv5n baok to output a feature map with a size of 80 4B@ddition, layers
4 to 8 of the MobileNetV3-light backbone replacasidrs 5 to 6 of the YOLOv5n backbone to outputaduiee map with a
size of 40 x 40. Finally, layers 9 to 12 of the MeNetV3-light backbone replaced layers 7 to 8hef ¥ OLOv5n backbone
to output a feature map with a size of 20 x 20. 3inape of feature maps represents height x widthaxnel. Fig. 4 shows
the replacement of the YOLOv5n backbone with thebilédetV3-light backbone.

3.5. Integrating CBAM

Fig. 5 The method of integrating CBAMs

In computer vision, an attention mechanism payenétin to particular areas and discards irreleaa@as of an image.
The channel attention mechanism focuses on whatrésaare, and the spatial attention mechanisnséscan where features

are. CBAM is a lightweight module blending thes® types of attention, which can be integrated artg neural network to
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improve performance [20]. The CBAM module sequéiytgenerates attention feature maps in the tweedisions of channel
and space. Two feature maps multiply with the mresioriginal input feature maps for adaptive feattorrection to generate
the final feature maprhis paper explored methods of integrating CBAMtigh a series of ablation experiments. The
effective method is shown in Fig. 5. Where the shapfeature maps represents height x width x oblatm the backbone,
CBAMs were inserted after the output feature layith sizes of 80 x 80, 40 x 40, and 20 x 20, retpely. In the neck,

CBAMSs were inserted after the Concatenation layiéin wutput sizes of 40 x 40 and 80 x 80, respeltive

4. Results and Discussion

Firstly, three pest detection models, YOLOv5n, YQB0-MobileNetV3, and pest-YOLO, were trained on the
customized pest dataset. Furthermore, a comparatiakysis was conducted to evaluate the accurastyamplexity of the
three models. Finally, the performance of the p&3t-O algorithm was compared to that of two statekaf-art lightweight

algorithms.

4.1. Model training results

The experiments were conducted on the PyTorch frariewith a version of 2.0.1. The version of YOLOw&vas 7.0.
The hyperparameters were set to the default valtitse YOLOV5n algorithm. The Graphics Processingt (GPU) used
was the NVIDIA GeForce RTX 3060 with 12 gigabytéggoaphics memory. The Central Processing Unit (CB&&d was
the Intel Core i7-13700KF with a frequency of 3.4 The Compute Unified Device Architecture (CUDArsion used was
11.8. The shape of the input image was 640 x 6&0The batch size and training epochs were se2 tm@ 500, respectively.

The YOLOv5n, YOLOv5n-MobileNetV3, and pest-YOLO nadsl were respectively trained on the pest datdsed.
YOLOv5n model used the original YOLOv5n network,iletthe YOLOv5n-MobileNetV3 model replaced the blacke of
the YOLOvV5Nn network. The pest-YOLO model used apromed network. During the training process of tttiee models,
the losses for bounding box, objectness, and fileestsdn gradually decreased, while the metricsgi@rcision, recall, mAP50,

and mAP50-95 gradually increased.

Fig. 6 Training results of the YOLOv5n model

Fig. 6 displays the training results of the YOLOvBodel. During the training process, the boundiox lbss, objectness
loss, and classification loss all gradually decedasimilarly, during the validation process, thiEsses decreased to lower

values at the 200th epoch and remained stableglth@hsubsequent training process. The precisidriameached a higher
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value at the 200th epoch and peaked around thé 4p@ich. The recall metric attained a high valug@t200th epoch and
gradually increased during the following 300 epo®&wth mAP50 and mAP50-95 metrics achieved a hahevat the 200th
epoch and changed slightly in subsequent trainugles.

Fig. 7 shows the training results of the YOLOv5niMeNetV3 model. During the training process, ttentls in three-
class loss changes were similar to those of the ¢#n model. During the validation process, the Y@bBO-MobileNetV3
model achieved a low object loss value at the 4@ptich, whereas the YOLOv5n model achieved a Iduevat the 200th

epoch. The precision, recall, mAP50, and mAP50-8%ios showed similar changes to those of the YCirOwodel.

Fig. 7 Training results of the YOLOv5n-MobileNetVisodel

Fig. 8 displays the training results of the pesttYJOmodel. During the training and validation proges the three-class
loss trend of the pest-YOLO model was similar tattbf the YOLOv5n model. However, the precision neeshowed an
upward mutation at the 330th epoch, while the fenatric showed a downward mutation. These two itettid not change

significantly during the subsequent training praces

Fig. 8 Training results of the pest-YOLO model
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4.2. Validation results

The validation dataset consisted of 904 imagesveaslused to validate the performance of three nsoddéle mAP50
metric is crucial for evaluating model accuracythwiigher values indicating greater precision. €gbtisplays the validation

results of all three models across eight classddtair respective parameters for better evaluation

Table 2 Validation results of three models

Model Precisiol | Recal mAP5( mAP5(-95 Parameter
YOLOvV5n 0.89¢ 0.91 0.927 0.52¢ 1,769,98
YOLOv5n-MobileNetv3 |  0.861 0.87 | 0.89:(-3.2%) 0.47¢ 1,171,49:(-33.8%)
Pes-YOLO 0.86¢ 0.87< | 0.90: (-2.4%) 0.47¢ 1,185,97; (-33%)

The YOLOv5n model achieved a precision of 0.898alleof 0.91, mAP50 of 0.927, and mAP50-95 of 0.5P2e above
metrics of the YOLOv5n-MobileNetV3 model were 0.86187, 0.895, and 0.476, respectively, while thetrivs of the pest-
YOLO model were 0.864, 0.874, 0.903, and 0.47&eaetvely. In terms of the parameters metric, tli@.0Ov5n model had
1,769,989 parameters, compared to 1,171,493 pagesrfer the YOLOv5n-MobileNetV3 model and 1,185,9&ameters
for the pest-YOLO model. Fig. 9 compares the ralvaetrics of the three models on the validatiotasiet. The values of

parameters and training time were normalized faitieation.

Fig. 9 Comparison of the metrics of the three medel the validation dataset

The YOLOv5n model outperformed other models in &®iwh detection accuracy. For the crucial mAP50 imethe
YOLOv5n model achieved the highest score of 92.@#mared to the YOLOv5n-MobileNetV3 model with ascof 89.5%,
and the pest-YOLO model with a score of 90.3%. Hewvethe parameters of the YOLOv5n-MobileNetV3 gedt-YOLO
models decreased significantly by 33.8% and 33%peetively, compared to the YOLOv5n model. Thisuan in
parameters results in lower graphic memory consiampTherefore, the YOLOv5n-MobileNetV3 and pestiM® models
are suitable for deployment on agriculture |oT texads. Furthermore, the pest-YOLO model compenstatethe decrease in
detection accuracy by integrating CBAM of feweragmaeters, which resulted in an increase of 0.8%APED compared to
the YOLOv5n-MobileNetV3 model. Additionally, theaining times for all three models were similar..Fi@ displays the
Precision-Recall curve for three models: YOLOvV5QDOv5n-MobileNetV3, and pest-YOLO.

The YOLOvV5n, YOLOv5Nn-MobileNetV3, and pest-YOLO nedsl achieved the mAP50 of 92.7%, 89.5%, and 90.3%,

respectively. Fig. 10(a) shows the mAP50 for edaelscin the YOLOv5n model. For the classes ‘ricaf Imller’, ‘grub’,
‘wireworm’, ‘aphids’, ‘blister_beetle’, ‘Miridae’;Unaspis_yanonensis’, and ‘Cicadellidae’, the mAR&Iues were 0.979,
0.981, 0.892, 0.766, 0.942, 0.979, 0.932, and 0.8#8r replacing the backbone, the mAP50 of edakscin the YOLOv5nN-
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MobileNetV3 model decreased, as shown in Fig. 10{bg mAP50 for each class in the YOLOv5n-Mobileltodel was
0.971, 0.986, 0.824, 0.710, 0.893, 0.963, 0.928,0a885. In particular, the mAP50 of the ‘Cicadtdle’ class decreased by
6.3%.

However, after integrating CBAM, the pest-YOLO mbplaid more attention to the classes with lower ri@\Respecially
the ‘wireworm’ and ‘Cicadellidae’ classes, as destaated in Fig. 10(c). The mAP50 for each clagh@pest-YOLO model
was 0.920, 0.970, 0.858, 0.735, 0.910, 0.972, 0.88d 0.922. The mAP50 for the ‘wireworm’ and ‘Gletlidae’ classes
increased by more than 3% compared to the YOLOvBbildNetV3 model after integrating CBAM, achieviagialanced
detection accuracy for each class. In addition,dphid’ class had a lower mAP50 than the othess#a in all three models

due to some aphids being incorrectly predictedaagdrounds.

(a) YOLOv5N

(b) YOLOvV5n-MobileNetV3

Fig. 10 Predsion-Redll curves of three model:
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(c) pest-YOLO
Fig. 10 Precision-Recall curves of three modelsiijcoed)
4.3. Effectiveness, speed evaluation, and contiparaxperimental results

Pest images evaluated the effectiveness of theYigs© model. Pests in sample images were enclasdmbunding
boxes with confidence values, as shown in Fig.\Where, Fig. 11(a) to Fig. 11(h) present the dedectesult of rice leaf
roller, grub, wireworm, aphids, blister beetle, Mae, Unaspis yanonensis, and Cicadellidae, raspctThe pest-YOLO

model can detect the eight-class pests correctly.

(a) Rice leaf roller (b) Grub (c) Wireworm (d) Aplsi

(e) Blister beetle (f) Miridae (9) Unaspis yanorisns (h) Cicadellidae
Fig. 11 Detection results of the pest-YOLO model

Table 3 Comparison of Parameters and GFLOPs

Model Parameters GFLOPs mAP50 (all classes)
YOLOvV5n 1,769,989 4.2 0.927
YOLOv5n-MobileNetV3 | 1,171,493-33.8%) | 1.9(-54.8%) 0.895(-3.2%)
pest-YOLO 1,185,972-33%) | 2.0(-52.5%) 0.903(-2.4%)

Although the mAP50 is a crucial metric for a modieg metrics of Parameters and GFLOPs are usuaiyated as to
whether a model can be deployed on the termindlslimited computation power. The graphic memonaaérminal should

be larger than the value of the parameters of aemedsuring the model can run on the terminal ofétically, the value of
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GFLOPs should be as small as possible to reducpwations and boost the inference sp@atble 3 compares the parameters
and GFLOPs metrics of three models. The YOLOv5n-ddletV3 and pest-YOLO models show a significantréase in
parameters and GFLOPs compared to the YOLOv5n mHdelever, the mAP50 of these two models only shgtlecreased.
The pest-YOLO model, in particular, shows a deereafs approximately 33% and 52.5% in parameters @RLOPs,
respectively, while the mAP50 only slightly decrediby 2.4%. After integrating CBAM, the mAP50 oé thest-YOLO model
increased by 0.8% compared to the YOLOv5n-Mobil&f8ahodel, with a slight increase in parameters @GRLOPs.

The validation dataset images evaluated the thredels’ detection speeds, respectively. Latency sassemodel
detection speed, which contains the time spentafppocessing, inference, and Non-Maximum SuppreddMS) processes.
The smaller the latency, the faster the detectimed. FPS is the reciprocal of latency and reptegsha number of images
detected per second. Table 4 presents the meaatidetspeed per image for the three models. Bo#t-g©LO and
YOLOv5n-MobileNetV3 models achieved the highest FPS70, while the YOLOv5n model reached an FPS38. The
FPS of the pest-YOLO model increased by approxindté.1% compared to the YOLOv5n model. Due to gnd¢ing
CBAMSs, the parameters and GFLOPs of the pest-YOLddehslightly increased. However, the model actdetre same
FPS as the YOLOv5n-MobileNetV3 model.

Table 4 Comparison of detection speed metrics

Model Pre-process (ms)Inference (ms) NMS (ms)| Latency (ms) FPS
YOLOv5N 0.1 2.0 0.9 3.0 333
YOLOv5n-MobileNetV3 0.1 1.8 0.8 2.7 370
pest-YOLO 0.1 2.0 0.6 2.7 371611.1%)

Table 5 compares the performance of three lighttdigckbones. Compared to the GhostNet and LCNédiloaes, the
pest-YOLO model with MobileNetV3 backbone demontsilathe highest mAP50 of 90.3%. Concurrently, thst{¥OLO
model exhibited the lowest number of parameters@RHOPs with the fastest FPS of 370. Therefore ptioposed model,

pest-YOLO, achieved a good balance between spekgranision by comparing the effectiveness anddpééese models.

Table 5 Performance comparison of three lightweligtdkbones
Model Precision| Recall | mAP50 | mAP50-95| Parameters GFLOPs| FPS
YOLOv5Nn-GhostNet  0.853 0.838| 0.891 0.474 1,362,697 3.2 222
YOLOvV5n-LCNet 0.869 0.841 0.894 0.496 1,188,349 2.8 250
pest-YOLO 0.864 0.874 0.903 0.478 1,185,972 2.7 370

4.4. Discussion

Firstly, this paper utilized the default hyperpaedens to train the pest-YOLO model. The defaultigalwere optimized
for YOLOVS5 training from scratch on the Common Qitgein Context (COCO) dataset. Hyperparameter é¢oolis a method
of hyperparameter optimization using a genetic i@tigm (GA) for optimization. However, evolution generally expensive
and time-consuming, as the base scenario is trhimedreds of times, possibly requiring hundredtiousands of GPU hours.
Given that the pest-YOLO model achieved satisfgctmcuracy with the default hyperparameters, sévsiaerparameters
were fine-tuned instead of hyperparameter evolutiopluding the class loss gain, box loss gain, &ndge mixup
augmentation. The experimental results demonstthggdine-tuning the class loss and box loss gdidsiot achieve better

accuracy. Conversely, using mixup augmentatioreatsbf mosaic augmentation was associated withrlaaguracy.

Secondly, the pest-YOLO model can be extended tectdd02 pests in multiple crops. A pest detectioodel for
detecting 102 pests is available at https://gitboim/bobo504/pest-yolo. The model achieved a mAREb®% in all 102
pests. The lack of sufficient training images fertain pests has resulted in a corresponding rexfuict accuracy. Furthermore,

to achieve greater accuracy, it is recommendedathiatited number of pest species be utilized &intthe model, thereby
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facilitating the practical application of the mod€hirdly, the current real-time detection modestidl in the laboratory stage
and will be deployed on embedded devices for fildtbction in future research. Furthermore, theativje is to develop a
pest detection system with practical applicatiasafricultural pest control. The system combingtection terminals, VPN,

and agricultural 10T.

5. Conclusion

This paper proposes a lightweight pest detectiohit@rcture that utilizes VPN and agricultural Ie@Chnology to cover
large-scale crop areas. The proposed pest-YOLQ@etis customized for pest detection, which corabithe advantages of
YOLOvV5n and MobileNetV3, uses the MobileNetV3-liglackbone to lightweight the YOLOv5n backbone, affdctively
integrates five CBAMSs to compensate for the reduncin detection accuracy. Evaluation results dernatesi the pest-YOLO
model achieved a good balance of precision anddsg@iece the proposed model possesses fewer pa@nefaster speed,

and high precision, the model is suitable for dejpig on terminals in agricultural 10T to conducspédetection tasks.
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