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Abstract 

Recently, many long-span cable supported bridges, including the cable stayed bridges and the suspension 

bridges, have already been constructed or are planned for construction. Because the meteorological values used to 

estimate the wind load for designing the long-span bridges were based on data from the 1960s through 1995 in Korea, 

it is necessary to reconsider the proper design wind load for long-span bridges. In this paper, the research area is 

confined to the southern and western coasts of Korea where many long-span bridges have been built. The method of 

moment and the least-squares method are used to estimate the expected wind speeds of a 100-year return period for 

girder bridges; Gumbel’s distribution is used to estimate the expected wind speeds of a 200-year return period for 

long-span bridges. As the return period wind speed on the land surface is revised because of recent high-speed 

velocity, the revised return period wind speed is increased by 17%. The compatibility of return period wind speed is 

also evaluated using the RMS (root mean square) error method. This paper concludes that the least-squares method is 

more compatible than the method of moment for the case of the southern and western coasts of Korea. 
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1. Introduction 

Recently, many long-span cable supported bridges, including the Incheon, Geoga and Lee Sun-Shin Bridge, with cable 

stayed bridge and suspension bridge types, have either been completed recently or are being built in Korea. In addition, the 

construction of National Highway Route 77 and a large-scale connecting bridge project are underway. When planning to 

construct such a marine long-span bridge, it is generally necessary to design the static wind load of the bridge; when doing so, 

determining the basic wind speed in the target area is a fundamental issue. 

While the basic wind speed presented by the Korean Highway Bridge Design Code [1] has different values depending on 

the region and the installation year of weather stations, regional annual maximum wind records from 1951 to 1995 are 

approximated by the extreme value distribution (Gumbel's distribution) and estimated as the expected wind speeds of a 

100-year return period. This is generally applicable to a medium-small bridge less than 200m in length, but not to a marine 

long-span bridge. 

For these reasons, the Design Guidelines for Steel Cable-Supported Bridge [2] estimates the basic wind speed adequate 

for a long-span bridge based on the expected wind speeds of a 200-year return period. However, due to a lack of guidelines 

regarding the marine long-span bridges that were constructed before the issuance of the Design Guidelines for Steel 

Cable-Supported Bridge, there is a need for further studies [3]. In addition, the frequent occurrence of global warming-induced 

regional typhoons such as Kompasu, with instantaneous maximum wind speeds over 40-60m/s, calls for constant review of the 

wind resistance of long-span bridges in the southern and western coasts, the main paths of such typhoons. 
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Therefore, Kim and Ha [4] calculated the expected wind speeds of a 200-year return period that are applicable to 

wind-resistance design for the long-span bridges in the southern and western coasts using Gumbel’s method of moments and 

the least-squares method, based on the measured wind data from local stations in the last 40 years. Additionally, many 

researchers have conducted investigations of the statistical characteristics of the wind speed in specific areas such as Palermo 

(Italy), La Ventosa (Mexico), UAE, North Dakota (United States), Kerman (Iran), Turkey and Santiago Island (Cape Verde), 

respectively [5-12]. Batts and Simiu [13] also employed the Hazen Plot to determine the eligibility of our calculations as well 

as revising the expected wind speeds by taking into account the extreme surface winds in coastal areas. In this study, we 

reviewed and compared the statistical characteristics of wind speeds presented in previous research, the Korean Highway 

Bridge Design Code, and those applied to actual long-span bridge design. 

2. Procedure of Analysis for Basic Wind Speed 

The procedures of analysis for basic wind speed presented by the Current Highway Bridge Design Code are estimated 

through the process shown in Fig. 1. Since analysis procedures for land bridge design are not suitable for marine long-span 

bridges, several adjustments were made based on the meteorological data for the past 40 years. First, the 100-year return period 

presented by the Design Guidelines for Steel Cable-Supported Bridge is re-estimated as a 200-year return period. After the 

evaluation of suitability, the method of moment calculated via the extreme analysis method is replaced by employing the 

least-squares method. Finally, a design wind speed suitable for marine long-span bridges in the southern and western coasts is 

calculated by revising land wind speed to marine wind speeds of coastal regions under extreme conditions. The details of each 

process are as follows: 

 

Fig. 1 Procedure of basic speed estimation 

2.1.   Revision of observed data 

The Highway Bridge Design Code advises using the basic wind speed (V10) of 10 minutes of average wind speed over 

10m on the ground in an open area (roughness classification). Since the installation height of anemometers and the conditions 

around the weather stations are not constant, the comparison of records of each local weather station (annual maximum wind 

speed) would be unreliable. Therefore, comparable data should be presented that has the same conditions [4]. 
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In case of relocated observatories or changed anemometer heights, necessary revisions are made with reference to the 

annual weather report of the Korean Meteorological Administration [14]. Wind speed is also revised by considering the 

effective height from the surface given by the following Eq. (1) in the region where a weather station is located on a hillside or 

in a mountainous area (Inchon, Kunsan, Mokpo, Yeosu and Tongyeong, Busan in Korea). Height variations of the wind 

observation stations are shown in Table 1. In Table 1, the number outside the parentheses is the year that the changes took place, 

and the number inside the parentheses is the height of sea level and anemometer of that year. 
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where Ze is the effective height (m) from the surface; Ha is the height of sea level (m) at the point; aH  is the average height of 

sea level; H  is the average height of the building (m); Z0 is roughness length around the region (m), and k is the Karman 

constant (≒ 0.4). Revision of about wind speed is performed with the following steps. 

1. Roughness of the surface is determined by referring to the study (Table.1). 

Table 1 Height and surface roughness of observatory in the southern and western coasts 

Observatory Surface Roughness 

Year of change 

(elevation of Observatory/  

Height of anemometer) 

(m) 

Soesan III 
71(19.7/12.5) 81(19.7/11.8) 

98(25.9/14.0) 00(25.2/20.2) 

Incheon III 
71(68.9/14.0) 85(68.9/11.0) 

00(68.9/14.0) 05(54.6/11) 

Gunsan III 
71(26.3/14.5) 00(25.6/18.0) 

03(26.9/15.3) 04(26.9/18.0) 

Yeosu III 71(67.0/10.5) 98(66.1/20.8) 

Tong-Yeong III 
71(32.2/14.9) 81(32.2/11.5)  

98(30.8/15.2) 

Jeju III 

71(22.0/10.5) 85(22.0/11.5) 

87(22.0/12.3) 98(20.0/14.4) 

04(19.9/12.3) 

Mokpo III 71(53.4/15.8) 98(37.9/15.5) 

Ulsan III 
71(31.5/10.8) 98(34.7/16.4)  

00(34.6/12.2) 

Busan IV 71(69.2/17.8) 

Seogwipo II 
71(51.9/8.9) 81(51.9/9.2)  

85(51.9/10.0) 08(50.4/10.0) 

2. Using altitude distribution coefficient KZ on the surface roughness classification of each point, the wind speed of Step 1 is 

converted to the gradient wind velocity ZG. Altitude distribution coefficient KZ presented by the Highway Bridge Design 

Code is applied as following Eqs. (2)-(3). Here, ZG is the height where wind speed is constant regardless of surface 

roughness, α is the altitude distribution exponent, and Zb is the representative height of the terrain. ZG, Zb, and α depend on 

the surface roughness of the surrounding area in a temporary location, and those values are determined from Table 2. 

3. Using the vertical direction-altitude distribution coefficients KZ from the determining model of extreme distribution II of 

Table 1, the height of the gradient wind speed from Step 2 is converted to wind speed of 10m from the ground. 
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Table 2 The α, ZG, Zb by changing the surface roughness 

Classification of surface roughness Surface Condition α ZG Zb Z0 

I Sea, Coast 0.12 500 10 0.01 

II 
Open area, Farmland, Rural Area 

Scattered trees and lowrise buildings in the area 
0.16 600 10 0.05 

III 

Dense trees and lowrise buildings in the area 

Scattered high or middlerise buildings in the area 

Gradual hills 

0.22 700 15 0.3 

IV 
Dense high or middlerise building s in the area 

Rugged hills 
0.29 700 30 1.0 
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2.2.   Determining model of extreme distribution 

The distribution model of annual maximum wind speed, like the standards posed by the Highway Bridge Design Code 

and Korean Building Code-Structural [15], is uniformly applied in each region under the assumption that Gumbel’s 

distribution is the most suitable distribution type for wind speed in Korea. Gumbel’s distribution function is given in Eq. (4). 

   
exp
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Here, F(v) is the nonexceedance probability and V is the annual maximum wind speed(m/s); a (scale parameter) and b 

(location parameter) are integers used as parameters of distribution type (characteristic value). 

Assuming that the distribution of annual maximum wind speed is similar to Gumbel’s distribution type, the expected 

value of the return period T and the cumulative distribution function F(V) from Eq. (4) have the following relationship. Once 

Eq. (5) is inserted in Eq. (4), the return-period wind speed V(T) can be expressed as following Eq. (6). 
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2.3.   Parameter estimation 

Typical ways to estimate parameters are the method of moment, the maximum likelihood estimation, and the 

least-squares method. In this study, two widely-used methods (the method of moment and the least-squares method) are 

applied for estimation; the maximum likelihood method is excluded because it is not very suitable if there is a small number of 

a sample. Parameters a and b can be obtained by the method of moment using the following Eqs. (7)-(8). 

1

0.78
a





 (7) 

0.45b V    (8) 

where V  is the average of annual maximum wind speed and   is the standard deviation. 

The least-squares method selects sample regression straight line with the form y = ax + b, which minimizes the sum of 

squares of errors from wind speed data; then, parameters a and b can be solved for as displayed in Eqs. (9)-(10). 

http://endic.naver.com/enkrEntry.nhn?entryId=12acc8c1195f40d1b61697d343194fca
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2.4.   Suitability estimation 

To estimate the suitability of the presumption equation from the extreme value distribution and the parameters, the Hazen 

Plot method shown in Eq. (11), considered to be the most suitable for the Gumbel distribution is applied in this study [9]. 
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where  
i

F V   is the nonexceedance probability, n is the number of samples, and i is the rank that annual maximum wind speed 

is sorted in descending order. Suitability for the observation that is obtained using the Hazen Plot method and the wind speed 

value calculated using the cumulative distribution function obtained from the least-squares method and the method of the 

moment is evaluated using the root mean square (RMS) error, Eq. (12), one of the ways to verify probability models. 
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3. Estimation of Expected Wind Speed and Review 

3.1.   Estimation of regional expected wind speed 

 

Fig. 2 Wind speed of revised surface roughness (Mokpo) 

The calculation process of the expected value is performed with the Mokpo area in Korea as an example. For the 

homogeneity of observed data, Eqs. (2)-(3) are applied as shown in Fig. 2 and the wind speed at 10 m above ground and the 

surface roughness classification Ⅱare corrected through the process of Step 1 to 3 in 2.1. The revision results showed a 

difference of 5m/s wind speed; with this, the importance of revising the surface roughness and observation data modifications 

can be seen. 

http://endic.naver.com/enkrEntry.nhn?entryId=12acc8c1195f40d1b61697d343194fca
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The next process is the method of moment applied to Eqs. (7)-(8); the least-squares method is also applied to Eqs. (9)-(10), 

respectively. Finally, the parameters are estimated and the characteristic values of distribution types are calculated. 

Assuming that the distribution of annual maximum wind speed is in accordance with the Gumbel distribution, the 

expected wind speeds V(T) of return period T can be shown as Eq. (6) and the expected value of the return period for the 

maximum wind speed in the southern and western coasts presented by the Highway Bridge Design Code is arranged in Table 3. 

Table 3 Wind speeds for a return period of annual maximum wind speed and the wind speed correction on th e sea 

Place name 
Estimation 

Method 
N  ( )v m s  ( )m s  ( )m s  ( )b m s  

RMS 

E(%) 

The statistics of the last 40 years(1970~2009) (m/s) 

General 

Bridge(V100) 

Long-span 

Bridge(V200) 

V200 

(0.005m) 

Long-span 

Bridge in 

the 

sea(Vwater) 

Seosan 

Moment 

Method 
39 

18.29 2.96 

0.43 16.96 3.3 27.57 29.18 35.98 42.33 

Least 

Square 

Method 

39 0.4 16.93 1.5 28.52 30.28 37.34 43.92 

Incheon 

Moment 

Method 
39 

22.18 3.99 

0.32 20.38 2.1 28.90 30.71 37.86 44.22 

Least 

Square 

Method 

39 0.29 20.31 1.5 30.11 32.10 39.58 46.22 

Gunsan 

Moment 

Method 
39 

21.89 4.3 

0.3 19.96 3.6 35.38 37.71 46.50 54.7 

Least 

Square 

Method 

39 0.27 19.9 1.5 36.71 39.25 48.39 56.93 

Yeosu 

Moment 

Method 
39 

26.54 5.65 

0.23 24 2.7 37.33 40.45 49.87 58.25 

Least 

Square 

Method 

39 0.21 23.91 1.5 40.72 43.79 53.99 63.05 

Tong-yeong 

Moment 

Method 
39 

24.21 5.07 

0.25 21.93 3 35.92 38.38 47.32 55.67 

Least 

Square 

Method 

39 0.23 21.86 1.5 37.409 40.11 49.46 58.19 

Jeju 

Moment 

Method 
39 

19.36 4.4 

0.29 17.38 0.9 33.16 35.55 43.83 51.57 

Least 

Square 

Method 

39 0.29 17.47 0.5 33.5 35.93 44.30 52.12 

Mokpo 

Moment 

Method 
39 

24.38 4.23 

0.3 22.48 4.2 35.85 38.04 46.90 54.78 

Least 

Square 

Method 

39 0.28 22.4 1.5 37.15 39.53 48.74 56.92 

Ulsan 

Moment 

Method 
39 

16.24 3.55 

0.36 14.64 2.7 27.39 29.32 36.15 42.53 

Least 

Square 

Method 

39 0.33 15.59 4.1 29.6 31.71 39.10 46.0 

Seo-gwipo 

Moment 

Method 
39 

16.9 4.1 

0.31 15.5 3.2 29.6 31.99 39.44 46.4 

Least 

Square 

Method 

39 0.28 14.99 1.4 29.77 33.6 41.43 48.74 

Busan 

Moment 

Method 
39 

26.32 4.38 

0.29 24.35 3.4 35.88 38.01 46.87 54.73 

Least 

Square 

Method 

39 0.27 24.3 1.5 37.11 39.44 48.63 56.79 
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3.2.   Analysis and judgement of suitability 

The expected wind speed of return period-obtained using the least-squares method and the method of moment-and the 

observations graphed using the RMS error method are reviewed for stability; then, a reliable estimation method was 

determined. Fig. 3 is a result of the fit test about Mokpo area. The rate of error is 4.2% for Gumbel’s method of moment and 

1.5% for the least-squares method. 

 

Fig. 3 Comparison between Hazen Plot and compatibility of parameter estimation (Mokpo) 

By this method, results of suitability (shown in Table 3) in 10 areas of the Southern and Western coast show that the 

estimation of return period wind speed results in less rate of error with the least-squares method than Gumbel’s method of the 

moment in all regions except for Ulsan in Korea. The main reason that the rate of error is decreased by the least-squares method 

compared to Gumbel’s method of the moment in Southern and Western coast is that the wind speed is changed because of the 

weather change and a recent huge typhoon. Therefore, when estimating the current design wind speed, it is more suitable to use 

the least-squares method than Gumbel’s moment method. 

3.3.   Revision of marine wind speed 

For marine long-span bridges built on the coastlines, the extreme wind speed is caused by wind from the seas. Basic wind 

speed should be modified to represent marine wind speed because the basic wind speed is estimated by measuring from the 

ground. In theory, the surface wind speed is 0m/s on the ground because of adhesion conditions. However, for the water surface, 

marine wind speed is faster than the ground wind speed at the same roughness length because the wind speed is getting the 

same with moving speed of surface by adhesion conditions. 

After looking into previous researches and literatures, we saw that the HUR 7-120 [16] report used the value of 0.78 for 

the examining coefficient that reduces wind speed from marine wind speed to land wind speed when marine wind speed is in 

excess of 37m/s. The following Eq. (13) was proposed in the case of Simiu et al. [17]. 
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water
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where Vland is the land wind speed, Vwater is the marine wind speed, ρ is the reduction factor, and Z0 is the roughness length. 

Because Eq. (13) assumes that the gradient wind is a geostrophic wind, Eq. (13) may be inaccurate under extreme conditions in 

the presence of strong winds caused by a typhoon. 

To make up for this uncertainty, Batts & Simiu [12] estimated the coefficient shown in Eq. (14) about the wind which 

occurs at 10m above the ground and has roughness length Z0=0.005m when hurricanes go offshore. 
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Since the return period wind speed estimated by the extreme analysis method is 10m above the ground which has the 

surface roughness classification Ⅱ (Z0=0. 05m), the log wind profile Eq. (15) is used to obtain the wind speed in Z0=0.005m. 
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were k is the Karman constant (≒0.4), u is the shear velocity by the surface, and Z0 is the roughness length. The friction 

velocity ratio of the two cases is required in order to estimate the wind speed using log wind profiles. Eq. (16) is applied on the 

basis of the study by Simiu and Scanlan [18]. 
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The revised wind speeds in 10 areas of the southern and western coasts using Eqs. (14)-(16) are presented in Table 3. As 

a result of the application, the wind speeds with the wind correction factor are approximately 1.45 times faster than land wind 

speed. 

3.4.   Analysis of results 

Using the same process as above, the expected wind speeds of 200-year return period for a long-span bridge and the 

revised marine wind speeds are calculated using experimental data and presented in Table 3. The basic wind speed of the 

current bridge design standards is elevated by considering the safety factor (15-30%) based on the previous estimation method 

[19]. But when the meteorological data on global warming is taken into account, there are irregularities corresponding to a 

-15.48 to 51.15% difference with the Highway Bridge Design Code, as shown in Table 4. 

Table 4 Comparison between Highway Bridge Design Code and wind speeds of 100-year return period 

Place name 
Bridge Design 

Criteria (2005) 
Estimation Method 

General Bridge 

100V  A percentage change (%) 

Seosan 35 
Moment Method 27.57 21.23 

Least Square Method 28.52 18.51 

Incheon 35 
Moment Method 34.72 0.80 

Least Square Method 36.17 -3.34 

Gunsan 40 
Moment Method 35.38 11.55 

Least Square Method 36.71 8.22 

Yeosu 40 
Moment Method 44.26 -10.65 

Least Square Method 46.19 -15.48 

Tong-yeong 40 
Moment Method 40.12 -0.30 

Least Square Method 41.79 -4.48 

Jeju 45 
Moment Method 33.16 26.31 

Least Square Method 33.5 25.56 

Mokpo 45 
Moment Method 37.65 16.33 

Least Square Method 38.96 13.42 

Ulsan 45 
Moment Method 27.39 39.13 

Least Square Method 29.6 34.22 

Seogwipo 45 
Moment Method 29.77 51.15 

Least Square Method 31.16 44 

Busan 40 
Moment Method 40.08 -0.20 

Least Square Method 41.52 -3.80 
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Therefore, the basic wind speeds presented in the previous design standards need significant revisions. For similar reasons, 

the expected basic wind speeds of 200-year return period and marine wind speed presented in the Design Guidelines for Steel 

Cable-Supported Bridge also need to be revised; the basic wind speed of marine regions should also be continuously 

researched. As shown in Table 3, the expected basic wind speeds of 200-year return period for a long-span bridge are compared 

using both the moment method and the least-squares method; although both methods are suitable (within 5% error), the 

least-squares method is better because the rate of error is less than 1.5% for all regions except for Ulsan. 

4. Conclusion 

In this study, the design basic wind speed of the long-span bridge proposed by the Design Guidelines for Steel 

Cable-Supported Bridge is analyzed. Typhoons frequently occur in the southern and western coasts due to a rapidly changing 

climate. Thus, based on the most recent data, the moment method and the least-squares method are used to estimate the design 

basic wind speed that is suitable for a long-span bridge, and the RMS error method is also used to evaluate suitability. Based on 

these results, the following conclusions are obtained. 

1. In the results of estimating the expected wind speeds of a 100 year return period with the latest data, if a safety factor of 

-15.24 to 39.13% was accounted for in the Bridge Design Standard, it could have occurred as a result of the increasing 

intensity and frequency of winds caused by the changing climate. Therefore, the expected wind speeds of 100-year return 

period need to be re-estimated with continued research to reflect the appropriate safety factor. 

2. The basic wind speeds in the southern and western coasts are compared using both the moment method and the 

least-squares method; as a result, both methods are suitable with a rate of error that is less than 5%. In particular, the 

least-squares method proves to be better than the moment method because the least-squares method has a rate of error that 

is less than 1.5% in all regions except for Ulsan. 

3. When estimating the expected wind speed for long-span bridges in coastal area in the paths of typhoons, the revised value 

is 1.45 times the previous value when considering marine wind speed under extreme conditions. 

4. For the southern and western coastal regions of Korea, conservative wind design is needed because of uncertainty in basic 

wind speed estimation and safety when facing large-scale typhoons. The alternative applied to marine wind speed revision 

for the basic wind speeds of 200-year return period is proposed. 

The data from the weather center is thoroughly analyzed and stochastically estimated to propose the expected wind speed 

of the return period (100, 200 years) and long-span bridge at sea. Therefore, based on the reliable data regarding the rise in sea 

temperature and intensity and frequency of marine wind speed, studies for estimating the design basic wind speed of long-span 

bridges suitable for extreme marine wind near the southern and western coasts should be continued. Hence, the rapidly 

changing environment calls for the need to make safety reviews of long-span bridges in use to reflect the results of this 

research. 
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