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Abstract

This study aims to address performance deficiencigSAPTCHA preprocessing methods that impede the
accurate recognition of text CAPTCHAs, which arectal for identifying security vulnerabilities. Tionprove
CAPTCHA preprocessing methods, a similar font igiahy searched and acquired by manually removing
obstructing pixels from a target CAPTCHA and rei@inthe font part. Using the found font, a pseudtadet is
generated containing a large number of clean antigl piirs to train to the proposed supervised Emitancement
Generative Adversarial Network (FEGAN), which isdmed to effectively eliminate non-font-relateteifierences
and preserve the font outlines. Test results shioat FEGAN can improve the recognizer's accuracy by
approximately 16% to 50% on the M-CAPTCHA datasep(blicly available dataset on Kaggle) and 5%5%03
on the P-CAPTCHA dataset (generated using the RyitmageCaptcha package), substantially outperfagrttie
Multiview-filtering-based preprocessing approach.

Keywords: CAPTCHA, recognition, font enhancement, GAN

1. Introduction

Text CAPTCHA is still the most widely used CAPTCH&curity scheme and is deployed on websites wodkelwihe
security of text CAPTCHASs is being increasingly ibfiaged due to the development of deep learnirignigeies. CAPTCHA
breaking is an effective means to study securitghrarisms and help researchers and companies develop secure
CAPTCHAs. These CAPTCHAs are resistant to varidtechks [1]. Besides, the CAPTCHA recognition altion is also a
vital tool for system security assessment and valibty discovery. Therefore, highly efficient @gnition algorithms based
on Convolutional Neural Networks (CNN) and Recutréeural Networks (RNN) are generally used to breéekt
CAPTCHAs for security evaluation. However, CAPTCldgcognition differs from general image recognittasks because
its image contains many specially designed angicitsecurity mechanisms. Consequently, a subdtaliame of data is

required to train a recognizer to attain a higtogention rate.

However, due to the existence of anti-crawling naaisms, it is difficult to obtain enough imagedrain a model [2].
To enhance the accuracy of CAPTCHA identificatiohew there are only a few images available, datprpoessing
approaches are employed to combat the anti-atta@asunes present in the CAPTCHAs. Text CAPTCHA raitamn differs
from object detection in that many commonly uset g@eprocessing approaches are not applicablanAlkistration, mixup
combines distinct images [3], PatchUp combinesrinégliate feature layers directly [4], and Randoraskrg randomly
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removes certain regions of an image [5]. Theserpogssing approaches either distort the font eglior alter the semantic
information by rearranging the character ordereixt CAPTCHAS. In addition, many filtering-based hds, on the other

hand, are usually effective only for Gaussian amedzel noise, which are not very effective for CARHA preprocessing.

A text CAPTCHA typically comprises three layerdackground layer, a foreground layer, and a fored6]. Only the
font provides legitimate information for a text CABHA, while other patterns like background, textuoelor, and
interferences are deceptive designs that impedmtiel's effective learning. It is crucial to keeply the font component,
remove all other pixels from the CAPTCHA image, dedch the model to distinguish between fonts ahdraanti-attack
designs in the CAPTCHA.

2. Related Works

The CAPTCHA recognizer is responsible for identifyithe text within a text CAPTCHA using a classifion network.
Currently, the prevailing approach for recognizB§PTCHASs is based on deep learning models. Theselmoften employ
CNNs and RNNs due to the small size of the CAPTGiHAge and the need for mobile deployment.

In 2020, Noury and Rezaei [7] introduced DeepCAPACeMmploying a CNN for feature extraction and dfabnnected
layer with numerous Softmax functions for final chater predictions, as illustrated in Fig. 1, aglng a recognition accuracy
of over 98% on evaluated datasets. It comprisesrakeonvolutional layers, each succeeded by a Malkiy layer. After
the layers, a dense layer with a dropout rate &6 8implemented, followed by parallel Softmax ley/that encode outputs
as predictions, each corresponding to a distinatadter in the CAPTCHA. The model employs a biranss-entropy loss

function and is trained using the Adam optimizenjak has been shown to achieve faster convergerthedter performance.
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Fig. 1 The architecture of DeepCAPTCHA

The Adaptive CAPTCHA model incorporates a CNN corelirwith an RNN (CRNN) module and Adaptive Fusion
Filtering Networks (AFFN) for enhanced text CAPTCHécognition, which was proposed by Wan et al.ifi8024. The
CNN extracts features from the image, while the GRMNodule captures character dependencies, impra@oggnition
accuracy, as shown in Fig. 2. The AFFN module, aased of nested autoencoder filter units, effecfiveitigates noise and
interference. Notably, AdaptiveCAPTCHA incorporatesidual connections to enhance gradient propagatnd further
enhance model robustness. This architecture mie#rttze number of parameters and improves traiieagdswhile achieving
high accuracy, making AdaptiveCAPTCHA a more effitiand robust text CAPTCHA solver.
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Fig. 2 Thearchitectureof Adaptive CAPTCH/
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Qing and Zhang [9] used ConvNet to solve the tegbgnition problem, achieving over 90% accuracgplbthe datasets
they evaluated. The model utilizes a multi-kerr@iwwlutional layer, which extracts multi-scale spldfieatures, followed by
a series of 3 x 3 convolutional blocks and a ptadicconvolutional layer to extract features anddict the characters, as
shown in Fig. 3.

Multi-scale feature fusion Feature extract Predict

| Convk=1 Conv k 1
x 1
Convk=3 Convk=3
| Conv k 3 BN BN
MaxPool { MaxPool | ReLU > ReLU
X2 x2
Conv k 8 Conv k 8

Fig. 3 The architecture of ConvNet

Mocanu et al. [10] introduced Capsule Networks &¥gt), each representing a vector that encodemkpetperties
and the presence probability of a visual entitypset utilizes a dynamic routing algorithm to rotite output vectors from
lower-level capsules to higher-level capsulesvatg for the learning of spatial relationships beém features. This routing
algorithm, which iteratively updates the coupliragfficients between capsules, enables the modettimrm well on tasks

involving spatial transformations, such as CAPTCiéaognition.

Ding et al. [11] proposed a novel method for imégsed verification code generation and recogniticanrmed
VeriBypasser. It utilizes a CNN-based deep learmiroglel to bypass three types of CAPTCHAs: visuasoming, slider, and
inference puzzle CAPTCHAS. VeriBypasser demonstrhigh accuracy (85.20%) in recognizing and bypastiese codes,

demonstrating its effectiveness in challenging ades. Table 1 summarizes the breaking models wrmedi above.

Table 1 Summary of text CAPTCHA recognition netwsork

Model Authors Year Description
DeepCAPTCHA Noury and Rezaei [7]2020 Using multiple Softmax layers to predict
CapsNet Mocanu et al. [10]| 2022 Introducing capsule networks for better geometrioaeations
ConvNet Qing and Zhang [9] 2022 Employing ConvNet and group cqnvolutlon to extragighboring
information
VeriBypasser Ding et al. [11] 2024 Adopting a CNN-based deegolgzrnlng model to bypasgoation
AdaptiveCAPTCHA Wan et al. [8] 2024 Utilizing adaptive filters and RCNN to reduce inte€fiece

New images

Augmentation-based
\_ New images labels

Filter-based
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Non-augmentation-based ﬂ Binsary

Geometry, brightness. channel
contrast, and color adjustment

Fig. 4 Text CAPTCHA preprocessing methods

Most recognizers struggle to effectively navigake tintricate anti-attack measures incorporated ampdicated
CAPTCHA because the intricate nature of thesestin often result in the phenomenon of model dtied. In addition to
the CAPTCHA recognizer, text CAPTCHA preprocessimgthods are widely used, which are classified twim categories:

segmentation-based approaches and non-segmentased-methods, as shown in Fig. 4. The excessuarence of font
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sticking in CAPTCHA has limited the applicability ®egmentation-based approaches, leading to #reirrmployment. Non-
segmentation-based methods can be further catedoiito augmentation-based methods and non-augticenbased

methods. The former generates new synthetic imbagesd on real images to train the generator. Ngmantation methods
enhance the attacker’s ability to identify the CAFIA without synthetic images. Two non-augmentatiwethods frequently

employed for picture denoising are filter-basedhunds and grayscale and binarization techniques.

In 2018, Liu et al. [12] adopted conditional de@mweolutional generative adversarial networks (cD@GAnd CNN to
solve small sample problems, which made tremengdoagress in accuracy. Their method improves aretimes the base
solver using only a small number of labeled reaPT&HAS. Thobhani et al. [13] utilized the provideihary as the data
label for the text CAPTCHA, transforming recogniziseveral characters into a problem of recogniaismgle character. Li
et al. [14] proposed an improved model based oteeyansistent generative adversarial networks (&@ANS) in 2021,
which has better transferability. Compared to othedels, their method greatly reduces the cosata hbeling. By changing
a few setup parameters, it can attack common tesédh CAPTCHA schemes, making the assault simplarty out.

In the same year, Wang et al. [15] proposed a CAPY Golver that can effectively break text-based TEPIAs with
complex security features using a small amountbéled data. This method used Cycle-GAN to simghfy CAPTCHA
images, resulting in 96%-character accuracy and CABTCHA accuracy for all evaluated schemes. Kirjgtoet al. [16]
enhanced the technique by positioning the affixetlpe label at the lowermost part of the imagen8@ugmentation-based

preprocessing methods for training CAPTCHA generatire summarized in Table 2.

Table 2 Augmentation-based preprocessing methadeXo CAPTCHA

Method Authors Year Description
cDCGAN Liu et al. [12] 2018 Using a conditional GAN to generate new samples
Attached binary images Thobhani et al. [13] 2020 Employing attached binary images as labels foryeubaracter
Cycle-GAN Li et al. [14] 2021 Utilizing Cycle-GAN to generate simil training CAPTCHA:
Cycle-GAN Wang et al. [15] 2021 Using Cycle-GAN to generate similar training CAPTCHAS
Encapsulat_ed Kimbrough et al. [16] | 2022 Adopting attached binary images as labels for egkayacter
preprocessin

However, preprocessing methods based on data atamenare time-consuming, labor-intensive, andidalift to
implement, requiring extensive labeling of the gated data or constant tuning of the model baseti@itarget CAPTCHA
dataset to generate CAPTCHASs that approximateethledistribution.

In 2020, Ye et al. [17] used a GAN-based synthes@automatically generate training CAPTCHAS tmistouct a base
solver and adopt another Pix2Pix model to removeen@hang et al. [18] proposed Dark Web generatiixersarial network
(DW-GAN) in 2022, a GAN-based method that utiliZzeackground denoising, character segmentation, #adacter
recognition to automatically break dark web CAPTCtith an over 92.08% success rate on dark web kéatasets. Yusuf
et al. [19] employed a Multiview-filtering strategry improve the performance of the recognizer. Bpigroach involves using
various filtering operators to increase the varigtyhe input images. Ishkov and Terekhov [20] evgptl the technique of
appropriate color channel mixing to enhance theogettion efficacy of the model. Some non-augmeatatased

preprocessing methods for training CAPTCHA generatire summarized in Table 3.

Table 3 Non-augmentation-based preprocessing mefioodext CAPTCHA

Method Authors Year Description
Pix2Pix Ye et al. [17] 202( Using the Pix2Pix to reduce the noise of CAPTCHAs
DW-GAN Zhang et al. [18] 2022 Employing DW-GAN to denoise CAPTCHAS
Multiview-filtering Yusuf et al. [19] 2022 Adopting multiple filtering to preprocess CAPTCHASs
Color channel combination Ishkov and Terekhov [20] 2022 | Leveraging a learnable linear combination of RGBrutels
Pix2Pix Ye et al. [17] 202( Using the Pix2Pix to reduce the noise of CAPTCHAs
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Non-data augmentation methods are more efficieimhpdement and are suitable for the vast majorftgaenarios, yet
existing methods have their limitations. Filteribgsed methods are mainly for Gaussian noise artdepneoise, while
traditional GAN-based methods, which are too sinipless function design, generally use adverséwid and time-domain

reconstruction loss.

Apart from preprocessing methods, evaluating thgaichis a crucial aspect. However, there is noipexvaluation
index for CAPTCHA preprocessing. For image quadityaluation, there are subjective and objective odsth21]. The
subjective method involves directly observing tidypes before and after preprocessing with theedalye to determine the
effective removal of noise and interference. Olijecinethods encompass the Peak Signal-to-Noise RRENR), where a
higher value indicates superior image quality adliced noise. This method is solely for noise mregssing, as CAPTCHA
contains not only noise but also various interfeesnand background patterns. Structural Similg8t$IM) quantifies the
extent of similarity between two images; a valuprapching one indicates greater similarity betwgenimages. But this
method is also not applicable to CAPTCHA becausesthilarity between the image after removing thekground and the
clean image is usually low. In general, the efficaé CAPTCHA preprocessing is evaluated based enatcuracy of
recognition.

This paper presents a font enhancement methodXo€CAPTCHA recognition, comprising three primaontributions.
First, a novel approach called font enhancementeer CAPTCHA recognition is introduced. Secondsugervised font
enhancement network, termed Font Enhancement Gameeradversarial Network (FEGAN), is proposed. Hipathe

accuracy of contemporary attack models integratéll FEGAN was assessed.

3. Methodology

The objective of text CAPTCHA breaking is to acdahaidentify the characters within each CAPTCHAyelements
of the image design, such as background, texttyle, solor, etc., that are not related to the feetve as anti-attack measures
that impede the correct recognition of the contgntmodels. This paper introduces a novel FEGAN pdtwaimed at
enhancing the font contour and eliminating unneamgsdistractions in CAPTCHA images. This is achibby selectively
removing all unrelated pixels from a single imagéhie target dataset while preserving the lettdlimms. The implementation
of font improvement significantly reduces the effeeness of anti-attack systems in images, henberaing the accuracy of
subsequent model identification. The entire proégessegmented into three phases: producing traiGiA§ TCHA pairs,

training FEGAN, and training the recognizer.

3.1. Generating pseudo-target dataset

The first stage is to generate a certain numb#aafing CAPTCHA pairs based on the similar forftthe images in the
target dataset. Due to the presence of many imggrde lines and other anti-attack designs in ta@fe®TCHAS, it is not
possible to detect the font in a CAPTCHA image algewithout any treatment. Too many distractionghe CAPTCHA
make the fonts indistinguishable. Therefore, ttreess of creating training CAPTCHA pairs begindwtiite selection of only
one image from the target dataset and the subsemasmual removal of the background and other ieterfce, leaving only
the font outline preserved. This step is of gregtartance, as it is only through the complete remhof/non-outline interfering
pixels that the font can be successfully searcimedhaghly similar to the target font. The processdalized manually and

may take about a few minutes.

The search procedure is illustrated in Fig. 5.idfiit, an image from the target CAPTCHA datasetsédected.
Subsequently, extraneous pixels are erased, thes&diging only the contour of the font. Subseqlyethie image is uploaded

to a font recognition website, where the font usethe image is identified. To create the trainolegaset, clean images
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comprising random characters are generated baseleoabtained font, with no background or otheeifgrence. Dirty
CAPTCHAs that correspond one-to-one with the cleaages are also created. The dirty images incotpaavariety of
elements, including random lines, noisy points, différent backgrounds, to simulate the target CBFAs. The background
colors for the dirty CAPTCHAs may be randomly sedelc provided that they encompass the red, greehblie (RGB)

channels, thus generating a wide range of colaiscbver the full-color space.

Step 1
Select a image from
the target dataset

Step 2 1
Erase interference to 4’ a \ Q
preserve contours

QIuzit|

Step 3

Find similar fonts
B weiam

2

o &yo I

Result Sweetly Broken SemiBold

Fig. 5 The procedure of font searching

The significance of constructing such CAPTCHA pa&rthat the valid information in the images onbmes from their
fonts. By comparing clean and dirty images, fofiimation in the CAPTCHASs could be learned by FEGAich is useful
for the effective removal of interfering pixels fnoother target CAPTCHAS. The clean, dirty, and éaiGAPTCHAS are
shown in Fig. 6, where the first two appear in paind the target CAPTCHASs are unpaired, which elected from the M-
CAPTCHA dataset. From the figure, the font of tHean dataset is close to that of the target dat&tmivever, their

background colors are different.

Clean
Synthetic |:
Dirty

= = ’ N\ / h 2 .

_

Fig. 6 Synthetic and target CAPTCHASs from M-CAPTCldAtaset

3.2. FEGAN

The second step is to train FEGAN using the sy@i@APTCHA pairs. The architecture of FEGAN is shoiw Fig. 7.
In this network, a generator for font enhancemeffirst introduced, complemented by two discrimimat The design of this
architecture is inspired by image denoising wittgfrency domain (UID-FDK), an unsupervised learmmagdel [22]. UID-

FDK removes noise and smooths pictures while pvésgras much content and background. However, thjective of
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FEGAN is to remove all non-relevant pixels from fbat using a supervised learning model. Thereforne, generator was
reduced from UID-FDK, and some changes were madleetdoss functions while the same structures efgénerator and

discriminators were kept.

Adversarial | Adversarial
discriminator loss
Total variation loss
Perceptual loss A
Font enhancement Predict A
Frequency reconstruction loss Y
Time reconstruction loss
Texture
discriminator

Fig. 7 The architecture of FEGAN

The adversarial discriminator must accurately déffdiate between clean and dirty images. To this &vo loss functions
improve its discriminative ability. The first ong adversarial loss, which helps the generator'pudidistribution to better fit
the real distribution of the target dataset. Thecfion takes two low-dimensional feature tensosssad of one scalar as input,
facilitating the presentation of better detailssiésing that are from the dirty data domain  , and are from the clean
data domain , the goal of the adversarial discriminator is to distinguish between them to the greatestréxgossible.
Adversarial loss values can be obtained by calieigahe least squares of the two inputs and tladiels, which was first
proposed by Least Square GAN [23].

o=y [P, +E g [Pl 03)-1], ?

The other is adversarial texture loss, which fosusecomparing the difference in texture detaitsvben clean and dirty
images by excluding the effect of the absolute @alfithe color and only considering the differebhetveen adjacent pixels.
Grayscale conversion transforms a color image itstintensity values, removing chromatic informatiwhile preserving
luminance, resulting in a single-channel image witying shades of gray. By training pairs of CARACimages, the texture
discriminator learns the association informatiobwsen fonts and non-font pixels to produce a clesdure that contains

only fonts. The texture loss also follows an adageat approach.

L'Ie'lzéture = Ey R || Dtexture( gretscalé y)||2 + E Ry {“ thure greySCaqe (G))X - “2} (2)

The generator’s objective function for the adveaeddoss and texture adversarial loss mirrors tifahe discriminator, with
the distinction that their optimization goals amntary. The texture adversarial discriminator eti$f from the adversarial

discriminator in that the former processes a shetl@nnel image, whereas the latter handles a tiraenel image.

Additionally, a two-dimensional max-min normalizidquency loss is introduced as follows.

L2 = By 5, NOMaiz6ys, o 10050 FFT, (G 8- FFE( Y, | ®)

The network often finds it challenging to direatmove the interfering lines and dots from the tanenain due to their close

intertwinement with the CAPTCHA fonts. Interfereritee Gaussian noise is easier to handle in thguieacy domain, so the
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de-interference effect is enhanced with the sigpattrum from a macro perspective, ensuring theathensistency of the
generated images. The frequency spectrum is oltdigethe two-dimensional Fourier transform, and tleemalization

guarantees that the range of its values is com[@atalother losses.

To highlight the font pixels, the total variatiomsk is added, which reduces the degree of variatmeen neighboring
regions. This loss is especially vital for font anbement because the ideal result is that the wat&#nce of the font and
background internal regions after font enhancersbatild be zero. In addition, image gradients ammized in horizontal

and vertical directions to refine the font’s apeme further. The corresponding formulation is gitzelow.

—

v = Ec g NG, +[N, GO3, @

To obtain a pixel-level reconstruction, the pixabavdifference between the dirty and clean imagesaluated. This
reconstruction loss, while helping the model lefont information, introduces unnecessary backgroleaining. It is

important to choose an appropriate weight to baldhe background and fonts.

L-ll’—ér(r:]oenst = Ex,y Ric ”G( X) B )“2 (5)

Additionally, the generator introduces a perceptass by computing certain output layers of theudisGeometry Group
(VGG). This loss, in contrast to pixel loss, makes output images perceptually more intuitively imto the target image,
rather than forcing them to match pixels exacthj[The higher layers of VGG minimize their outpaitmaintain the semantic

information. The corresponding formulation is givasiow.

Lpercetual = Ex,y Ric ||VGG( q ))) - VGQ )"2 (6)

Ultimately, the optimization objective comprises kisses, with corresponding weights assigned ¢b eart of the loss. The
total loss function is formulated as follows, ahé discriminator and generator need to be traiftednately to obtain the

optimal model parameters.

min max / L + LTexture_’_ fre‘!_Freq s(+ t\LT\/ + Time + L percetual (7)

D, 4, Drext adv—adv texture™ adv recon time reconst  percetual
adv, “texture

3.3. Recognition procedure using FEGAN

The trained FEGAN should be incorporated into rei@gys as a preprocessing network for their trgi@nd testing, as
depicted in Fig. 8. The recognition models can ha@iveCAPTCHA, DeepCAPTCHA, ConvNet, and otherst tivere
introduced earlier. Before recognition, the CAPTClataset needs to undergo preprocessing by FEGANro the FE

dataset. Ultimately, the recognition model recogsithe images in the FE dataset.

Synthetic Train / FE / R .
dataset FEGAN dataset e

Test Load

T T 1
| AdaptiveCAPTCHA |
dataset : DeepCAPTCHA
I
|

ConvNet

Fig. 8 Training and testing flow of FEGAN

4. Results and Discussion

In this study, two datasets are employed for evanaThe first dataset is the publicly accessMEAPTCHA dataset
available on Kaggle (https://www.kaggle.com/dats/seinluo/mcaptcha). The second dataset, P-CAPTG$14enerated
using the Python ImageCaptcha package with itsulte&ettings. From the M-CAPTCHA dataset, 8,000 ias were
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randomly selected, and an additional 3,000 imagee wandomly generated for the P-CAPTCHA datasetr\ECAPTCHA
image consists of four characters, with each chardeing selected from the set of 26 uppercasdéidbrigtters. 10,000 pairs
of clean and dirty CAPTCHAs are generated for FEGAdhing. The performance of FEGAN was evaluatg@dmbining
five different recognition models. In addition, FERS is compared with another preprocessing methodltiew-filtering.
The average attacking success rate (AASR) is ersgdlag a metric to evaluate the effectiveness ofpipeoach, as the goal
of FEGAN is to enhance the recognition accuracgtt#ckers. The training experimentgere all run on the NVIDIA A100

platform, while the inference tests were performadhe Intel(R) Core(TM) i5-8265U, as shown in Teal

Table 4 Experimental parameter settings

Paramete Value
Epoch 300
Learning 0.001
Optimizer Adam
Batch size 64
GPU NVIDIA A100
CPL Intel (R) Core (TM) i-8265L
Dataset M-CAPTCHA (8,000 images), P-CAPTCHA (3,000 images)
Training pair. 1G,00C
Recognizer DeepCAPTCHA, Adaptive CAPTCHA, CapsNet, ConvNet, VeriBypasser
Preproces methot FEGAN, Multiview-filtering

4.1. Visual results of FEGAN on different dataset

Fig. 9 depicts the visual outcomes of font enharednmusing FEGAN on the M-CAPTCHA dataset. Discegnin
CAPTCHAs is difficult since they contain a largenmer of linear and non-linear points and lines.eAftindergoing font
enhancement with FEGAN, the font’s outline becommse prominent, resulting in a significant reduatio background
pattern and interference. All the backgrounds assthm same color, indicating that FEGAN recognibed the fonts are
unaffected by the backgrounds. Fig. 10 shows thanathe synthetic dataset and the target datasetdimilar fonts and
interference styles, FEGAN still achieves compagabbults. Fig. 11 shows the results of FEGAN wiesting CAPTCHAs

with the same font but without any background, wteliminating interference.

Fig. 10 Tralnlng and testing on the S|m|Iar fonts

T FEGAN code: https://github.com/krantson/FEGAN; Recognizer:duties://github.com/krantson/Recognizer
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Fig. 11 Testmg on the same font but no background

The findings on P-CAPTCHA, as depicted in Fig. 4& unsatisfactory due to significant disparitiesyipefaces and
styles between the testing dataset P-CAPTCHA aadake M-CAPTCHA dataset. Consequently, Comparédiés and
produced synthetic pairs were searched based aiytleethat closely resembled that of P-CAPTCHAdagicted in Fig. 13.
It demonstrates that, although comparable fontsiseel, there are noticeable distinctions. On therdband, the synthetic

dataset utilizes a randomly generated backgroulot.co

Furthermore, the fake dataset excludes randomfénégrce lines because P-CAPTCHA has a limited sugpy. 14
demonstrates the impact of FE through training w2000 synthetic CAPTCHASs. The results indicaselastantial reduction
in interference and a significant suppression akgeound colors. The preservation of the font oetiin their original form

is evident, and the image displays a heightenettasin

» [czm A H A WND2 mp.y | |
ynthetic - 4 “H ” Bmz “D: 1 l. : 7 " ; ; .
we KL N NPE A DFOAB B FON - ZYW

Fig. 13 Generating the training pairs with a simftant of P-CAPTCHA

Flg 14 Testing on the P CAPTCHA after trainingsymthetic pairs

Fig. 15 illustrates FEGAN'’s efficacy when integichtgith DeepCAPTCHA for recognition. The model withd-EGAN
integration achieves a final training accuracy praximately 83%, while the model with FEGAN intagjon achieves an
accuracy of approximately 99%, indicating a 16% iovement over the original model. Fig. 16 shows tha test accuracy
with FEGAN is about 35% higher than the accuradg naithout it. Both experiments show that with FE&Aont

enhancement, DeepCAPTCHA can extract key featunge efficiently to improve accuracy.

The reason that the improvement in testing accusdeyger than the training accuracy is that thieaset becomes simpler
after FEGAN preprocessing, which prevents oveniiftof the model and thus improves the generalingigrformancekig.
17 demonstrates that by employing Adaptive CAPTCH#hWEGAN on M-CAPTCHA for font enhancement, theaacy

significantly increases from approximately 50% limast 99%, resulting in a nearly twofold improverhgnperformance.
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Fig. 15 Training accuracy of DeepCAPTCHA on the MRT CHA with FEGAN
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Fig. 16 Testing accuracy on the M-CAPTCHA with DE&PTCHA
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Fig. 17 Testing accuracy on the M-CAPTCHA with AtdapCAPTCHA

In addition, the FEGAN improves the ability of othettack models to recognize characters more éfédgton M-
CAPTCHA, as seen in Fig. 18. The recognition acciesaof DeepCAPTCHA, ConvNet, CapsNet, and VeriBgaa models
are improved greatly after undergoing FEGAN proeggsresulting in an increase of around 36%, 70%p05and 40%,
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respectively. Fig. 19 shows the accuracies of differecognizers on the P-CAPTCHA. All models gdiatleast 7 percentage
points or more. Due to the limited number of ant&ek measures used by P-CAPTCHA, the benefitdems significant
compared to M-CAPTCHA.
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Fig. 20 shows the results of the comparison betwlse REGAN-based method and the Multiview-filteringsed method
on P-CAPTCHA, demonstrating that the FEGAN methasd the highest recognition accuracy. For Multiviitering, two
or three combinations of Gaussian filtering, medilering, and bilateral filtering were utilized preprocess the input images
and predict them using DeepCAPTCHA. For M-CAPTCHi#g effect of FEGAN is more striking, as shown ig.R21. Since
M-CAPTCHA has more jamming information, the DeepTARA can gain more from the font enhancement, ata@ut
percentage points higher than the best filter-basethods. It is evident that FEGAN, when appliedhéoh M-CAPTCHA

and P-CAPTCHA, significantly enhances the recogrszaccuracy compared to the Multiview-filtering thed.
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Fig. 20 Accuracy comparison of DeepCAPTCHA on P-TEPIA using Multiview-filtering

Average train accuracy

L o — o= — o —— —
o——
70% - ‘/‘
/
60% - /
/
/' @ - DeepCAPTCHA on M-CAPTCHA-8000-FE

50% - / DeepCAPTCHA on M-CAPTCHA-8000-Gaussian-Bilateral
o~ /' -l - DeepCAPTCHA on M-CAPTCHA-8000-Guassian-Meidian
2 40% *~ /' -k - DeepCAPTCHA on M-CAPTCHA-8000-Gaussian-Meidian-Bilateral
< / ~4 - DeepCAPTCHA on M-CAPTCHA-8000-Meidian-Bilateral

30% ~ /- ——rr—T T bl s v o ¢ s —

/. * ¢~r_'-—’—‘5":21—‘—w
20% -~ / <
7 [ R —— " Epp————— —
/ - e i
0% L 27—
o . -
". -
0% | B | 1 1 ]
20 40 60 80
Epoch

Fig. 21 Accuracy comparison of DeepCAPTCHA on M-TAHA using Multiview-filtering

Grad-CAM is an interpretability technique that \atimes model decisions by highlighting importangioms through
gradients [25]. Fig. 22 shows the gradient heat ofajne CAPTCHA from the M-CAPTCHA dataset beforedaafter FE
processing, where the output features of the Stiwaion function of the Adaptive CAPTCHA model ansed as the class
activation map. The colored highlights show thaarg that have more influence on the gradient eftiddle two characters.
The characters are more affected by the bottononegid the neighboring characters after FE pracgs®vhen the gradient
highlights of the original CAPTCHA are dispersed dmpacted by interference, the application of EEdnstrates an ability

to make the gradient more continuous and stabfiectefely reducing the interference.
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Fig. 22 Pre-FE and post-FE Grad-CAM analysis on ARTCHA-8000

Fig. 23 illustrates the alteration in the image whke weights of the weights remain constant wbihe term is
substantially increased. Increasing total variatmss smooths the image and diminishes interfereyeteit also blurs the
typeface; conversely, assigning greater weightetdure loss accentuates the font but introducediadal shadows. As
previously mentioned, augmenting the time-domass leinstates the font but introduces backgroutatfarence, whereas
emphasizing the frequency-domain loss mitigatess&ian noise and is ineffective against line jammiifgile augmenting
the adversarial loss does not enhance the imatdetsame extent as other losses, it remains agratiteomponent of the

GAN and contributes to the network’s generalizatapability.

Ultimately, the perceptual loss preserves the hidgweel features of the image to the greatest eéxtessible, thereby
indicating some interference. These losses intavébt each other and need optimal weights in netwaaining based on

different datasets.

Atnne =500 percetual = 5000 adv = 5000
Atexture = 500

Fig. 23 The effect on the image when increasing onk loss weight

The time required for the training phase is reldtethe size of the dataset and the hardware phatémd can be done in
a single training session. For a dataset of ab@@0D images, FEGAN needs to train about 300 eptachenverge on the
A100 platform. Typically, inference time needs ® dévaluated by neural network models, and herdirtie required was

tested with different models on the two pipelin@gprocessing and recognition, on thiel (R) Core (TM) i5-8265Wlatform.

Table 5 shows that in the preprocessing stageak&staround 240 ms, much more than the time redjforefiltering
and higher than the recognition time of all recagns.In addition, ConvNet has the highest recognitiae &f 98.4%, but it
takes about 66 ms, whereas other models usually feognition times of around 10 ms. Notably, t&NR after FE was

only 4.57 and the SSIM was only 0.094, suggestiag these metrics are not effective for evaluatimy enhancement.

It should be noted that the font enhancement efifeéiEEGAN depends on the fake dataset, which isttoated by
mimicking the target CAPTCHA font and the main foofrinterference. The entire recognition procesgppsed in this paper
is time-consuming, including three phases: germmatif a pseudo-CAPTCHA dataset, FEGAN training, &mthing and
testing of FEGAN with recognizers. Moreover, thell loss function is intricate, and achievingatelmce among the weights

of different loss components poses a considerdtdfenge.
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Future research should be able to further intedfB®AN and CAPTCHA recognizers into one model tahfer reduce
model complexity and training time. This can beiaeéd by adding the binary cross-entropy loss efrécognizer to the
objective function of FEGAN. This new loss functioan give font enhancement a clearer training gehich makes the
CAPTCHA better recognized by models. Future studiesild focus on balancing the effects of diffedesses that interact

with each other.

Table 5 Inference time and performance of recogsiaad Pre-processing on M-CAPTCHAS8000-FE

Model Pipeline Inference UL Performance
per image (ms)

AdaptiveCAPTCH/ Recognitiol 14.t 98.3% (AASR

DeepCAPTCHA Recognition 9.2 80.0% (AASR)

ConvNe Recognitiol 66.5 98.4% (AASR)

CapsNet Recognition 9.3 92.2% (AASR)

VeriBypasse Recognitiol 13.¢ 72.0% (AASR)
Gaussian-Bilateral filtering Pre-processing 5.4 0.44 (PSNR), 0.12 (SSIM)
Guassian-Meidian filtering Pre-processing 1.1 0.44 (PSNR), 0.11 (SSIM)
Font enhancement Pre-processing 240.3 4.57 (PSNR), 0.094 (SSIM

5. Conclusion

This study introduces the concept of CAPTCHA fonhancement and develops a font enhancement netadgd
FEGAN. This network is designed to eliminate afixek measures in text CAPTCHA by leveraging tmailsirity of target
typefaces and interference. By eliminating extraisepixels in the target CAPTCHA, fonts that closedgemble the target
CAPTCHA can be identified, which allows for the atien of a synthetic dataset for FEGAN training.

The experimental results demonstrate the folloveimgclusions:

(1) The proposed FEGAN is highly effective in elirating anti-attack mechanisms in text CAPTCHAS w/piteserving the
original typeface.

(2) The combination of FEGAN and Multiview-filtegntechniques, along with recognizers such as De@ITAHA,
AdaptiveCAPTCHA, ConvNet, and Capsule, enables ratelevaluation of M-CAPTCHAs and P-CAPTCHAs.

(3) Compared to Multiview-filtering alone, integired FEGAN with all recognizers further improves @gaition accuracy,

providing valuable insights for font optimizationcatext CAPTCHA security research.
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