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Abstract 

In this study, a lifelogging system is proposed for logging the daily activities of a user using a smartphone and 

a smartwatch cooperatively in indoor environments. The proposed system attempts to recognize a user’s activities 

of daily living, including sleeping behavior and various physical activities, and to estimate the user’s daily total 

energy expenditure (TEE) based on the recognized lifelogs. The TEE has the potential to be useful in personal 

healthcare management. The system includes both mobile and server systems. The mobile system consists of both 

a smartwatch and a smartphone used to classify ten activities, including sleeping activities, using sensors on both 

devices. The server system includes a database server and a set of programs to handle the collected lifelogs for 

users. An Android app is also developed to display the collected lifelogs and the estimated daily TEE on 

smartphones to assist in managing users’ health. The experimental results show that the overall average 

recognition rate of seven activities is 97.5% with four subjects, and the total average error for the three states of 

sleeping behaviors is 6.64%. 
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1. Introduction 

Lifelogging is a collection of information about daily activities of a user. The stored information can include documents, 

photos, Web browser information, biometric sensors, etc. which can draw a picture about the activities of the user in a day 

[1]. The lifelogging systems have been developed for years ago. The initial system that inspired many lifelogging systems as 

well as lifelog tools is “Memex” vision (a sort of desk) which was introduced by Bush in 1945. This system can help manage 

the personal information of a user from the documents that he/she interacts with. After a long time of development and 

improvement, today’s lifelogging systems extend their scale not only in a small area such as in a room or a building but also 

to the worldwide due to the development of the technology. However, there are challenges when designing and using 

personal information in lifelogging system. The main challenges include the policy to access to the information, the security 

of personal information, and the long-term preservation of the information [2-3]. 

There are different ways to classify the lifelogging systems. According to Sellen and Whittaker, the lifelogging systems 

are classified into two main classes [2]. The first one is total capture, which means the system will attempt to catch and 

collect the data related to the user as much as possible from different sources such as documents, images, videos, etc. The 

second class is situation-specific capture which limits the range of collected data due to different purposes. For example, 

during the medical treatment, the information from the biometric sensors is more useful than Web browser or email 

information. Another way to classify the systems is based on the way they are collected [1]. Active lifelogging is one uses 
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sensors and capture tools to store the useful information about himself only. Meanwhile, passive lifelogging is one uses tools 

to track the information of another one. For example, the doctors use sensors attached to the patient’s body to collect the 

movement of the patient in vestibular rehabilitation therapy. 

The dramatic development of technology has given rise to a new trend in the mobile healthcare industry, which focuses 

on using mobile devices to assist in providing medical health service support. In recent years, the mobile healthcare has 

received increasing attention, because the biosensors that are used for healthcare purposes can be miniaturized and integrated 

with wearable wireless communication technology into smart devices such as smartphones or smartwatches [4]. In addition, 

the increasing affordability of wearable devices can be expected to increase their popularity and the roles they play in 

people’s lives. Attention has been shifting from disease treatment to disease prevention, giving rise to many healthcare-

related applications that can help people track their daily activities, energy intake and expenditure. Using these applications 

assists people in adapting their lives and habits to improve their health. Furthermore, in a day, a user might engage in various 

activities both indoors and outdoors. Since people who live in urban areas spend 90% of their time indoors [5], the ability to 

recognize their activities when they are indoors through the use of wearable devices such as smartphone/smartwatch is 

important. 

This paper proposes an indoor lifelogging system for recognizing the activities of daily living (ADLs) of a user, using 

both a smartphone and a smartwatch cooperatively as a mobile system, together with a server system that collects, processes, 

and provides feedback for the user to assist in health management. The mobile system first attempts to recognize the user’s 

ADLs, and then to send the recognized logs to a database server. The server system stores the log data in a database from 

multiple mobile systems via a network, and then estimates each user’s TEE based on the classified activities of the user. The 

user can see his or her own lifelogs and the TEE of a given day conveniently on the smartphone. 

The contributions of this paper are as follows: 

 An indoor lifelogging system is designed to use a smartphone and a smartwatch to track the ADLs of a user for 24 hours. 

 A method is proposed using a smartphone and smartwatch simultaneously and cooperatively to recognize seven ADLs that 

can be used to estimate energy expenditure. 

 A method is proposed to classify the sleeping status of a user using two mobile devices. 

 A method is proposed to estimate the TEE of each user based on the classified lifelogs with the basal metabolic rate 

(BMR). The estimate can be calculated and stored in the server system, and then visualized on the user’s smartphone. 

 An Android platform application is developed that can display the stored lifelogs and the daily TEE and provide login and 

preference setting services to the user. 

2. Related Work 

Due to a long history of development, there exist many lifelogging systems. Some famous efforts are listed in [1]. 

LifeLog was a project which attempted to capture the life-long information and supported by the American Defense and 

Advanced Research Projects Agency (DARPA). One of the most famous systems is MyLifeBits which was designed by 

Gordon Bell from Microsoft in 2001. This system focuses on capturing the activities of a user in his/her office. Another 

lifelogging project from Microsoft is SenseCam which used a wearable camera to capture the images. In the field of using 

wearable devices for collecting information, especially the mobile phones, many systems are investigated and developed [6-

8]. Chennuru et al. [9] attached the smartphone on a helmet to get data from both the integrated camera and accelerometer 

sensor of that smartphone for their lifelogging system. UbiLog [6] was a lifelog framework which also uses the smartphone 

as the main tool to record the information. The authors attempted to build a flexible and extensible framework which aims to 

increase the connectivity between their system and other digital devices, therefore enriches the lifelog data. 
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For human activity recognition, many studies have been conducted to develop offline machine learning tools, such as 

the Waikato Environment for Knowledge Analysis (WEKA) [10-11]. However, increasing battery capacity has also led to 

the introduction of more online activity recognition applications. There are applications that can track users’ activities for a 

mobile diary or a fitness tracker through real-time processing [12-15]. Moreover, there are several activity recognition 

systems that calculate the daily total energy expenditure (TEE) of a user and display the results on a mobile device to help 

the user learn about his or her conditions immediately. Liu et al. [16] used an accelerometer and magnetometer to classify 

activities and calculate the energy expenditure based on those activities. Jung et al. [17] proposed a method for computing 

energy expenditure based on Global Positioning System (GPS) analysis and an accelerometer installed on a smartphone. 

Chiang et al. [18] proposed a system to recognize the pattern of user’s activity and to calculate the TEE based on data 

obtained from the smartphones. Chowdhury et al. [19] compared the accuracy of energy expenditure estimation of different 

commercial wearable devices which can be used to monitor the physical activity of a user. Recently, by using acceleration 

data from a smartphone and a smartwatch, Duclos et al. [20] introduced an intelligent system to discriminate human 

sedentary and active behaviors to precisely estimate the TEE of the user by applying their new energy expenditure function. 

The accurate detection of sleep is not easy using only the sensor outputs of a smartphone and smartwatch, without 

monitoring such physiological indicators as the electroencephalographic (EEG), electrooculographic (EOG), and 

electromyographic (EMG) factors. However, the latest commercial activity trackers such as Jawbone [21], Fitbit [22] or 

Xiaomi [23] are used not only for tracking the strength of activities but also for recognizing the sleeping behavior of a user 

automatically by using an accelerometer and/or heart rate detector. Chen et al. [24] used a smartphone to detect the sleep 

duration and distinguish between the awake and sleep states of a user. With a smartphone/smartwatch combination, the 

method uses features calculated from both devices to detect the user’s sleep. Gu et al. [25] utilized built-in sensors on the 

smartphones to sense four sleep-related events, then predict the dwelling time of each sleep state by a statistical model. 

3. Proposed System 

3.1.   System overview 

Fig. 1 shows a block diagram of the proposed system, including both its mobile and server systems. 

 
Fig. 1 Block diagram of the proposed system 

The mobile system has both a smartphone and a smartwatch. First, the smartphone attempts to classify the user’s 

activity through a set of features from both the smartphone and the smartwatch. The smartwatch sends feature values to the 

smartphone at predetermined intervals. Seven activities are defined as indoor activities: walking (WA), jogging (JO), 
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running (RU), sitting (SI), standing (STA), rope jumping (RJ), and doing push-ups (PU). The developed classifier can also 

count the number of repeated activities for WA, JO, RU, RJ, and PU. In addition, the mobile system can track the sleeping 

behavior of the user. The system attempts to classify the sleeping status as awake, restless, or deep sleep. Finally, the mobile 

system can display the recognized and stored lifelogs and daily TEE data obtained from the server system in many forms. 

The server system consists of a database server, a web server, and a set of server programs for handling the log data. 

The server system manages several users at the same time. The database receives the data from multiple mobile systems and 

stores their lifelogs. A server program calculates the TEE based on personal information, such as gender, age, height, weight, 

etc. The computed daily TEE values are stored in another database. In addition, every user is required to log in to the system 

in order for his or her personal information to be considered. 

3.2   Mobile system 

3.2.1. Activities recognition 

A feature is introduced to divide all of the activities into two categories. For some activities, such as sitting or doing 

push-ups, the smartwatch/smartphone just moves in a comparably small space. In contrast, for walking or jogging, both 

devices move in a larger space (e.g., moving from room to room). Signals of the magnetometer and the linear acceleration of 

the smartphone were selected to compute this feature. At every sampling time (1/20 second), the system calculates these two 

features. The first is the standard deviation of the magnitudes of the magnetic sensor signals, 
,12

, ( , , )
x y zm

m m mm   for the 

latest 12 samples. The second is the sum of the magnitudes of the linear acceleration vectors for the latest 12 samples, as 

described by the following equation: 

12

1

( ) ( )
k

la
S t k la t k



   (1) 

where k is a scaling factor and ( )la t  is the magnitude of the linear acceleration vector ( , , )
x y z

la la la la . To provide a 

better result, a new feature ( )
fw

f k  computed by fusing the two features described above, is introduced. The complementary 

filter technique is applied in accordance with the following equation: 

,12
( ) ( ) (1 )S ( )

fw m la
f t t t     (2) 

At each sampling time, the feature ( )
fw

f k  is calculated and saved in a buffer. The scheme then computes the standard 

deviation 
,12

( ( ))
fwf t  for the last 12 samples of the feature ( )

fw
f t  again. Finally, the average ( )

fw
t


  is calculated using the 

last four values of the standard deviation values, 
12, ( ), 0, ..., 3

fwf t k k   . The feature ( )
fw

t


  is referred to as the moving 

feature. 

A simple but effective recognition method is proposed for classifying indoor activities. At every sampling time, the 

activity estimator reads the signals, such as accelerations, angular velocities, and magnetic fields, from the hardware sensors 

of both devices, as well as signals such as the gravity and the linear accelerations from the software sensors. After every 

second, the smartwatch sends the features to the smartphone using the Google Data API protocol. The smartphone plays the 

role of the host processor to recognize the current activity of a user by analyzing the features of the smartphone itself with 

the features coming from the smartwatch. From the experiments, it is believed that 30 seconds is an adequate sampling time 

to maintain the user’s daily lifelog. Therefore, the estimator recognizes an activity every second for a period of 30 seconds 

and then determines the most frequent activity among the collected activities as the final lifelog that is sent to the server 

system. 
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The smartwatch computes five features, the moving component ( )
w

fw
t


 , the x-axis component of the acceleration 

vector, the mean of the x and y components of the acceleration vector, the maximum value of the magnitudes of the linear 

acceleration vectors for the last 12 samples, and the magnitude of the vectors of the gyroscope sensor signal. The moving 

feature is calculated in both the phone ( ( )
p

fw
t


 ) and the watch ( ( )

w

fw
t


 ). The superscripts “p” and “w” represent 

smartphone and smartwatch, respectively. Based on the values of the two moving features, the scheme attempts to classify 

activities into three categories, as shown in Table 1. The three categories represent different cases, depending on the degree 

of moving of both devices. For instance, in the case of rope jumping, this is represented by a big movement of the watch and 

a small movement (or no movement) of the phone. 

First, the scheme determines the category using the two moving features. To distinguish (SI), (STA), and (PU) activities 

in category 1, a simple threshold-based method is proposed using four features, the x component of acceleration (denoted by 

w

x
a ), the mean of the x and y components of the acceleration (𝜇𝑎

𝑤=0.5(𝑎𝑥
𝑤+𝑎𝑦

𝑤)), the magnitude (
w

 ) of the angular velocity 

vector from a gyroscope, and the maximum value (denoted as 
12,

max
la

) of the magnitude of the linear acceleration vectors, 

la ) among the last 12 samples. The rules are as follows: IF 
w

  < Th3 AND 
12,

max
la

 < Th4, THEN the subgroup of (SI) 

and (STA) is categorized; OTHERWISE, IF 
w

  > Th10 AND Th4 < 
12,

max
la

 < Th5, THEN (PU) is recognized. For (SI) 

and (STA), (STA) is recognized if w

x
a  < Th5, and if w

x
a  > Th5 and Th6 < 

xy

w

a
  < Th7, then (SI) is recognized. 

Table 1 Category of seven activities 

Groups Watch Phone Activities 

1 ≤ Th1 ≤ Th2 (SI), (STA), (PU) 

2 > Th1 ≤ Th2 (RJ) 

3 > Th1 > Th2 (WA), (JO), (RU) 

The (RJ) activity is classified into category 2, indicating that the smartphone’s movement is small and the watch’s 

movement is big, especially that the movement of the watch is bigger than those of the activities in category 3. Therefore, the 

scheme checks that the values of the feature 
12,

max
la

 are bigger than the threshold Th8; if this is true, then the current activity 

is classified as (RJ). 

Table 2 Features used to estimate seven activities 

Activity 

Features 

(t)
p

fw
  (t)

w

fw
  

w

x
a  

xy

w

a
  

w

  
12,

max
la

 

Sitting (SI) ● ● ● ● ● ● 

Standing (STA) ● ● ● ● ● ● 

Push-ups (PU) ● ●   ● ● 

Rope jumping (RJ) ● ●    ● 

Walking (WA) ● ●    ● 

Jogging (JO) ● ●   ● ● 

Running (RU) ● ●    ● 

For classifying three similar activities in category 3, the scheme just uses the feature 
12,

max
la

. The value of 
12,

max
la

 

reflects the strength of the linear acceleration of the user movement, with the result that its value increases from (WA) to 

(RU). Three thresholds are used to discriminate three activities. Table 2 summarizes all of the features used to classify 

different activities. 

As described previously, the mobile system can recognize some activities and also count the number of times repeated 

activities, such as doing push-ups, rope jumping, walking, jogging, and running, are performed. For the (WA, JO, RU) cases, 

the scheme counts the number of steps. For example, for the activities in category 3, the magnitude of the gyroscope vector 
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(
w

 ) exhibits better repeatability than the magnitude of the linear acceleration vector ( la ). In contrast, for the activities 

(PU) and (RJ), it is easier to use the feature la  to count the number of repeated motions. 

To count the number of steps, the scheme attempts to find the two peaks in a gait cycle, the positive peak p(+) and the 

negative peak p(-), of 
w

  and the two moments, the 𝑡𝑝(+) moment (when p(+)occurs) and the 𝑡𝑝(−) moment (when p(-) occurs). 

The system detects all of these features, and then checks two conditions: the magnitude of the difference between positive 

and negative peaks, e.g., (p(+)-p(-)) > Th9, and the time interval between the two moments: Th10 ≤ (𝑡𝑝(+)-𝑡𝑝(−)) ≤ Th11. IF these 

conditions are satisfied, THEN the number of steps is increased. The same idea is applied to count the number of times of 

performing the activities (PU) and (RJ) using the linear acceleration signals, but other threshold values are chosen for (PU) 

and (RJ). 

3.2.2. Sleep detection 

In order to log the sleeping behavior, the mobile system attempts to estimate the sleep status of a user among three 

states, deep sleep (DS), restless (RL), and awake (AW). The definitions of these states are similar to those of the Fitbit 

tracker [12]: 

 Deep sleep: when the body is completely at rest and unmoving. 

 Restless: when the body has transitioned from a very restful position with little movement to movement or when the 

surrounding conditions are not good for sleep (light on, loud noise). The purpose of the restless state is to show that the 

user is not currently getting the most restful sleep at that time. 

 Awake: when the user keeps moving his or her body, preventing restful sleep while sleeping. 

Compared to other activity trackers, this scheme uses different sensor signals from both watch and phone. A method is 

proposed using five features, the maximum magnitude of the linear acceleration vectors of the watch (
12,

max
la

) for the last 

12 samples, the output of the light sensor (light), the sound value (sound), the moving feature of the phone ( (t)
p

fw
 ), and the 

screen-touch count (count). The classification rules are as follows: 

IF both the smartwatch and the smartphone are not moving (checking the values of the two features 
12,

max
la

 and (t)
fw

 ) 

AND light < Th12 AND sound < Th13 AND count < Th14 THEN it is (DS). 

IF the phone and watch move OR the phone moves, THEN it is (AW). OTHERWISE it is (RL). 

At every second the scheme determines the sleeping state and stores it in a list. After 15 seconds, the system finds the 

most frequent state, which is determined to be the final state. Fifteen seconds is sufficiently long enough to catch small body 

movements while sleeping, therefore, many people experience involuntary periodic limb movements during sleep (PLMS) 

every 10 to 60 seconds[26-27]. 

3.3.   Server system 

3.3.1. Server components 

The software specifications of the actual server system are as follows: 

 The “active” table saves the lifelogs with six fields: user (username), no_act (code number of activity), name_act (activity 

name), cnt (number of repetitions of each activity), and st_et (start/stop time). 

 The database table includes three tables: “active,” “use,” and “cal”. 

 The “user” table contains the user’s private information, consisting of five fields: user, age, sex, height, and weight. 

 The “cal” table contains three fields for storing the daily TEE of each user: user, cal (TEE), and date. 
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Table 3 Server system specifications 

Server name HallymHealthServer 

Operating System Windows Server 2008 R2 Enterprise 

Web Server Apache 2.2.14 

Database management system Mysql 5.1.41-community 

Hypertext preprocessor PHP 5.2.12 

3.3.2. TEE estimation 

The energy expenditure for each activity can be computed through various means, such as the BMR or the metabolic 

equivalent of task (MET). In this system, the BMR, which is the minimal rate of energy expenditure per unit time at rest [28], 

is used and is reported in energy units per unit time. Eq. (3a) and Eq. (3b) are revised Harris-Benedict equations [29], 

modified from the original equation using a new data set for more accurate results. 

13.397m 4.799h 5.677 kcal
88.362

1 11
For men,  ( )a

cm yearkg day
P      (3a) 

9.247m 3.098 4.330 kcal
447.593

1 11
For women, ( )h a

cm yearkg day
P      (3b) 

where P is total heat production at complete rest (kcal/day), m is mass (kg), h is height (cm), and a is age (years). For each 

recognized activity, the physical activity ratio (PAR) is used, as shown in Table 4. Then, the TEE of a user A in a day is 

calculated using Eq. (4): 

0A

N

A i ii
TEE P PAR t


   (4) 

where PA can be calculated from Eq. (3a) and Eq. (3b) depending on the user’s gender, N is the number of activities, i is one 

specified activity, PARi can be found in Table 4, and ti is the execution time of activity i (hours). 

Table 4 Physical Activity Ratio (PAR) for seven activities and three sleep states 

 SI STA WA JO RU RJ PU DS RL AW 

PAR 1.2 1.2 2.8 4.8 6.9 6.9 6.9 1.0 1.2 2.8 

3.3.3. Communication 

After each 30-second period, the mobile system sends the activity to the remote server if it is a new activity different 

from the previous one. Otherwise, the smartphone does not send it and waits until an activity is detected. The data include (1) 

ID of the user, (2) code number of the activity, (3) name of the activity, (4) count of repetitions for each activity (except (SI), 

(STA)), and (5) starting/ending time. Whenever one activity ends, at that moment, it is also the starting time of the next new 

activity. When a new activity is detected, all of the information listed above is sent to the server. The message is sent to the 

remote server via a TCP/IP connection. A buffer is used to save the logs when a connection is broken or unstable, and all of 

the data in the buffer are sent to the server whenever a connection recovers. This feature guarantees that the server does not 

miss any updated logs even if the network is unstable. 

The received data are used to calculate the TEE on the server, and the results are visualized on the server as well as on 

the mobile devices. 

4. Experimental Results 

4.1.   Performance of Activity Recognition 

A set of experiments was conducted to evaluate the performance of the proposed classification method for the seven 

activities with four subjects (all male, average age of 24.75 years). Each subject was equipped with both a smartphone and a 

smartwatch, and the smartwatch was worn on the wrist of the subject’s dominant hand. For each activity, the subjects 
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executed the (Activity)-(Standing/Stop) cycle repeatedly five times. The subjects were asked to participate in an activity for 

over 30 seconds because that is the minimum time required for logging. The results are summarized in Table 5. Here, the 

UNK represents the unknown case. As shown in the table, perfect recognition performance for five activities is pointed out, 

with the worst result being the case of (JO). However, the jogging activity was misrecognized as walking and running, 

reducing its importance, especially with respect to calculating energy expenditure. The overall average recognition rate was 

97.5% (with a standard deviation of 4.18). 

Table 5 Confusion matrix for activity recognition 

 UNK WA STA SI JO RU JU PU 

R
ec

o
g

n
iz

ed
 

UNK 0 0 0 0 0 0 0 0 

WA 0 20 0 0 1 0 0 0 

STA 0 0 19 0 0 0 0 0 

SI 0 0 0 20 0 0 0 0 

JO 0 0 0 0 18 0 0 0 

RU 0 0 0 0 1 20 0 0 

JU 0 0 0 0 0 0 20 0 

PU 0 0 1 0 0 0 0 20 

Precision (%) 95.24 100 100 100 95.24 100 95.24 

Recall (%) 100 95 100 90 100 100 100 

F-score 0.98 0.97 1 0.95 0.98 1 0.98 

4.2.   Counting performance 

To evaluate the counting performance, a set of experiments are conducted with the following scenarios for the same 

four subjects: 

 Walking - Jogging - Running: 100 steps for each activity, 20 times. 

 Doing push-ups: 20 push-up actions, 20 times. 

 Rope jumping: 30 jumps, 10 times. 

The scheme attempts to count the number of steps for the (WA), (JO), and (RU) activities. The error rate was calculated 

with the estimated count value and the true value. The average error rate is summarized in Table 6. (JO) had the lowest error 

rate of step detection with a value of 3.71%, and (RJ) had the highest error rate with 6.67%. The total average error rate for 

the five activities was 4.97%. 

Table 6 Error rate for counting performance 

 WA JO RU RJ PU 

Error Rate (%) 4.50 3.71 5.43 6.67 4.53 

4.3.   Sleep state estimation performance 

In this section, the sleeping status estimation performances of the suggested method and a commercial activity tracker 

(Flex by Fitbit) are compared. Two subjects were asked to wear the Fitbit Flex wristband and the smartwatch simultaneously 

while sleeping for two nights. Both devices started to track the sleeping state at 0:00 AM and ended at 8:00 AM. A video 

camera was installed to record the user’s behaviors while he or she slept. Analyzing the video established actual sleeping 

states as the ground truth with a unit time of one minute. 

Fig. 2 shows the results of sleeping state estimation for two different nights for two users: the two former days for user 

A and the two latter days for user B. Each graph shows one night’s total duration in each of the three sleeping states: awake, 

restless, and deep sleep. Different colors are used to denote three results: red is the ground truth, green is the Fitbit record, 

and blue is the record of our scheme. Here, the error is defined as the difference between the duration of the truth and the 

estimate. As shown in Fig. 2(a), the error of the Fitbit results can reach as high as 124 minutes, as in day 1 of user A 

(Restless). In comparison, the maximum error of the scheme is only 19 minutes, as in day 2 of user A (Deep Sleep). The 
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total average error for the three states was 31 minutes using the proposed method, compared to 145 minutes using Fitbit. 

Table 7 summarizes the error rate of sleeping behavior estimation that shows the lower error rate of the proposed method 

compared with Fitbit. 

  
(a) User A day 1 (b) User A day 2 

  
(c) User B day 3 (d) User B day 4 

Fig. 2 Comparison of sleep state estimation 

Table 7 Error rate for sleep estimation 

 

Day 1 Day 2 Day 3 Day 4 

Fitbit 
Proposed 

Method 
Fitbit 

Proposed 

Method 
Fitbit 

Proposed 

Method 
Fitbit 

Proposed 

Method 

Ground Truth 

(minutes) 
480 480 543 543 459 459 454 454 

Error (minutes) 244 16 160 38 104 40 74 30 

Error rate (%) 50.83 3.33 29.47 7.91 22.66 8.71 16.30 6.61 

4.4   Lifelogging performance 

In this section, the performance of the logging system was evaluated for indoor activities in a day of a user. For 

convenience in conducting experiments, one day, excluding eight hours for sleeping, was divided into four four-hour-long 

time durations as shown in Table 8. Four subjects with the mobile system were asked to perform their usual daily activities 

for each time duration. The users were also asked to wear their smartwatches and to hold their phones for the (WA), (JO), 

and (RU) activities. When the users performed other activities (SI), (JU), (PU), they put the phone down on a desk just as in 

a normal daily situation. The lifelogs recognized by the mobile system were sent to the server system. The true data were 

obtained from annotations written by the users themselves. 

Table 8 Time durations for lifelogging activities 

Label Morning Lab Dinner Night 

Time Period 8:00am-12:00pm 12:00pm-4:00pm 4:00pm-8:00pm 8:00pm-12:00am 
 



International Journal of Engineering and Technology Innovation, vol. 8, no. 4, 2018, pp. 261 - 273 

 

270 

Copyright ©  TAETI 

 
Fig. 3 Stored life-logs of user A for ‘Morning’ time duration 

As an example, the stored life-logs of user A for a 4-hour time duration is shown in Fig. 3, respectively. The x-axis 

represents the time (in a minute) and the y-axis represents seven activities. The red dashed line on the graph is the actual 

activity while the black solid line represents the recognition result. Some short length errors can be noted. In Fig. 3, the 

activities of user A in the morning can be imagined as getting up, having breakfast, going to lab and sitting in front of a desk 

most of the time with some activities for relaxing such as jumping or doing push-ups. The activity from 80th to 160th minute 

was the same between true and estimated activity and the user did not change to other activities. Therefore, the plotting in 

this phase is skipped. As a performance measurement, the amount of time of misrecognized activities was chosen. The 

experimental results are shown in Table 9. 

Table 9 Activity tracking for four users 

User Label Total (mins) Right (mins) Wrong (mins) Error (%) 

A 

Morning 241.38 240.28 1.1 

0.016 Lab 235.29 234.73 0.55 

Night 132.02 123.76 8.24 

B 

Lab 235.84 235.29 0.55 

0.034 Dinner 237.78 225.13 12.65 

Night 207.16 197.26 9.9 

C 

Morning 206.96 203.66 3.3 

0.019 Dinner 69.59 67.94 1.65 

Night 175.34 171.84 3.5 

D 

Morning 111.56 108.81 2.75 

0.031 Lab 60.37 60.37 0 

Dinner 223.94 214.59 9.35 

As shown, each subject collects three kinds of time durations, although the length of each duration does not last a full 

four hours, ranging instead from one hour to four hours. The average error rates are very low, with the highest error rate of 

0.034%. Such a high accuracy occurs, because all of the experimental subjects were graduate students, with quite simple 

daily activities, repeated in a specified amount of time. For example, after getting up and having breakfast in the morning, 

they would stay at their offices until late afternoon, and then have dinner and return home. Thus, they have uniform patterns 

of activities with the recognized activities. 

4.5.   App for displaying the stored logs 

As the final step in developing a lifelogging system, an Android app was implemented that can provide a simple user 

interface (UI) to login to a personal account, to enter some physical information, and to display the stored logs and daily 

TEE. The graphical user interface (GUI) navigation flowchart of the application is shown in Fig. 4. 
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Fig. 4 GUI screens navigation flowchart 

  
(a) Display the stored lifelogs 

  
(b) Enter personal physical information (c) Display TEE for a month 

Fig. 5 Screen captures of the developed UI on smartphones 

Fig. 5 shows the screen-captured images of this developed UI screen. When the user logs in to his or her account, the 

user can see the stored daily logs from 0:00 to the current time, as shown in Fig. 5(a). This screen shows that the user ran 

from 7:21 AM to 7:41 AM, and then walked for a while and performed some jumping actions. Fig. 5(b) shows the UI screen 

for entering physical information. Meanwhile, Fig. 5(c) also shows a bar graph in which each bar shows the daily TEE for a 

given month. If the user taps on a bar chart, the app displays a popup message with more detailed information, as shown in 

Fig. 5(c). 

5. Conclusions 

In this study, an indoor lifelogging system including both mobile and server systems was proposed to recognize many 

kinds of lifelogs for the daily life of a user. The mobile system contains a smartwatch and a smartphone. A method was 
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proposed using both a phone and a watch simultaneously and cooperatively to recognize seven ADLs that could be useful for 

estimating energy expenditure. The proposed threshold-based method could provide an overall average recognition rate of 

more than 97%. Recognizing the importance of logging sleeping behavior, sleeping states were estimated using two mobile 

devices, and the results of the scheme were then compared to a well-known commercial product, Fitbit. The experimental 

results showed the superiority of the suggested scheme. A simple method was suggested to estimate the daily TEE based on 

the stored activities using the BMR and PAR of the activities. An app for Android devices was developed to display the 

stored lifelogs and the daily TEE to help users manage their health better. 

For future work, a more energy-efficient method for activity recognition should be investigated. The current method 

requires that the watch device continuously processes the sensor data and regularly sends some features to the paired phone, 

resulting in the battery consumption to be a problem for the watch than for the phone. It is also possible to expand the 

number of target activities to record users’ daily lives in more detail. Moreover, the protection of user personal information 

is a necessary point that we need to focus on. Finally, a simpler and more accurate method for estimating energy expenditure 

would be desirable. 
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