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Abstract 

The dynamic response of functionally graded (FG) porous-nonuniform beams subjected to moving forces is 

investigated. The beam cross-section is assumed to vary longitudinally in the width direction by a linear or quadratic 

function. A modified rule of mixture, taking the effect of porosities into account, is adopted in evaluating the 

effective material properties. Based on Timoshenko beam theory, governing equations of motion are derived from 

Hamilton's principle, and they are solved by a finite element model. The dynamic response of a simply supported FG 

porous beam is computed with the aid of the Newmark method. The validation of the derived formulation is 

confirmed by comparing the obtained numerical results with the data available in the literature. A parametric study is 

conducted to highlight the effect of the material inhomogeneity, porosity volume fraction, section profile and loading 

parameters on the dynamic behavior of the beams. 
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1. Introduction 

The problems of elastic beams under moving loads are often met in practice, and they are subject of investigation for a 

long time. Both analytical and numerical methods are widely employed in solving the moving load problems. Frýba [1] 

presented a large number of closed-form solutions for elastic beams under different types of moving loads. The traditional 

two-node finite beam model was used by Lin and Trethewey [2] to investigate the dynamic response of Euler-Bernoulli beams 

subjected to moving spring-mass-damper system. Also using the finite element method, Thambiratnam and Zhuge [3] 

computed the dynamic response of beams on an elastic foundation subjected to multiple moving forces. The discrete element 

method was employed by Ziaei-Rad, Ariaei and Imregun [4] to study the dynamic behavior of Timoshenko beams under 

uniform partially distributed moving masses. Moghaddas, Sedaghati and Esmailzadeh [5] studied the dynamic response of a 

bridge under a vehicle by modelling the bridge as a simply supported Timoshenko beam and the vehicle as a half-car planner 

model. Also modelling a bridge as a Timoshenko beam, Moghaddas, Esmailzadeh, Sedaghati and Khosravi [6] developed an 

algorithm for determining the optimum values of a mass damper attached to the bridge for reducing it's mid-span deflection. 

Based on eigenfunction expansion method, Roshandel, Mofid and Ghannadiasl [7] studied the dynamic response of 

nonuniform beams subjected to a moving mass. 
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Functionally graded materials (FGMs) have received much attention from engineers and researchers since Japanese 

scientists in mid-1980s first initiated them, Koizumi [8]. FGMs are produced by the continuously varying volume fraction of 

constituent materials, usually ceramics and metals, in one or more predefined directions. As a result, the properties of FGMs 

exhibit continuous change and thus eliminating many undesired problems like delamination and stress concentrations as in 

conventional composites. FGMs have wide applications, including aerospace structures, turbine blades, and rocket engine 

components, Jha, Kant and Singh [9]. Many investigations on analysis of functionally graded (FG) structures can be found in 

the literature, contributions that are closely related to the present work are discussed herein. 

The Timoshenko beam theory was used by Chakraborty, Gopalakrishnan and Reddy [10] in the derivation of finite 

element formulation for investigating the thermoelastic behavior of FG beams. Kadoli, Akhtar and Ganesan [11] performed a 

static investigation of FG beams by deriving a third-order finite element formulation. Alshorbagy, Eltaher and Mahmoud [12] 

used a simple two-node beam element to compute the natural frequencies of FG Euler-Bernoulli beams. The finite element 

method has also been employed by Shahba, Attarnejad, Marvi and Hajilar [13] in studying the free vibration of tapered axially 

FG Timoshenko beams. Nguyen [14,15], Nguyen and Gan [16] developed the co-rotational finite element formulations for 

studying the large displacements of tapered FG beams subjected to end forces. The analysis of FG beams under moving loads 

was carried out by some researchers recently. Among them, Şimşek and Kocatürk [17] employed the Lagrange multiplier 

method to solve the equations of motion of FG beams under a moving harmonic force. Also using the Lagrange multiplier 

method, Şimşek investigated the dynamic analysis of FG beams subjected to a moving mass [18], and a nonlinear FG beam 

under a moving harmonic force [19]. The differential quadrature method was used in combination with Newmark method by 

Khalili, Jafari and Eftekhari [20] in the computation of the dynamic deflection of FG beams. Rajabi, Kargarnovin and Gharini 

[21] employed Runge-Kutta method to study the dynamic behavior of an FG Euler-Bernoulli beam subjected to a moving 

oscillator. The finite element method was used by Nguyen, Gan and Le [22], Le, Gan, Trinh and Nguyen [23], Gan, Trinh, Le 

and Nguyen [24] to compute the dynamic characteristics of FG beams subjected to moving forces. 

The effect of porosities on the mechanical behaviour of FG structures was considered in recent years. Wattanasakulpong 

and Ungbhakorn [25], Wattanasakulpong and Chaikittiratana [26] modified the rule of mixture for taking porosities into 

consideration in their investigation of free vibration of FG beams. Chen, Yang and Kitipornchai [27] employed the Ritz 

method to obtain expressions for the critical load and bending deflection of Timoshenko beams made of porous FGM. Atmane, 

Tounsi and Bernard [28] presented a shear and normal deformation beam theory for thick FG beams with porosities and then 

applied it to study the free vibration of FG beams resting on a two-parameter elastic foundation.  The large amplitude vibration 

of porous FG beams was investigated by Ebrahimi and Zia [29] by using the Galerkin and multiple scales methods. The 

differential transform method was used by Ebrahimi, Ghasemi and Salari [30] to study the free vibration of FG porous 

Euler-Bernoulli beams in a thermal environment. 

To the authors' best knowledge, the dynamic response of nonuniform FG porous beams subjected to multiple moving 

forces has not been investigated in the literature, and it will be studied in the present work for the first time. The beam 

cross-section considered herein is assumed to vary longitudinally in the width direction by a linear or quadratic function. The 

modified rule of the mixture is adopted in the evaluation of the effective material properties. Based on Timoshenko beam 

theory, equations of motion for the beam are derived from Hamilton's principle, and they are solved by a finite element model. 

The dynamic response of a simply supported FG porous beam is computed by using an implicit Newmark method. A 

parametric study is carried out to highlight the effect of the material distribution, volume fraction of porosity and loading 

parameters on the dynamic response of the beam. The influence of the section profile and the aspect ratio on the dynamic 

behaviour of the beam is also studied and discussed. 
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2. Porous-Nonuniform FG Beams 

A simply supported beam with length of L, under N forces P1, P2, ... PN, moving from left to right with a speed v, as 

depicted in Fig. 1 is considered. The beam cross-section is assumed to be rectangular with constant height (h). A Cartesian 

coordinate system (x,z) is introduced as that the x-axis lies on the mid-plane, and the z-axis directs upward. The distance 

between the forces (d) and the speed of the forces (v) are considered to be constant in the present work. 
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Fig. 1 Nonuniform FG porous beam subjected to moving forces 

The beam width (b) is assumed to vary longitudinally in two following types 
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(1) 

where b0 is width of the mid-span cross-section, and  (0<2) is the section parameter. When =0, the beam becomes uniform. 

The above linear and quadratic variations of the section profile are depicted in the lower part of Fig. 1. 

The beam material is assumed to be composed of metal and ceramic whose volume fraction varies in the transverse 

direction according to 

1
, 1

2

n

c m c
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h

 
    
   

(2) 

where Vc and Vm are the volume fractions of ceramic and metal, respectively; n (0n<) is the grading index which dictates the 

variation of the constituents through the beam thickness. As seen from Eg. (2), the bottom surface (according to z = - h/2) 

contains only metal, and the top surface (z = h/2) is pure ceramic. In Eg. (2) and hereafter, the subscripts ‘c’ and ‘m’ are used to 

indicate ‘ceramic’ and ‘metal’, respectively. 
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To account for porosities, the modified rule of mixture introduced in [25] is adopted herein 

2 2
c c m mV V

    
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   


 
(3) 

where  is the effective property of the FGM; m  and c  are respectively the properties of metal and ceramic; (<<1) is 

the porosity volume fraction. From Egs. (2) and (3), the effective Young's modulus E(z), shear modulus G(z), and mass density 

(z) of the FG porous beam are given by 
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(4) 

when =0, Eg. (4) deduces to the well-known expressions for the effective properties of FG perfect (without porosities) beams 

[10,11]. 

3. Analysis of FG Beams Under Moving Forces 

Based on Timoshenko beam theory, the displacements of an arbitrary point along the x and z-axes, u1 and u3, respectively 

are given by 

1

3

( , , ) ( , ) ( , )

( , , ) ( , )

u x z t u x t z x t

u x z t w x t
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
 

(5) 

where t is the time; u(x,t) and w(x,t) are respectively the axial and transverse displacements of the point on the x-axis, and (x,t) 

is the cross-section rotation. The axial strain ( )xx and shear strain ( )xz resulted from Eg. (5) are 

, , ,,xx x x xz xu z w     
 (6) 

where (.),x denotes the derivative with respct to x. In Eg. (6) and hereafter, the variables x and t are omitted from the 

displacements and rotation for the sake of simplicity. 

Based on Hooke's law, the axial stress (xx) and the shear stress (xz) associated  with the axial and shear strains are given 

by 

, , ,( )( ) , ( )( )xx x x xz xE z u z G z w       
 (7) 

with   is the correction factor, chosen by 5/6 for the beam with rectangular cross-section [18]. 

From Egs. (6) and (7) one can write the strain energy (U) of the beam in the form 
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(8) 

In the above Eg., A11, A12, A22 and A33 are respectively the extensional, extensional-bending coupling, bending and shear 

rigidities, defined as follows 
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The rigidities in Eg. (9) can be written in explicit forms as 
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(10) 

The kinetic energy of the beam ( ) resulted from Eg. (5) is as follows 

2 2 2
11 12 22

0

1
( ) 2

2

L

I u w I u I dx     
 

 
(11) 

where an overdot denotes differentiation with respect to time; I11, I12 and, I22 are the mass moments, defined as 
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The explicit forms for the mass moments are as follows 
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(13) 

The potential of the moving forces (V) is simply given by 

1

( , ) ( )

N

i i i

i

V Pw x t s vt

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(14) 

with (.) is the delta Dirac function; si is the current position of load Pi with respect to the left end, and ti is the travelling time 

of the load Pi, measured from the time when this load enters the beam. 
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Applying Hamilton's principle to Egs. (8), (11) and (14), one can obtain the following equations of motion for the beam as 
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(15) 

and, the non-essential boundary conditions 
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(16) 

In Eg. (16), N , M  and Q  are the prescribed axial forces, moments and shear forces at the beam ends, respectively. The 

essential boundary conditions for the simply supported beam in Fig. 1 are 

( , ) 0 at 0 , ( , ) 0 at 0 andu x t x w x t x x L    
 (17) 

Due to the longitudinal variation of the beam cross-section, the coefficients of the differential Egs. (15) are functions of x, 

and a closed-form solution is difficult to derive. Here, a finite element model is used for solving Eg. (1). To this end, the beam 

is assumed to be divided into a number of two-node beam elements with a length of l. The vector of nodal displacements (d)for 

a generic element(i, j) has six components as 

{ }T
i i i j j ju w u w d

 (18) 

where ui, wi and i are respectively the axial, transverse displacements and rotation at node i, and uj, wj and j are the 

corresponding quantities at node j. In Eg. (18) and hereafter a superscript ‘T’ denotes the transpose of a vector or a matrix. 

The displacements u, w and rotation are interpolated from the nodal displacements according to 
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where 1 2 6 1 2 6 1 2 6{ ... }, { ... }, { ... }u u u u w w w wN N N N N N N N N     N N N  are the matrices of shape functions for u, w 

and , respectively. 

The shape functions of the present work are obtained by solving the static part of the Eg. (15) for a uniform beam segment. 

In this case, the equilibrium Egs. have the same form as that of the FG perfect Timoshenko beam, and they lead to the 

following shape functions [10,23] 
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and 
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For homogeneous beams A12=0 and =12EI/(l
2GA), with EI and GA are the bending stiffness and shear stiffness, respectively. 

In this case, the expressions for bending shape functions, Egs. (21) and (22), deduce exactly to the ones, previously derived by 

Kosmatka [31] for a uniform, homogenous Timoshenko beam. For the variable cross-section considered herein, both  and  

are functions of x, and even in this case, one can easily verify that the shape functions in Egs. (19)-(22) satisfy the following 

element end conditions 

, , when 0

, , when

i i i

j j j

u u w w x

u u w w x l

 

 

   

   
 

(24) 

For the sake of simplicity, the present work uses the area and moment of inertia of the cross-section at the left node of the 

element to calculate the parameters  and in Egs. (19)-(22). 

Using the above shape functions, one can write the strain and kinetic energies for the beam in the form 
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(25) 

where ne is the total number of elements;k and m are respectively the element stiffness and consistent mass matrices with the 

following forms 
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(27) 

Having the element stiffness and mass matrices derived, the finite element equation for dynamic analysis of the beam 

ignoring the damping effect can be written in the following form 

..

ex M D KD F
 (28) 

where D, M, K are the structural nodal displacement vector, mass and stiffness matrices, obtained by assembling the element 

displacement vector d, mass matrix m and stiffness matrix k over the all elements, respectively; Fex is the structural nodal load 

vector with the following form 

1ex 1

loading elementloading element loading element

0 ... | ... 0 ... | ...0... | ...0
N i

T

N w x i w x w xP P P

 
 
 

  
 
  

F N N N

 

(29) 

The above nodal load vector contains all zero coefficients, except for the elements currently under loading. The notation 

|
iw xN  in Eg. (29) means that the shape functions Nw are evaluated at the abscissa xi (i=1 ..N), the current position of the load 

Pion the left node of the element. The system of Egs. (28) can be solved by the direct integration Newmark method. The 

average acceleration method described by Géradin and Rixen [32], which ensures the unconditional convergence is adopted in 

the present work. In the free vibration analysis, the right-hand side of Eg. (28) is set to zeros, and a harmonic response, 

sin tD D , is assumed, so that Eg. (28) deduces to 

2( ) K M D 0
 (30) 

where is the circular frequency, and D  is the vibration amplitude. Eg. (30) leads to an eigenvalue problem, and its solution 

can be obtained by the standard method. To improve the accuracy of numerical results, theexact variation of the beam width is 

given by Eg. (1) is employed in the evaluation of the element stiffness and mass. 

4. Numerical Results and Discussion 

The dynamic response of FG porous beams under moving forces is numerically studied in this Section. Otherwise 

mentioned, a simply supported beam with an aspect ratio L/h=20 subjected to three moving forces with uniform amplitude, 

P1=P2=P3=P=100 kN, is considered. The beam is assumed initially at rest, and it is formed from Aluminum (Al) and Alumina 

(Al2O3) with the following data [18]: Em=70GPa, m=2702 kg/m
3
 and m=0.23 for Al; Ec=380GPa, c=3800 kg/m

3
 and 

c=0.23 for Al2O3. A uniform increment time step, t = T/500, where T = L/v is the total time necessary for a single force to 

cross the beam, is employed for the Newmark method. As in case of homogeneous beams, the following dimensionless 

parameter is introduced 
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0

( / 2, )
maxD

w L t
f

w

 
  

   
(31) 

where w0=PL
3
/48EmI0 is the maximum static deflection of the uniform Al beam. The parameter fD in (31) is defined in the same 

way as the Dynamic Amplification Factor (DAF) in the moving load problem of homogeneous beams [1], and it is also called 

the DAF herein. 

Table 1 Comparison of dimensionless fundamental frequency ( )  of the clamped FG beam. 

α L/h Source n=0.2 n=0.5 n=1 n=2 n=5 

0 

(Perfect) 

5 

 

10 

 

20 

[26] 

Present 

[26] 

Present 

[26] 

Present 

1.8823 

1.8772 

1.0884 

1.0875 

0.5691 

0.5690 

1.7392 

1.7351 

0.9992 

0.9987 

0.5213 

0.5212 

1.5844 

1.5814 

0.9056 

0.9055 

0.4716 

0.4716 

1.4417 

1.4393 

0.8255 

0.8258 

0.4302 

0.4303 

1.3328 

1.3300 

0.7782 

0.7782 

0.4085 

0.4086 

0.2 

(Porous) 

 

5 

 

10 

 

20 

[26] 

Present 

[26] 

Present 

[26] 

Present 

1.9205 

1.9155 

1.1092 

1.1083 

0.5797 

0.5796 

1.7402 

1.7364 

0.9956 

0.9953 

0.5186 

0.5184 

1.5210 

1.5190 

0.8606 

0.8603 

0.4465 

0.4467 

1.2815 

1.2810 

0.7193 

0.7194 

0.3722 

0.3725 

1.0933 

1.0928 

0.6229 

0.6230 

0.3241 

0.3244 

Before computing the dynamic response, the accuracy of the formulation is verified. To this end, the fundamental 

frequency of a clamped uniform FG perfect and porous beams composed of Al and Al2O3 is firstly computed. In Table 1, the 

dimensionless fundamental frequency ( )  is listed for various values of the index n and the aspect ratio L/h, where the results 

in [26] by using Chebyshev collocation method are also given. In Table 1,  is defined as follows 

/m mL E  
 

(32) 

where is the fundamental frequency. Good agreement between the result of the present work with that in [26], regardless of 

the aspect ratio and the porosity volume fraction is noted from Table 1. 

Table 2 Comparison of maximum DAF and corresponding speed of uniform FGM beam  

 Source n=0.2 n=0.5 n=1 n=2 Pure Al Pure Al2O3 

max(DAF) 

 

v (m/s) 

Present 

[17] 

Present 

[17] 

1.0402 

1.0344 

222 

222 

1.1505 

1.1444 

197 

198 

1.2566 

1.2503 

178 

179 

1.3446 

1.3376 

163 

164 

1.7420 

1.7324 

131 

132 

0.9380 

0.9328 

251 

252 

To verify the formulation in evaluating the dynamic response of FG beams, the maximum DAF and the corresponding 

moving speed of a simply supported uniform FG perfect beam under a moving force, previously studied by in [17] are 

computed, and the results are given in Table 2. The beam with length L=20m, height h=0.9m and width b=0.4m, composed of 

Steel and Alumina in [17] was adopted in assessing the computation. The results in the table were obtained by consideration of 

the moving speed in the range of 1 m/s to 300 m/s with an increment of 1 m/s, as suggested in [17]. Good agreement between 

the numerical result of the present work with that of [17] is seen from Table 2. 
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To verify the formulation in handling multiple moving forces, the dynamic mid-span deflection of a uniform 

homogeneous perfect beam traversed by three moving forces, previously studied by Henchi, Fafard, Dhatt and Talbot [33] by 

the dynamic stiffness method, is computed. The data for the computation are as follows: L = 24.384 m, A=0.954 m
2
, I = 

2.910
-4

 m
4
, E = 1910

11 
N/m

2
, A = 9.576  10

3 
kg/m

3
. Fig. 2 shows the dynamic mid-span deflection for P = 5324.256 N, v 

= 22.5 m/s, d = L/4, where the numerical result obtained in [33] is illustrated by small circles. Very good agreement between 

the numerical results of the present work with that in [33] is seen from Fig. 2. It should be noted that twenty elements have been 

used in the verification examples, and no improvement in the numerical results was seen for the mesh of more twenty elements. 
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Fig. 2 Dynamic mid-span deflection of uniform homogeneous beam under three moving forces (d = L/4, v = 22.5 m/s) 

In Fig. 3, the dynamic mid-span deflection of the type A beam having =0.1 under the moving forces with v=20 m/s and 

d=L/4 is depicted for various values of the index n and two values of the section parameter, = 0 and = 0.5.  As seen from the 

figure, the material inhomogeneity strongly affects the dynamic behaviour of the beam. At a given value of the moving speed 

and distance between the forces, the maximum dynamic mid-span deflection of the beam steadily increases when raising the 

index n. Furthermore, the beam associated with a higher index n executes less number of vibration cycles, regardless of the 

section parameter . The higher dynamic mid-span deflection and the less executed vibration cycles of the beam associated 
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(a) For =0.1 and =0.0 values (b) For =0.1 and =0.5 values 

Fig. 3 Dynamic mid-span deflection of type A beam with different indexes n (v=20 m/s, d=L/4) 
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with a higher index n can be explained by the fact that, as seen from Eg. (4), the beam with a higher index n contains more 

metal and thus it is softer.In addition, the ratio of the given moving speed to the critical speed, v/vcr, of the softer beam is higher 

since the critical speed vcr is proportional to the fundamental frequency [1].  As stated by Olsson [34] that the higher v/vcr ratio 

is the less vibration cycles the beam executes. 
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Fig. 4 Relation between DAF and moving speed of FG porous beam with different indexes n (=0.1, =0.5, d=L/8) 
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Fig. 5 Thickness distribution of axial stress at mid-span section of type A beam (=0.5, =0.1, d=L/4) 

The effect of the material inhomogeneity on the dynamic response of the FG porous beam is also seen from Fig. 4, where 

the relation between the DAF and the moving speed of both the type A and type B beams is illustrated for various values of the 

index n and for  = 0.1,  = 0.5, d = L/8. Regardless of the moving speed and the section profile, the DAF remarkably increases 

by raising the index n.  The section profile slightly changes the magnitude of DAF, but it hardly affects the relation between 

this factor and the moving speed. 

In Fig. 5, the distribution of the axial stress in the thickness direction of mid-span section of the type A beam with  = 

0.1, = 0.5 is depicted for different grading indexes n and two values of the moving speed, v=20 m/s and v=30 m/s. The axial 

stress in the figure was computed at the time when the second force arrives at the mid-span, and it was normalized by the 

maximum axial stress of a uniform beam under static force P, that is 0 = PLh/8I0.  The axial stress of the FG porous beam is 
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not symmetric on the original of the coordinate system, and the stress amplitude in the upper half (ceramic-rich) part of the 

beam is considerably higher than that of the lower (metal-rich) part. Also, the axial stress does not vanish at the mid-plane as in 

the case of homogeneous beams. Both the stress amplitude and stress distribution of the FG porous beam are greatly influenced 

by the grading index n. The moving speed v slightly changes the stress amplitude, but it hardly alters the distribution of the 

axial stress. 
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Fig. 6 Dynamic mid-span deflection of FG beam with different porosity volume fractions (n=3, = 0.5, d=L/4, v=30 m/s) 

The dynamic mid-span deflection of both two types of the FG beam with n=3 is shown in Fig. 6 for different porosity 

volume fractions and for v=30 m/s, d=L/4. As seen from the figure, the dynamic mid-span deflection of the beam is strongly 

influenced by the porosity volume fraction. For most of the travelling time, the dynamic mid-span deflection is larger for the 

beam associated with a higher porosity volume fraction. The number of vibration cycles which the beam executes tends to 

decrease as an increase in the porosity volume fraction. The effect of the porosity volume fraction on the dynamic response of 

the beam is similar to that of the index n as discussed above, and it can also be explained by the decrease of the rigidities and the 

fundamental frequency of the beam with a higher porosity volume fraction. The dynamic mid-span deflection of the type B 

beam is slightly smaller than that of the type A beam, but the relation between the deflection and the time is almost the same for 

both the types of section profile. 

  
(a) Type A (b) Type B 

Fig. 7 The relation between DAF and index n of FG beam with different porosity volume fractions (=1, d = L/4, v=30 m/s) 
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In Fig. 7, the relation between the DAF and the index n of the FG beam with =1 is depicted for v=30 m/s, d=L/4 and 

various porosity volume fractions. Regardless of the index n and the section profile, the DAF increases as an increase of the 

porosity volume fraction, and this tendency is much more pronounced for the higher values of the index n. At a given value of 

the index n and porosity volume fraction , the DAF of the type A beam is slightly higher than that of the type B beam. The 

obtained numerical results reveal that the porosity plays an important role in the dynamic response of FG beams, and it is 

necessary to take it into consideration for the dynamic analysis of FG beams under moving forces. 

The effect of distance between moving forces on the mid-span deflection of FG porous beams is illustrated in Fig. 8 for 

=0.1, =0.5, n=5 and v=20 m/s. An important role of the distance d between the moving forces on the dynamic response of 

the beam is clearly seen from the figure. The maximum mid-span deflection steadily decreases with an increase in the distance 

between the forces. The beam tends to execute more vibration cycles when the distance between the forces is larger. The 

decrease in the dynamic deflection by raising the distance between the forces can also be seen from Fig. 9, where the relation 

between the DAF and the moving speed v is illustrated for various values of the distance between the forces and forn=5, =0.5, 

=0.2. Fig. 9 shows a remarkable decrease in the DAF by the increase in the distance between the forces, regardless of the 

moving speed and the section profile. 
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Fig. 8 Effect of distance between the forces on dynamic mid-span deflection (=0.1, =0.5, n=5, v=20 m/s) 
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Fig. 9 The relation between DAF and moving speed with various distances between moving forces  (n=5, =0.5, =0.2) 
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Table 3 DAF with various values of section parameter  and index n  (=0.1, v=20 m/s, d=L/4) 

n 
Type A beam Type B beam 

β=0 β=0.5 β=1 β=1.5 β=0 β=0.5 β=1 β=1.5 

0.2 

0.5 

1 

3 

5 

10 

0.5836 

0.7547 

1.0790 

1.6632  

1.7881 

1.9509 

0.6297 

0.8132 

1.1657 

1.7925 

1.9266 

2.1056 

0.6914 

0.8884 

1.2826 

1.9557 

2.1015 

2.3126 

0.7812 

0.9989 

1.4565 

2.1750 

2.3441 

2.6204 

0.5836 

0.7547 

1.0790 

1.6632 

1.7881 

1.9509 

0.5927 

0.7663 

1.0963 

1.6891 

1.8158 

1.9816 

0.6028 

0.7788 

1.1155 

1.7170 

1.8455 

2.0154 
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1.1371 

1.7470 
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2.0531 
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(a) For =0.0 value (b) For =0.1 value 

Fig. 10 Section parameter versus maximum dynamic amplification factor of nonuniform FG porous beam 

The DAF of the FG porous beam with =0.1 is listed in Table 3 for v=20 m/s and d=L/4  and various values of the index 

n and section parameter . As expected, the DAF steadily increases by raising the section parameter , regardless of the index 

n and the section profile. By examining the table in more detail, one can see that the increase in the DAF by increase in the 

section parameter of the type A beam is much faster than that of the type B beam. For example, an increase of 23.53% when 

raising  from 0 to 1.5 is seen for the type A beam with an index n=3, while this value is just 4.80% of the type B beam with the 

same grading index. The effect of the section parameter on the dynamic response of the beam can also be seen from Fig. 10, 

where the maximum DAF is plotted as a function of the section parameter  for =0 and =0.1.  As seen from the figure, 

comparing to the type B beam, the type A beam is much more sensitive to the change in the section parameter, regardless of the 

grading index n and the porosity volume fraction . The porosity volume fraction considerably changes the maximum dynamic 

amplification deflection factor, but it hardly alters the relation between the maximum value of this factor and the section 

parameter. 
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Fig. 11 Relation between DAF and moving speed for different aspect ratios (n=5, =0.1, =0.5, d=L/4) 
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In order to study the effect of the aspect ratio on the dynamic response, the relation between the DAF and the moving 

speed of the beam with different aspect ratios, namely L/h=10, L/h=20 and L/h=30, is computed and the results are displayed in 

Fig. 11 for both two types of the section profile and forn=5. As seen from the figure, the maximum DAF attains at a much 

higher moving speed for the beam having a smaller value of the aspect ratio. Also, the range of the moving speeds in which the 

DAF repeatedly increases and decreases is remarkably wider for the beam having a lower aspect ratio. This is because the 

fundamental frequency of the beam with the lower aspect ratio is higher, and this leads to the higher critical speed of this 

beam.The maximum DAF is slightly higher for the beam with a lower aspect ratio. 
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Fig. 12 Dynamic mid-span deflection of FG porous beam traversed by different number of forces (n=5,=0.1, =0.5, v=20 m/s, 

d=L/4) 

Finally, the effect of some the moving forcesin the dynamic response of the FG porous beam is investigated. In Fig. 12, 

the dynamic mid-span deflection of the beam traversed by a different number of the forces is shown for n=5, =0.1, =0.5, 

v=20 m/s and d=L/4. For tT/4, all the curves in Fig. 12 are identical because the beam is under the action of only one force 

during this period. The number of the moving forces clearly affects the dynamic response of the beam, in which not only the 

mid-span deflection but also the time at which the maximum deflection occurred increases by the increase in the number of the 

forces. The relation between the DAF and the moving speed v, as depicted in Fig. 13 for n=5, = 0.1, = 0.5 and d=L/4, also 

clearly shows the effect of the number of moving forces on the dynamic response of the beam. The moving speed at which the 

deflection factor reaches a peak, as clearly seen from Fig.13, is much higher when the beam traversed by some the forces. 
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Fig. 13 Relation between DAF and moving speed for different number of forces (n=5, =0.1, =0.5, d=L/4) 
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5. Conclusions 

The dynamic response of nonuniform FG porous beams subjected to moving forces has been investigated in the present 

paper. A modified rule of mixture, taking the effect of the porosities into account, was adopted in evaluating the effective 

material properties. Based on Timoshenko beam theory, the equations of motion for the beams were derived from Hamilton's 

principle and solved by a finite element model. The dynamic response of a simply supported FG porous beam was computed 

by using the Newmark method. A parametric study was carried out to illustrate the effect of the material composition, aspect 

ratio and the loading parameters on the dynamic behaviour of the beams. The numerical results reveal that the porosity volume 

fraction, which has been taken into account in the present work, plays an important role in the dynamic response of the beam, 

and it is necessary to take the effect of porosities into consideration in the vibration analysis of FG beams traversed by moving 

forces. 
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