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Abstract 

Traditional crop pest detection methods face the challenge of numerous parameters and computations, making 

it difficult to deploy on embedded devices with limited resources. Consequently, a lightweight network is an effective 

solution to this issue. Based on you only look once (YOLO)v5, this paper aims to design and validate a lightweight 

and effective pest detector called pest-YOLO. First, a random background augmentation method is proposed to 

reduce the prediction error rate. Furthermore, a MobileNetV3-light backbone replaces the YOLOv5n backbone to 

reduce parameters and computations. Finally, the Convolutional Block Attention Module (CBAM) is integrated into 

the new network to compensate for the reduction in accuracy. Compared to the YOLOv5n model, the pest-YOLO 

model’s Parameters and Giga Floating Point Operations (GFLOPs) decrease by about 33% and 52.5% significantly, 

and the Frames per Second (FPS) increase by approximately 11.1%. In contrast, the Mean Average Precision 

(mAP50) slightly declines by 2.4%, from 92.7% to 90.3%. 
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1. Introduction 

China is a major agricultural country with over 1,400 common crop diseases and pests. The characteristics of pest disasters 

include fast outbreaks and enormous losses [1]. Therefore, timely and accurate detection of pests energizes farmers to avoid 

losses and increase crop yields through appropriate preventive measures. In 2023, the General Office of the Ministry of 

Agriculture and Rural Affairs issued the notice of “2023 Action Plan to Ensure a Good Harvest as Seizing Food from Pests”. 

Crop diseases and insect pests such as wheat, rice, and corn are estimated to reappear in 2023. The affected area reached 3.15 

billion acres with a year-on-year increase of 24%. Yield losses exceeded 360 billion kilograms. Major diseases and insect pests 

in rapeseed and soybean are estimated to occur in 110 million acres, an increase of 15% year-on-year, threatening grain harvest 

and vegetable oil self-sufficiency [2].  

Traditional pest monitoring relies on manual identification by insect experts or technicians, which is highly subjective 

and labor-intensive [3]. Recently, machine vision equipment that integrates image processing and network communication has 

been widespread. Computer vision technology provides a new method for surveillance of crop pests, significantly improving 

monitoring efficiency [4]. The intelligent pest detection system integrates artificial intelligence, the Internet of Things (IoT), 

and big data technology to realize crop pest surveillance [5]. In the system, cameras with artificial intelligence algorithms 

automatically capture pest images and detect pests. The detection results are transmitted through IoT remotely.  

In recent years, deep learning algorithms have been applied widely in computer vision, including pest detection and 

classification [6]. Deep learning-based methods have demonstrated robust performance, rendering them the optimal solution 

for agricultural pest detection [7]. Therefore, this paper proposes a lightweight pest detection model that covers a wide range 

of crop areas, achieving a balance between accuracy and speed. The main contributions of this paper are: 
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(1) A random background data augmentation method is proposed to compensate for the lack of background images. Sufficient 

background images can reduce the number of false positive instances, thereby increasing the detection accuracy of the 

model. 

(2) A more lightweight backbone, MobileNetV3-light, is obtained by appropriately reducing the channel number of the 

MobileNetV3-small backbone layers. The MobileNetV3-light backbone replaces the you only look once (YOLO)v5n 

backbone, reducing the parameters and computations of the detection model significantly. 

(3) After replacing the backbone, the Convolutional Block Attention Module (CBAM) is integrated into the new network to 

compensate for the decline in detection accuracy. 

(4) By exploring agricultural IoT technology, a pest detection framework covering numerous crop areas is proposed to meet 

the practical industry application. 

The rest of this paper is organized as follows: Section 2 presents a review of recent relevant literature. Section 3 details 

the methodology employed in this study. Section 4 presents the results and discussion. Finally, concluding remarks are 

proposed in Section 5. 

2. Related Works 

Although deep learning-based pest detection methods have made significant progress, there are still several shortcomings 

in their practical application in industry. Firstly, some methods involve randomly capturing high-resolution pest images of 

crop areas through high-definition cameras. The images are then transmitted to servers with considerable computing power 

for pest detection. Although these methods achieve high detection accuracy, their detection speed is relatively slow. 

Furthermore, uploading numerous pest images to servers for processing significantly increases the transmitting bandwidth 

consumption of IoT, thereby limiting pest detection areas. 

In addition, some methods utilized models with more parameters and computations to improve detection accuracy. The 

models necessitate the detection terminal to be equipped with considerable computing power and graphic memory. As a result, 

these terminals are expensive and difficult to deploy on a large scale in agricultural IoT. Furthermore, public pest datasets 

suffer from the problem of missing background images and an adequate number of pest images, leading to missed detection 

and false detection. 

In 2023, Liang et al. [8] utilized Visual Geometry Group (VGG)16 and ResNet50 to establish a recognition model with 

18 diseases of four crops: apple, corn, grape, and tomato. Single-crop and multi-crop multi-disease detection models were built 

through data preprocessing, data augmentation, parameter optimization, and cross-validation. The proposed method 

demonstrated a recognition accuracy rate of 96%, which was superior to that of ResNet50. 

Ju et al. [9] proposed a method based on the masked autoencoding learning paradigm for agricultural crop disease and 

insect pest classification in 2024. The proposed method addressed the accuracy shortcomings of existing detection algorithms. 

The input crop image was subjected to local random content masking, semantic feature extraction, and global context 

reconstruction of high-dimensional mapping. The algorithm entirely mined implicit representations of high-level semantics of 

images to train a more robust model with fewer data samples. Compared to the ResNet50 baseline network, the statistical 

accuracy rate of the proposed method increased from 90.48% to 95.24%. 

In 2023, Yang et al. [10] selected the Keras framework in TensorFlow to implement an image classification system. The 

focal loss function was adopted to solve the problem of low recognition accuracy caused by imbalanced datasets. ResNet50, 

ResNet101, MobileNetV2, and VGG16 were utilized as feature extraction backbones to identify seven rice diseases, 

respectively. The ResNet50 with the focal loss function achieved 98.06% top-1 classification accuracy. Luo and Hu [11] 
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developed a pest detection system in 2024. The system combined deep learning and IoT technologies for remote detection of 

pests and diseases, thereby improving the efficiency of pest control work. The system utilized the YOLOv5 network and 

transfer learning to train and learn the characteristics of forest and farmland common pests, thereby achieving efficient 

detection and identification. 

Given the limitations of fruit farmers’ ability to identify pests, Wang and Xu [12] proposed a method that can effectively 

detect multiple categories of pests in 2023. The proposed method used the single-stage object detection algorithm, YOLOv5s, 

for navel orange pest detection, achieving a Mean Average Precision (mAP50) of 81.46% for nine types of pest detection. Liu 

et al. [13] proposed a rice disease and pest identification model called multi-scale dual branch (MSDB)-ResNet in 2023. The 

model utilized a multi-scale dual-branch structure based on ResNet. Based on the ResNet model, ConvNeXt residual blocks 

were introduced to optimize the calculation proportion of residual blocks. A dual branch structure was constructed to extract 

disease features of different sizes from the input disease image by adjusting the convolution kernel size of each branch. The 

MSDB-ResNet achieved a recognition accuracy of 99.10%, which was 2.42 percentage points higher than the original ResNet 

model. 

In 2022, He et al. [14] proposed an improved method for pest detection based on YOLOv5. The proposed method utilized 

weighted bidirectional feature fusion technology to enrich the semantic information of feature maps at all levels and modified 

the adaptive anchor calculation method to improve the accuracy. The mAP50 of the proposed model reached 0.923 in 20 

economic forest pest categories, and the model inference speed achieved a Frames per Second (FPS) of 64.9. In 2022, Aladhadh 

et al. [15] proposed an efficient pest detection method that accurately localized the pests and classified them according to their 

desired class label. The YOLOv5s model was enhanced through several modifications, such as extending the cross-stage partial 

network (CSP) module, improving the select kernel (SK) in the attention module, and modifying the multiscale feature 

extraction mechanism. Compared to the YOLOv5 model, the proposed model achieved the best experiment results. 

Assiri et al. [16] proposed an automated insect detection and classification using the Pelican optimization algorithm with 

deep learning called AIDC-POADL in 2024. Firstly, the AIDC-POADL technique employed the DenseNet-121 model to learn 

complex features within the input images. Furthermore, the hyperparameter selection of the DenseNet-121 model was 

developed through the use of the Pelican optimization algorithm. Finally, the multilayer perceptron model distinguished the 

insects into various classes. The experimental outcomes indicated that the AIDC-POADL method yielded superior recognition 

results compared to other approaches. 

In 2024, Hussain and Srikaanth [17] proposed a novel farmland fertility algorithm with a deep learning-based automated 

rice pest detection and classification (FFADL-ARPDC) technique. Firstly, the FFADL-ARPDC employed bilateral filtering to 

remove noise and enhance contrast. Furthermore, images of rice crops were processed using the NASNetLarge deep learning 

architecture to extract image features. Finally, the model accurately categorizes 14 types of pests using an Elman recurrent 

neural network (ERNN). The FFADL-ARPDC model exceeds existing pest detection methods with an accuracy of 97.58. 

3. Methodology 

Firstly, a pest detection framework was proposed based on the agriculture IoT. Secondly, a random background data 

augmentation method was employed to obtain diverse background images. Thirdly, the pest-YOLO algorithm was proposed 

by replacing the YOLOv5n backbone and integrating CBAMs. 

3.1.   Detection framework 

The integration of agricultural IoT technology with virtual private network (VPN) technology was investigated to 

establish reliable and secure network connections for detecting pests in large areas [18]. The VPN establishes a private network 
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on a public network for encrypted communication. Therefore, server resources in each crop area are integrated through VPN 

technology to form a distributed server cluster that energizes training of the pest detection model. A real-time pest detection 

framework covering numerous crop areas based on YOLOv5n was proposed in this paper, as shown in Fig. 1. 

 

Fig. 1 Crop pest detection framework based on YOLOv5n 

First, the distributed server cluster leveraged the public pest dataset to train an initial pest detection model. The model 

was then transmitted to terminals in crop areas via the IoT. Additionally, terminals with the trained models conducted real-

time pest detection. Terminals only uploaded the detection results to the server, significantly reducing the bandwidth 

consumption of the IoT. Managers regularly collected images in complex environments of various crop areas. These images 

are annotated and used to train the new model, which increases the robustness of the detection model and improves detection 

accuracy. 

3.2.   Data augmentation 

 

Fig. 2 Random background data augmentation method 

This paper employed eight pest classes from the public IP102 pest dataset for model training: rice leaf roller, grub, 

wireworm, aphids, blister beetle, Miridae, Unaspis yanonensis, and Cicadellidae. IP102 was a large-scale benchmark dataset 

for pest identification, which annotated 102 pest categories using the PASCAL VOC format [19]. Therefore, the dataset labels 

were converted to YOLO format. Image rotation, spatial transformation, and distortion methods were used for data 
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augmentation to increase the robustness of the detection model. Since certain pests exhibit a similar coloration to the 

background, a specific number of background images can help the trained model minimize the impact of the background. 

Therefore, crop background images, such as crop roots, stems, leaves, etc., were added to the dataset to reduce false positive 

prediction results, thereby increasing detection accuracy. Since the background image contained no detection objects, this 

paper proposed a random background data augmentation method to compensate for the lack of background images, as shown 

in Fig. 2. 

The official guidance of YOLOv5 for achieving optimal training outcomes recommends incorporating approximately 1% 

to 10% of background images to mitigate the false positive rate. Therefore, 50 background images were collected. In addition, 

the translation method in the OpenCV library was used to achieve spatial transformation of images. Similarly, the rotation 

method was used to achieve the rotation of images. Sine and cosine functions map pixels to achieve image distortion. Moreover, 

the scale, crop, flip, rotation, and affine transformation methods were employed to facilitate the copy-and-paste of images. 

Finally, 50 new background images are randomly generated using the above methods. The final dataset contained 5,904 images, 

consisting of a training dataset of 5,000 images and a validation dataset of 904 images. The total number of labels in the dataset 

was 7,403, and the number of labels for each pest class was 190, 676, 533, 1,395, 1,013, 1,268, 546, and 1,782, respectively. 

3.3.   Pest-YOLO structure 

The structure of the proposed lightweight pest-YOLO model is shown in Fig. 3. This structure contains the same three 

modules as YOLOv5n: the backbone for feature extraction, the neck for enhancing feature extraction and feature fusion, and 

the head for object prediction. First, data augmentation methods, such as image distortion, rotation, spatial translation, and 

random background, were used to increase the number of training images. In addition, a MobileNetV3-light backbone with 

fewer parameters and computations was obtained by appropriately reducing the number of channels of the MobileNetV3-small 

backbone layers, and the new backbone replaced the YOLOv5n backbone. Finally, CBAMs were effectively integrated into 

the new backbone to obtain the backbone of the pest-YOLO model. Similarly, the pest-YOLO neck was obtained by inserting 

CBAMs after concatenation layers from the YOLOv5n neck. The head of pest-YOLO used the same head as YOLOv5n to 

predict objects. 

 

Fig. 3 Pest-YOLO structure 
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3.4.   Replacing backbone 

Based on the MobileNetV3-small backbone, this paper further reduced the number of parameters and computations by 

appropriately reducing the number of channels in the middle feature layer of the backbone to obtain the MobileNetV3-light 

backbone. A comparison of the two backbone structures (input size is 640 × 640) is shown in Table 1.  

Table 1 Structure comparison of two backbones 

Structure 
MobileNetV3-small backbone MobileNetV3-light backbone 

Output shape Parameters GFLOPs Output shape Parameters GFLOPs 

conv2d 16 × 320 × 320 464 0.10 16 × 320 × 320 464 0.10 

bneck 1 16 × 160 × 160 744 0.02 8 × 160 × 160 600 0.01 

bneck 2 24 × 80 × 80 9,280 0.15 16 × 80 × 80 4,064 0.06 

bneck 3 24 × 80 × 80 - - 16 × 80 × 80 - - 

bneck 4 40 × 40 × 40 180,032 0.31 24 × 40 × 40 70,560 0.12 

bneck 5 40 × 40 × 40 - - 24 × 40 × 40 - - 

bneck 6 40 × 40 × 40 - - 24 × 40 × 40 - - 

bneck 7 48 × 40 × 40 - - 24 × 40 × 40 - - 

bneck 8 48 × 40 × 40 - - 24 × 40 × 40 - - 

bneck 9 96 × 20 × 20 680,040 0.30 48 × 20 × 20 182,200 0.08 

bneck 10 96 × 20 × 20 - - 48 × 20 × 20 - - 

bneck 11 96 × 20 × 20 - - 48 × 20 × 20 - - 

conv2d 576 × 20 × 20 56,448 0.02 288 × 20 × 20 14,400 0.01 

  Total: 927,008 Total: 0.9  Total: 272,288 Total: 0.38 

 

 

Fig. 4 The method of replacing the backbone 
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Where the output shape is presented as channel × height × width. In the bneck 1 structure, the number of output channels 

was reduced from 16 to 8 with a decrease of 144 in parameters. In the case of the bneck 2 and 3 structures, the number of 

output channels was reduced from 24 to 16, resulting in a reduction of 5,216 in parameters. Similarly, in the case of the bneck 

4 to 8 structures, the number of output channels was reduced from 48 to 24, resulting in a reduction of 109,472 in parameters. 

In the case of the last three bneck structures, the number of output channels was reduced from 96 to 48, resulting in a reduction 

of 497,840 in parameters. In the last convolutional layer, the parameters were reduced to 42,048. Finally, the two backbones 

had the same depth, while the final number of output channels of the MobileNetV3-light backbone was reduced by half. The 

MobileNetV3-small backbone had 927,008 parameters and 0.9 Giga Floating Point Operations (GFLOPs), while the 

MobileNetV3-light backbone only had 272,288 parameters and 0.38 GFLOPs. 

Since the YOLOv5n backbone outputs three feature maps of 80 × 80, 40 × 40, and 20 × 20 sizes for subsequent object 

prediction, the replaced backbone also outputs these three-size feature maps. First, layers 0 to 3 of the MobileNetV3-light 

backbone replaced layers 0 to 4 of the YOLOv5n backbone to output a feature map with a size of 80 × 80. In addition, layers 

4 to 8 of the MobileNetV3-light backbone replaced layers 5 to 6 of the YOLOv5n backbone to output a feature map with a 

size of 40 × 40. Finally, layers 9 to 12 of the MobileNetV3-light backbone replaced layers 7 to 8 of the YOLOv5n backbone 

to output a feature map with a size of 20 × 20. The shape of feature maps represents height × width × channel. Fig. 4 shows 

the replacement of the YOLOv5n backbone with the MobileNetV3-light backbone. 

3.5.   Integrating CBAM 

 

Fig. 5 The method of integrating CBAMs 

In computer vision, an attention mechanism pays attention to particular areas and discards irrelevant areas of an image. 

The channel attention mechanism focuses on what features are, and the spatial attention mechanism focuses on where features 

are. CBAM is a lightweight module blending these two types of attention, which can be integrated into any neural network to 
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improve performance [20]. The CBAM module sequentially generates attention feature maps in the two dimensions of channel 

and space. Two feature maps multiply with the previous original input feature maps for adaptive feature correction to generate 

the final feature map. This paper explored methods of integrating CBAMs through a series of ablation experiments. The 

effective method is shown in Fig. 5. Where the shape of feature maps represents height × width × channel. In the backbone, 

CBAMs were inserted after the output feature layer with sizes of 80 × 80, 40 × 40, and 20 × 20, respectively. In the neck, 

CBAMs were inserted after the Concatenation layer with output sizes of 40 × 40 and 80 × 80, respectively. 

4. Results and Discussion 

Firstly, three pest detection models, YOLOv5n, YOLOv5n-MobileNetV3, and pest-YOLO, were trained on the 

customized pest dataset. Furthermore, a comparative analysis was conducted to evaluate the accuracy and complexity of the 

three models. Finally, the performance of the pest-YOLO algorithm was compared to that of two state-of-the-art lightweight 

algorithms. 

4.1.   Model training results 

The experiments were conducted on the PyTorch framework with a version of 2.0.1. The version of YOLOv5n was 7.0. 

The hyperparameters were set to the default values of the YOLOv5n algorithm. The Graphics Processing Unit (GPU) used 

was the NVIDIA GeForce RTX 3060 with 12 gigabytes of graphics memory. The Central Processing Unit (CPU) used was 

the Intel Core i7-13700KF with a frequency of 3.4 GHz. The Compute Unified Device Architecture (CUDA) version used was 

11.8. The shape of the input image was 640 × 640 × 3. The batch size and training epochs were set to 32 and 500, respectively. 

The YOLOv5n, YOLOv5n-MobileNetV3, and pest-YOLO models were respectively trained on the pest dataset. The 

YOLOv5n model used the original YOLOv5n network, while the YOLOv5n-MobileNetV3 model replaced the backbone of 

the YOLOv5n network. The pest-YOLO model used an improved network. During the training process of the three models, 

the losses for bounding box, objectness, and classification gradually decreased, while the metrics for precision, recall, mAP50, 

and mAP50-95 gradually increased. 

 

Fig. 6 Training results of the YOLOv5n model 

Fig. 6 displays the training results of the YOLOv5n model. During the training process, the bounding box loss, objectness 

loss, and classification loss all gradually decreased. Similarly, during the validation process, these losses decreased to lower 

values at the 200th epoch and remained stable during the subsequent training process. The precision metric reached a higher 
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value at the 200th epoch and peaked around the 400th epoch. The recall metric attained a high value at the 200th epoch and 

gradually increased during the following 300 epochs. Both mAP50 and mAP50-95 metrics achieved a high value at the 200th 

epoch and changed slightly in subsequent training epochs. 

Fig. 7 shows the training results of the YOLOv5n-MobileNetV3 model. During the training process, the trends in three-

class loss changes were similar to those of the YOLOv5n model. During the validation process, the YOLOv5n-MobileNetV3 

model achieved a low object loss value at the 400th epoch, whereas the YOLOv5n model achieved a low value at the 200th 

epoch. The precision, recall, mAP50, and mAP50-95 metrics showed similar changes to those of the YOLOv5n model. 

 

Fig. 7 Training results of the YOLOv5n-MobileNetV3 model 

Fig. 8 displays the training results of the pest-YOLO model. During the training and validation processes, the three-class 

loss trend of the pest-YOLO model was similar to that of the YOLOv5n model. However, the precision metric showed an 

upward mutation at the 330th epoch, while the recall metric showed a downward mutation. These two metrics did not change 

significantly during the subsequent training process. 

 

Fig. 8 Training results of the pest-YOLO model 
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4.2.   Validation results 

The validation dataset consisted of 904 images and was used to validate the performance of three models. The mAP50 

metric is crucial for evaluating model accuracy, with higher values indicating greater precision. Table 2 displays the validation 

results of all three models across eight classes and their respective parameters for better evaluation.  

Table 2 Validation results of three models 

Model Precision Recall mAP50 mAP50-95 Parameters 

YOLOv5n 0.895 0.91 0.927 0.525 1,769,989 

YOLOv5n-MobileNetV3 0.861 0.87 0.895 (-3.2%) 0.476 1,171,493 (-33.8%) 

Pest-YOLO 0.864 0.874 0.903 (-2.4%) 0.478 1,185,972 (-33%) 

The YOLOv5n model achieved a precision of 0.895, recall of 0.91, mAP50 of 0.927, and mAP50-95 of 0.522. The above 

metrics of the YOLOv5n-MobileNetV3 model were 0.861, 0.87, 0.895, and 0.476, respectively, while the metrics of the pest-

YOLO model were 0.864, 0.874, 0.903, and 0.478, respectively. In terms of the parameters metric, the YOLOv5n model had 

1,769,989 parameters, compared to 1,171,493 parameters for the YOLOv5n-MobileNetV3 model and 1,185,972 parameters 

for the pest-YOLO model. Fig. 9 compares the relevant metrics of the three models on the validation dataset. The values of 

parameters and training time were normalized for evaluation. 

 

Fig. 9 Comparison of the metrics of the three models on the validation dataset 

The YOLOv5n model outperformed other models in terms of detection accuracy. For the crucial mAP50 metric, the 

YOLOv5n model achieved the highest score of 92.7% compared to the YOLOv5n-MobileNetV3 model with a score of 89.5%, 

and the pest-YOLO model with a score of 90.3%. However, the parameters of the YOLOv5n-MobileNetV3 and pest-YOLO 

models decreased significantly by 33.8% and 33%, respectively, compared to the YOLOv5n model. This reduction in 

parameters results in lower graphic memory consumption. Therefore, the YOLOv5n-MobileNetV3 and pest-YOLO models 

are suitable for deployment on agriculture IoT terminals. Furthermore, the pest-YOLO model compensated for the decrease in 

detection accuracy by integrating CBAM of fewer parameters, which resulted in an increase of 0.8% in mAP50 compared to 

the YOLOv5n-MobileNetV3 model. Additionally, the training times for all three models were similar. Fig. 10 displays the 

Precision-Recall curve for three models: YOLOv5n, YOLOv5n-MobileNetV3, and pest-YOLO. 

The YOLOv5n, YOLOv5n-MobileNetV3, and pest-YOLO models achieved the mAP50 of 92.7%, 89.5%, and 90.3%, 

respectively. Fig. 10(a) shows the mAP50 for each class in the YOLOv5n model. For the classes ‘rice_leaf_roller’, ‘grub’, 

‘wireworm’, ‘aphids’, ‘blister_beetle’, ‘Miridae’, ‘Unaspis_yanonensis’, and ‘Cicadellidae’, the mAP50 values were 0.979, 

0.981, 0.892, 0.766, 0.942, 0.979, 0.932, and 0.948. After replacing the backbone, the mAP50 of each class in the YOLOv5n-



International Journal of Engineering and Technology Innovation, vol. 15, no. 1, 2025, pp. 11-25 21

MobileNetV3 model decreased, as shown in Fig. 10(b). The mAP50 for each class in the YOLOv5n-MobileNetV3 model was 

0.971, 0.986, 0.824, 0.710, 0.893, 0.963, 0.928, and 0.885. In particular, the mAP50 of the ‘Cicadellidae’ class decreased by 

6.3%. 

However, after integrating CBAM, the pest-YOLO model paid more attention to the classes with lower mAP50, especially 

the ‘wireworm’ and ‘Cicadellidae’ classes, as demonstrated in Fig. 10(c). The mAP50 for each class in the pest-YOLO model 

was 0.920, 0.970, 0.858, 0.735, 0.910, 0.972, 0.937, and 0.922. The mAP50 for the ‘wireworm’ and ‘Cicadellidae’ classes 

increased by more than 3% compared to the YOLOv5n-MobileNetV3 model after integrating CBAM, achieving a balanced 

detection accuracy for each class. In addition, the ‘aphid’ class had a lower mAP50 than the other classes in all three models 

due to some aphids being incorrectly predicted as backgrounds. 

 

(a) YOLOv5n 

 

(b) YOLOv5n-MobileNetV3 

Fig. 10 Precision-Recall curves of three models  
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(c) pest-YOLO 

Fig. 10 Precision-Recall curves of three models (continued) 

4.3.   Effectiveness, speed evaluation, and comparative experimental results 

Pest images evaluated the effectiveness of the pest-YOLO model. Pests in sample images were enclosed in bounding 

boxes with confidence values, as shown in Fig. 11. Where, Fig. 11(a) to Fig. 11(h) present the detection result of rice leaf 

roller, grub, wireworm, aphids, blister beetle, Miridae, Unaspis yanonensis, and Cicadellidae, respectively. The pest-YOLO 

model can detect the eight-class pests correctly. 

    

(a) Rice leaf roller (b) Grub (c) Wireworm (d) Aphids 

    

(e) Blister beetle (f) Miridae (g) Unaspis yanonensis (h) Cicadellidae 

Fig. 11 Detection results of the pest-YOLO model 

Table 3 Comparison of Parameters and GFLOPs 

Model Parameters GFLOPs mAP50 (all classes) 

YOLOv5n 1,769,989 4.2 0.927 

YOLOv5n-MobileNetV3 1,171,493 (-33.8%) 1.9 (-54.8%) 0.895 (-3.2%) 

pest-YOLO 1,185,972 (-33%) 2.0 (-52.5%) 0.903 (-2.4%) 

Although the mAP50 is a crucial metric for a model, the metrics of Parameters and GFLOPs are usually evaluated as to 

whether a model can be deployed on the terminals with limited computation power. The graphic memory of a terminal should 

be larger than the value of the parameters of a model, ensuring the model can run on the terminal. Theoretically, the value of 
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GFLOPs should be as small as possible to reduce computations and boost the inference speed. Table 3 compares the parameters 

and GFLOPs metrics of three models. The YOLOv5n-MobileNetV3 and pest-YOLO models show a significant decrease in 

parameters and GFLOPs compared to the YOLOv5n model. However, the mAP50 of these two models only slightly decreased. 

The pest-YOLO model, in particular, shows a decrease of approximately 33% and 52.5% in parameters and GFLOPs, 

respectively, while the mAP50 only slightly decreased by 2.4%. After integrating CBAM, the mAP50 of the pest-YOLO model 

increased by 0.8% compared to the YOLOv5n-MobileNetV3 model, with a slight increase in parameters and GFLOPs. 

The validation dataset images evaluated the three models’ detection speeds, respectively. Latency assesses model 

detection speed, which contains the time spent in pre-processing, inference, and Non-Maximum Suppression (NMS) processes. 

The smaller the latency, the faster the detection speed. FPS is the reciprocal of latency and represents the number of images 

detected per second. Table 4 presents the mean detection speed per image for the three models. Both pest-YOLO and 

YOLOv5n-MobileNetV3 models achieved the highest FPS of 370, while the YOLOv5n model reached an FPS of 333. The 

FPS of the pest-YOLO model increased by approximately 11.1% compared to the YOLOv5n model. Due to integrating 

CBAMs, the parameters and GFLOPs of the pest-YOLO model slightly increased. However, the model achieved the same 

FPS as the YOLOv5n-MobileNetV3 model. 

Table 4 Comparison of detection speed metrics 

Model Pre-process (ms) Inference (ms) NMS (ms) Latency (ms) FPS 

YOLOv5n 0.1 2.0 0.9 3.0 333 

YOLOv5n-MobileNetV3 0.1 1.8 0.8 2.7 370 

pest-YOLO 0.1 2.0 0.6 2.7 370 (+11.1%) 

Table 5 compares the performance of three lightweight backbones. Compared to the GhostNet and LCNet backbones, the 

pest-YOLO model with MobileNetV3 backbone demonstrated the highest mAP50 of 90.3%. Concurrently, the pest-YOLO 

model exhibited the lowest number of parameters and GFLOPs with the fastest FPS of 370. Therefore, the proposed model, 

pest-YOLO, achieved a good balance between speed and precision by comparing the effectiveness and speed of these models. 

Table 5 Performance comparison of three lightweight backbones 

Model Precision Recall mAP50 mAP50-95 Parameters GFLOPs FPS 

YOLOv5n-GhostNet 0.853 0.838 0.891 0.474 1,362,697 3.2 222 

YOLOv5n-LCNet 0.869 0.841 0.894 0.496 1,188,349 2.8 250 

pest-YOLO 0.864 0.874 0.903 0.478 1,185,972 2.7 370 

4.4.   Discussion 

Firstly, this paper utilized the default hyperparameters to train the pest-YOLO model. The default values were optimized 

for YOLOv5 training from scratch on the Common Objects in Context (COCO) dataset. Hyperparameter evolution is a method 

of hyperparameter optimization using a genetic algorithm (GA) for optimization. However, evolution is generally expensive 

and time-consuming, as the base scenario is trained hundreds of times, possibly requiring hundreds or thousands of GPU hours. 

Given that the pest-YOLO model achieved satisfactory accuracy with the default hyperparameters, several hyperparameters 

were fine-tuned instead of hyperparameter evolution, including the class loss gain, box loss gain, and image mixup 

augmentation. The experimental results demonstrated that fine-tuning the class loss and box loss gains did not achieve better 

accuracy. Conversely, using mixup augmentation instead of mosaic augmentation was associated with lower accuracy. 

Secondly, the pest-YOLO model can be extended to detect 102 pests in multiple crops. A pest detection model for 

detecting 102 pests is available at https://github.com/bobo504/pest-yolo. The model achieved a mAP50 of 55.9% in all 102 

pests. The lack of sufficient training images for certain pests has resulted in a corresponding reduction in accuracy. Furthermore, 

to achieve greater accuracy, it is recommended that a limited number of pest species be utilized to train the model, thereby 
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facilitating the practical application of the model. Thirdly, the current real-time detection model is still in the laboratory stage 

and will be deployed on embedded devices for field detection in future research. Furthermore, the objective is to develop a 

pest detection system with practical applications for agricultural pest control. The system combines detection terminals, VPN, 

and agricultural IoT. 

5. Conclusion 

This paper proposes a lightweight pest detection architecture that utilizes VPN and agricultural IoT technology to cover 

large-scale crop areas. The proposed pest-YOLO detector is customized for pest detection, which combines the advantages of 

YOLOv5n and MobileNetV3, uses the MobileNetV3-light backbone to lightweight the YOLOv5n backbone, and effectively 

integrates five CBAMs to compensate for the reduction in detection accuracy. Evaluation results demonstrated the pest-YOLO 

model achieved a good balance of precision and speed. Since the proposed model possesses fewer parameters, a faster speed, 

and high precision, the model is suitable for deploying on terminals in agricultural IoT to conduct pest detection tasks. 
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