
International Journal of Engineering and Technology Innovation, vol. 10, no. 1, 2020, pp. 25-40 

Connectivity Investigation of Channel Quality-Based Adaptive Gossip 

Flooding Mechanism for AODV 

Prasanna Shete
1,*

, Raval N Awale
2
 

1
Department of Computer Engineering, K. J. Somaiya College of Engineering, Mumbai, India 

2
Veermata Jijabai Technological Institute, Mumbai, India 

Received 28 February 2019; received in revised form 27 May 2019; accepted 15 August 2019 

DOI: https://doi.org/10.46604/ijeti.2020.3812 

Abstract 

To address the “broadcast storm” problem associated with flooding-based route discovery mechanism of 

reactive routing protocols, probabilistic approaches are suggested in the literature. In the earlier work, Gossip 

flooding mechanism of Haas et.al. was extended with signal quality, to propose channel quality based adaptive 

gossip flooding mechanism for AODV (CQAG-AODV). Following the cross-layer design principle, CQAG-AODV 

algorithm tried to discover robust routes, as well as address the “broadcast storm” problem by controlling the 

rebroadcast probability of Route request (RREQ) packets on the basis of signal strength experienced at the physical 

layer. This paper investigates the connectivity of CQAG-AODV through theoretical and simulation analysis. Results 

show that, by accounting the signal strength in the route discovery process, not only does the proposed algorithm 

floods  a lesser number of route requests and controls the broadcast storm, but also maintains a higher level of 

connectivity to offer high packet delivery ratio; independent of network density and node mobility. Moreover, due to 

controlled routing overhead and robust route discovery, channel quality based adaptive flooding mechanism offers 

fringe benefit of energy efficiency as well. CQAG-AODV thus proves its suitability in a variety of use cases of 

multi-hop ad hoc networks including WSNs and VANETs. 
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1. Introduction 

Connectivity is the property of ad hoc networks that represents how well each node can reach every other node in the 

network via a multi-hop path. It is the fundamental pre-requisite for a network to be operational. Multi-hop ad hoc networks 

experience frequent path breaks mainly due to node or link failures; drastically degrading the system performance. For 

assuring Quality of Service (QoS), it is necessary that routing protocol should preserve the network connectivity. Link failures 

are the result of signal strength fluctuations, arising from time-varying characteristics of the wireless channel or node mobility. 

Thus in the routing protocol design, it is important to preserve link/path lifetime longer. This can be achieved by accounting the 

signal quality of links in the route discovery process. 

The route discovery procedure of AODV counts on the flooding of special messages called Route requests (RREQs) [1]. 

The route to destination is discovered through flooding (i.e. multiple rebroadcasts) of RREQs by intermediate nodes. Flooding 

gives rise to two serious problems viz; “broadcast storm” [2-3], and resource consumption of nodes and network. Time-varying 

nature of wireless channel and node mobility are inherent characteristics of multi-hop ad hoc networks. Thus, if the discovered 

routes are contributed by weak links, they will experience frequent failures and hence efforts taken in discovering the routes 
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will be wasted. Thus, blind flooding of RREQs without accounting the node or channel condition may result in wastage of node 

energy and network bandwidth. 

In order to deal with the problem of “broadcast storm” in multi-hop ad hoc networks, various optimized flooding 

mechanisms are proposed [4-11]. These schemes advocate controlling the RREQ broadcasts adopting probabilistic approach, 

in which intermediate nodes forward the RREQs with lower probability based on some control metric such as node density, 

distance, number of neighbors covered, speed, etc. Reina et al. conducted an exhaustive survey of various probabilistic 

broadcast schemes proposed for optimizing the routing protocols of multi-hop wireless ad hoc networks [12]. 

Gossip based approach proposed in [4] uses fixed probability (p=0.66) for RREQ forwarding. It is shown that with Gossip 

(1, 0.66) almost 95%-99% of the time the network is connected, with almost 33% lesser number of RREQ being broadcast than 

simple flooding. A variation of gossip-based flooding, GOSSIP5 scheme is proposed in which the gossiping threshold is fixed 

to a number of node’s neighbors [5]. Here, nodes wait for a fixed random delay before trying to retransmit the incoming packet. 

However, the proposed AODV+G and GOSSIP5 protocols did not comment about reducing link and/or path failures resulting 

from channel fluctuations. ‘Neighbor Coverage-based Probabilistic Rebroadcast protocol (NCPR)’ proposed in [6] utilizes 

neighbor coverage knowledge to determine how many neighbors should receive the RREQs. Based on the information about 

uncovered neighbors, connectivity metric and local node density, RREQ rebroadcast probability is calculated. Combining the 

neighbor coverage knowledge and probabilistic mechanism the number of redundant rebroadcast are significantly reduced. 

NCPR alleviates the network contention and collision thereby increasing packet delivery ratio and reducing the average 

end-to-end delay. The performance improvement of NCPR is significant in high density or heavy traffic networks, whereas in 

sparse networks performance is slightly better than flooding. However, if the uncovered nodes are not part of the path 

converging to the destination, route setup delay may be large. Zhang et al. suggested ‘Estimated Distance (EstD)-based routing 

protocol EDRP’ that limits the propagation range of RREQ messages [7]. EstD is an amalgamation of Estimated Geometrical 

Distance (EGD) and Estimated Topological Distance (ETD). EGD accounts the Received Signal Strength (RSS) variation at 

contact time of two nodes, to estimate the future geometrical distance between them when they move apart. Propagating 

RREQs in the direction of destination with the aid of EstD, considerably reduces the routing overhead and improves routing 

performance. However when node distribution is sparse, performance degrades significantly. Also, the use of gossiping, when 

a node does not have information about the destination, may adversely affect the performance. Hybrid flooding scheme that 

combines the features of probabilistic, neighbor based and area-based flooding is proposed in [8]. Here, based on 

neighborhood node density and the distance to neighbors, each node adjusts its forwarding probability. RREQs are flooded 

with low probability in the areas where node density is high, and with high probability otherwise. Also, forwarding of received 

RREQs is confined to the nodes located within a forwarding zone. Nodes outside the zone do not participate in RREQ 

forwarding. In dense networks, this scheme incurs less routing overhead as well as node energy consumption, as compared to 

simple flooding or static probabilistic flooding. In sparse networks, the performance is as good as with simple flooding. This 

scheme is beneficial only for nodes which are moving at speeds less than 36 km/hr; as speed increases routing load increases 

and thus makes it unsuitable in high mobility scenarios. Speed Adaptive Probabilistic Flooding (SAPF) algorithm proposed in 

[9] is an extension of probabilistic flooding, where the flooding probability is decided on the basis of node speed. Here the 

network density of VANETs is estimated based on the node’s speed. The forwarding probability is adjusted by the following 

formula; p = 0.0557v+ 0.033, where v is the speed of the vehicle. Two- speed thresholds are defined as vl and vh. The authors 

indicated that if v > vh, it is impossible to estimate the vehicle’s density. On the other hand, if v < vl, the network has almost 

reached its capacity and so the probability can be constant. A reliable and low-collision packet-forwarding scheme named 

Collision-Aware Reliable. Forwarding (CAREFOR) is proposed for VANETs [10]. In this, each vehicle receiving a packet 

rebroadcasts it with predefined probability. This probability is decided by the density of vehicles in the vicinity, distance 

between transmitting and receiving vehicles, and transmission range of the next-hop. However, the optimization approaches 
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[5-10] are computationally intense and thus difficult to implement. Hence authors adopted a simple mechanism named 

‘Channel Quality based Adaptive Gossip Flooding mechanism for AODV (CQAG-AODV)’ and presented performance 

improvement through the reduction in link failures [11]. By accounting signal quality in the routing process, CQAG-AODV 

tuned the rate of RREQ broadcasts and controlled the number of RREQs forwarded, as well as discovered good quality routes 

that are robust to failures. 

Moreover, various optimization approaches were proposed to address the problems caused by interference [13-16]. In 

these approaches, Signal to Interference and Noise Ratio (SINR) experienced on the channel –called ‘link status,’ is utilized in 

the routing metrics design. However, these approaches hardly comment on the “broadcast storm” problem. Further, since link 

status information is loaded in the control packets (RREQ or Hello), these schemes will eventually increase routing overhead. 

Although, these approaches utilize the same metric of signal quality at the physical layer as suggested in [11], the proposed 

CQAG-AODV did not constitute interference in the routing decision. This is so because, in multi-hop wireless networks 

interference is less critical than connectivity [17-18]; interference mainly impacts the network capacity and not the 

connectivity. Thus, by selecting links/paths that offer improved signal strength will implicitly reduce the effect of interference. 

In this paper, we analyze the connectivity of CQAG-AODV. The main objective is to investigate whether CQAG-AODV 

discovers/selects best channel quality paths as well as addresses the “broadcast storm” problem while preserving the same level 

of connectivity as AODV. 

The rest of paper is organized as follows; the channel quality based network model is presented in section 2. Section 3 

discusses channel quality based route discovery mechanism and implementation of proposed CQAG-AODV. Section 4 and 5 

present theoretical and simulation-based performance analysis of CQAG-AODV. Section 6 concludes the paper. 

2. Channel Quality-based Network Model 

The received signal strength at a given point over a wireless medium is a function of its distance from the transmitter, 

represented as: 

.

24
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t t rP
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d
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where tP and rP  are the transmitted and received signal power, tG and rG are gains of the transmitter and receiver antennas, 

and d is a distance between transmitter and receiver. 

Further, the received signal experiences variations due to multipath propagation effects, noise and interference. Thus 

received signal power keeps changing which can be represented by widely recognized time-varying multipath propagation 

model presented in [19], given as: 
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where x(t) is the transmitted signal, y(t) is the received signal, z(t) is the background noise, i(t) is the time delay, p(t) is the 

number of paths and Ai(t) is the attenuation of each path. 

Moreover, node mobility affects the average channel coherence time. As per the Clarke and Gans model, the motion of 

nodes causes Doppler shift in the frequency of a received signal. The inverse of maximum Doppler frequency (fm) is known as 

the coherence interval (Tc) [20]. Channel SNR estimates are accurate as long as the packet transmission time is less than the 

channel coherence time. In IEEE 802.11 based ad hoc networks, for a center frequency of 2.4 GHz and mobility speed of 1 m/s 

(3.6 km/hr) the coherence interval is approximately 122.88 ms. For mobility speeds up to 20m/s, coherence interval is an order 
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of multiple packet transmission times; so channel coherence time is constant for the entire packet transmission. Hence the 

complex physical model of the wireless channel can be approximated by the protocol model as under. 

As per the protocol model, for a presumed distance between nodes the received signal power fluctuates randomly and thus 

successful reception of a packet is probabilistic. A packet transmitted from sender x is successfully received at receiver y if the 

SINRxy ≥ SINRTh given as: 

s

s
p Prob

N I


 
   

 (3) 

where s is the received signal strength (RSS), N is the background noise, I is the interference and β is the SINR threshold. 

Assuming noise to be normally distributed and ignoring the interference, RSS can be taken as a measure of SNR. I.e. two 

nodes can establish connection if the received signal power is superior than certain predefined threshold (RSSxy ≥ RSSTh). 

     'xyp c Prob RSSxy    (4) 

where  xyp c  is the probability of x and y being connected, and   represents threshold β ignoring noise and interference. 

Conversely, outage probability (link failure probability) between nodes x and y is: 

   1xy xyp o p c     (5) 

The default signal strength threshold (i.e. receiver sensitivity threshold) defines the transmission range of communication 

and is the limiting radius of circular coverage over which communication is possible. As packet reception is based on this 

threshold, in mobility scenario if the receiver is located at a distance equal to limiting communication radius frequent link 

breakages will be experienced. 

The route discovery procedure of reactive routing protocols e.g. AODV, DSR, etc. is transparent to signal variations over 

the physical medium. Thus RREQ forwarding decisions at intermediate node do not take into account signal power 

experienced at the link/s between itself and its precursor/s. The RREQs received over good or weak links are treated equally. If 

the selected path to the destination is comprised of weak links/ hops, then during channel fluctuations the possibility of path 

failure will be high and may inhibit its use for data transfer. Thus, efforts taken for RREQ forwarding will be futile and the 

source node would have to re-discover the route. Addressing this issue and controlling the broadcast storm is the objective of 

channel quality based adaptive gossip flooding mechanism for AODV. To meet this objective CQAG-AODV suggests the 

inclusion of signal quality in the RREQ forwarding mechanism of AODV protocol for selecting good quality links so that 

robust paths are discovered, as well as a number of RREQ packets forwarded are limited. 

3. CQAG-AODV: Channel Quality based Adaptive Gossip Flooding Mechanism for AODV 

CQAG-AODV is essentially a cross-layer design approach [21] wherein channel quality experienced at the physical layer 

is utilized to adaptively select RREQ flooding probability. The received signal strength (RSS) observed at the link over which 

RREQ arrived, is considered a measure of channel quality and used in the calculation of gossip probability. The RREQs are 

rebroadcast with probability p=1 if they are received over strong links, else with lower probabilities. Gossip (p, 1, x) approach 

similar to Gossip (p, 1, m) suggested in [4] is used where; x is the received signal strength threshold (RSS_Th). This means, 

gossiping comes into play only after 1-hop and when signal strength is below RSS_Th. i.e. Source broadcasts the RREQ with 

probability one, and intermediate nodes follow RSS based gossip for rebroadcasting the RREQs. 

An intermediate node (node other than the intended destination), on receiving RREQ message, instead of blind 

forwarding, first measures the RSS. If RSS value is above the predefined threshold (RSS > RSS_Th), the node forwards it with 

probability p=1, otherwise uses a gossiping approach in which lower gossip probabilities (p < 1), are selected depending on the 
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experienced RSS. In other words, an intermediate node certainly forwards RREQs, only if they have been received over a good 

quality link, else it forwards them with a lower probability. Use of lower gossip probabilities ensures that under hostile channel 

conditions network is not partitioned and some connectivity is conserved even when most of the links are of poor quality. 

For incorporating CQAG-AODV algorithm, modification to threshold   of Eq. (4) is suggested. The threshold   is 

modified to  *    and used in the route discovery procedure (where   is some constant). This increased threshold  *    

is for selecting the RREQ rebroadcast probability of intermediate node j that has received RREQ from precursor node i, and 

experienced signal strength is ij ; i.e.      *j ijP f    . Whereas  *    is used only for route discovery, the default 

threshold   is used for data transfer and all other mechanisms. Defining two different thresholds    and  *   in the 

routing mechanism has a dual objective; it helps to discover better quality paths during the route discovery phase and maintain 

higher link connectivity throughout the data transfer phase. Due to higher threshold value  *   used in route discovery 

procedure the probability of link establishment may be less but the outage probability during data transfer phase will be 

reduced since its calculation is based on default threshold   and not on  *   . 

More RREQs a node forwards over a particular hop, higher is its likelihood to be selected for routing and vice-versa. 

Since CQAG-AODV tunes the rate of RREQ forwarding on the basis of channel quality experienced, higher the value of signal 

strength of a link/hop along which RREQ is received, larger will be   j ijP   and vice versa. i.e. By forwarding lesser RREQs 

over poor signal quality links as against good quality links, CQAG-AODV lessens the probability of discovering weak routes 

that offer poor signal strength. Thus the majority of routes/paths discovered will be contributed by good signal quality 

links/hops (better than that with default threshold of 𝛽’), whose SINR does not fall below acceptable value, even when noise or 

interference levels rise somewhat above average. Thus CQAG-AODV ensures discovery of robust routes where link failure 

probability is reduced when channel fluctuations are experienced, and thus maintain higher connectivity throughout the data 

transfer phase. 

3.1.   CQAG-AODV algorithm implementation 

CQAG-AODV is implemented by modifying RFC 3561 based AODV implementation of QualNet simulator. It uses the 

receiver sensitivity thresholds defined for deciding the MAC data rates of IEEE 802.11b [22] as RSS thresholds for selecting 

gossip probability p (i.e. the modified threshold  *   of Eq. (4)).  Four different receiver sensitivity thresholds as defined in 

QualNet simulator are {-94dBm, -91 dBm, -87dBm and -83dBm}. Authors of [23] demonstrated effective use of the receiver 

sensitivity thresholds to decide optimal MAC transmission rate for improving the network capacity. CQAG-AODV associates 

different probabilities, drawn from Gaussian distribution, with these thresholds to select best quality hops to improve the 

connectivity. The RSS values and associated probabilities are presented in Table 1. 

Table 1 RSS Based Gossip Probability Selection 

Received Signal Strength(RSS) Value Channel /Link Quality Gossip Probability 

RSS ≥ -83 dBm Best p = 1 

-87 dBm ≤ RSS < -83 dBm Good p = 0.66 

-91 dBm ≤ RSS < -87 dBm Weak p = 0.50 

-94 dBm ≤ RSS < -91 dBm Poor p = 0.33 

RSS < -94 dBm Worst p = 0 

When an intermediate node receives RREQ, it first measures the RSS value and compares it with a series of receiver 

sensitivity thresholds (defined in Table 1). If RSS value is below the predefined threshold (RSS_Th = -95dBm), the 

intermediate node discards it otherwise selects the forwarding probability on the basis of the RSS value. The flowchart of 

CQAG-AODV is shown in Fig. 1. 
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Fig. 1 CQAG-AODV flowchart 

Associating RREQ forwarding probability p = 1 with receiver sensitivity threshold of -83 dBm, ensures that best signal 

quality paths are discovered with the highest probability. For good quality links, using gossip probability of p = 0.66 assures 

the same level of network connectivity although 33% lesser RREQs are forwarded. This is because p value between 0.65 and 

0.75 ensures that almost all nodes in the network will get the messages (1
𝑠
(0.65) = 0.95) [4]. Additional lower probabilities are 

used as an effort to circumvent network partitioning, when most of the links are of poor quality. Considering multiple RSS 

thresholds and using different flooding probabilities, the proposed scheme will perform equally well in scenarios of low as well 

as high node density and mobility. 

Incorporating the proposed CQAG-AODV algorithm in AODV is quite simple and practicable, as it does not need any 

changes either to the control packet formats or routing table structure of standard AODV or IEEE 802.11 implementation. As 

discussed earlier, CQAG-AODV only suggests changes to the route discovery mechanism (Fig. 1), where multiple RSS 

thresholds are used for deciding the RREQ forwarding rate. Also, no significant delay will be added due to modified RREQ 

forwarding logic, since only three additional RSS comparison operations of time complexity O(1) are involved. Taking into 

account the clock frequency (0.8-2 GHz) of ARM Cortex processors that are widely used in IEEE 802.11 compliant mobile 

devices, the processing time for these comparisons will be < 1μs. Thus CQAG-AODV will not incur any additional overhead 

or processing delay as compared to conventional AODV. 

4. CQAG-AODV Path Selection and Connectivity: Analytical Treatment 

Since CQAG-AODV follows signal strength based gossiping approach, wherein the RREQs are forwarded with varying 

probabilities, the existence of an edge (link/hop) between neighboring nodes i and j are probabilistic with probability pij. It is 

known from the results of percolation theory that gossiping exhibits bimodal behavior [24]; the gossip reaches to almost all 

nodes resulting in a connected graph, only when the gossip probability p is greater than or equal to some critical probability pc. 

(i.e.   0p  ), or it does not reach any node (i.e.   0p  ). 
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The aim of this paper is to determine the connectivity of CQAG-AODV, as well as to determine whether CQAG-AODV 

actually discovers and selects better quality paths. This section tries to answer two fundamental questions: 

i. Given a network consisting of many paths from source to destination, what is the probability that a source S is connected to 

destination D, via a particular path Rx, from the available r paths? 

ii. What is the probability that the ad hoc network (graph) is connected, when the links (edges) joining the nodes (vertices) 

occur with some probability? 

The first subsection models and illustrates how CQAG-AODV discovers best quality paths, and the network connectivity 

of CQAG-AODV is presented in the next subsection. 

4.1.   CQAG-AODV best quality path selection 

During the route discovery phase, based on the RSS value of arriving RREQ packets intermediate nodes rebroadcast them 

independently with probability, that takes one of the four values from {pbest, pgood, pweak, ppoor} as defined in Table 1. For a given 

network, if there are r possible paths/routes between given source-destination (S-D) pair, then we are interested in finding the 

probability that RREQ reaches the destination traversing the best path from available r paths. 

The probability that RREQ originated from source can reach the destination, traversing one of the r paths can be 

represented as: 

   1 2 3  rP S D P R R R R      (6) 

i.e. 

   11 1r
rP S D p     (7) 

where rp is the probability that RREQ reaches the destination along route Rr; and (1 )rp is the probability that RREQ can’t 

reach the destination along any of the paths. 

For a given path, if source and destination are separated by ‘h’ hops, then the probability that RREQ can reach the 

destination along the r
th

 path can be found using the independence property [25] as: 

 1 2 1r

h
R h ip p p p p      (8) 

where 
rRp represents the probability of existence of r

th
 path and pi is the probability of existence of the i

th
 hop. 

Out of the r available paths/routes, CQAG-AODV is expected to select the route comprising of best signal quality hops, 

with maximum probability. The probability that best quality path is selected out of the available r paths can be expressed as: 

    1    max ,   r rP best quality path p r R to R 　  (9) 

Preposition 1: CQAG-AODV discovers better channel quality paths and thus results in a connected network comprising 

of the best quality route with maximum probability. 

Let r
th

 path is the best path in terms of signal quality; then it is expected that the proposed algorithm should select this path 

with higher probability. We apply the notion of Certainty Factor (CF) of expert systems [26] to determine the certainty level of 

our expectation. 

Here the premise is route/path between source and destination exists with probability P(SD). 

i.e.     CF path S D P S D      (10) 
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and following rules are applied: 

Rule1: IF path_exists (SD) THEN has_route Rr (SD) with CF =
rRp  (11) 

Rule2: IF has_route Rr (SD) THEN route Rr (SD)_selected with CF = 1/r (12) 

then combining the premise and rules, it yields 

CF [path_ Rr exists (SD)] = CF [path (SD)] * CF (Rule1) 

(13) 
CF [path_ Rr selected (SD)] = CF [path (SD)] * CF (Rule1) * CF (Rule2) =  

1
rRr

r
P S D p    

Calculating the CF of all possible paths between S-D, if we get highest CF for the path with best channel quality, then we 

can say CQAG-AODV discovers best quality paths more often. Next we verify the same considering an example scenario. 

4.2.   CQAG-AODV quality path discovery illustration 

To illustrate the proof of concept, we consider a particular case of a simple ad hoc network consisting of 10 nodes placed 

as shown in Fig. 2. Here, circles represent the nodes; S being the source, D the destination, and A through I the intermediate 

forwarding nodes. The wireless links between the nodes represented by dotted lines depict these nodes are in coverage distance 

(transmission range) of each other; with the link quality (RSS value) marked on top. CQAG-AODV working is illustrated as 

follows. When source S has a packet for destination D to which route is not readily available in its routing table, S initiates route 

discovery procedure by broadcasting RREQ packet. Intermediate nodes forward this RREQ with gossip probability decided on 

the basis of the channel quality (RSS value) of the link over which the RREQ was received. Since CQAG-AODV follows 

gossiping approach, even though a link may exist between nodes, RREQ forwarding will be probabilistic. Thus, we can say 

that the existence of link/ hop for packet forwarding is probabilistic. 

 

Fig. 2 Simple ad hoc network scenario 

In the network of Fig. 2, there are three possible paths; Path 1: S-A-E-H-D, Path 2: S-B-F-D and Path 3: S-C-G-I-D with 

average RSS value of -85.22 dBm, -87.53 dBm and -85.5 dBm respectively. The proposed CQAG-AODV is expected to 

discover the strongest path i.e. S-A-E-H-D. 

Referring Table 1, per hop forwarding probabilities at respective hops for the possible paths can be given as: S-A-E-H-D 

{1, 1, 1, 0.66}, S-B-F-D {1, 1, 0.5} and S-C-G-I-D {1, 0.5, 1, 1}. 

Thus probability of RREQ reaching the destination, taking a particular path can be found using the independence property 

of Eq. (8) as: 

P (Path 1) = p1 = 1.0 * 1.0 * 1.0 * 0.66 = 0.66 

P (Path 2) = p2 = 1.0 * 0.5 * 1.0 = 0.5 

P (Path 3) = p3 = 1.0 * 0.5 * 1.0 * 1.0 = 0.5 
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We then calculate the probability that RREQ can reach the destination traversing one of these paths/routes. i.e. probability 

of discovering (having) route from S  D, according to Eq. (7) will be: 

     11 1 1 0.34*0.5*0.5r
rP S D p      = 0.915  

thus, CF [path (SD)] = P(SD) = 0.915 

Applying CF Rule of Eq. (13), we have; 

CF [path_Rr selected (SD)] = CF [path (SD)]*CF (Rule1)*CF (Rule2) =  
1

  * *
rRP S D p

r
   

For path 1; CF [path_R1 selected (SD)] = 0.915 * 0.66 * 0.33= 0.2 

Similarly, 

For path 2; CF [path_R2 selected (SD)] = 0.915 * 0.5 * 0.33 = 0.15 

For path 3; CF [path_R3 selected (SD)] = 0.915 * 0.5 * 0.33= 0.15 

From above calculations it is clear that, probability of RREQ originated from source S reaching destination D is maximum 

for the stronger path; i.e., via Path 1 [S-A-E-H-D], even though it is longer than Path 2. The CF calculations indicate that the 

best quality path [S-A-E-H-D] will be selected, since this path has highest certainty factor (CF=0.2) as compared to other 

available paths. This shows CQAG-AODV will discover strongest path with highest probability. Hence our notion that most of 

the discovered paths by CQAG-AODV will be of good channel quality is justified. 

4.3.   Connectivity of CQAG-AODV 

For given random spatial distribution of nodes and probabilistic radio link model, at given instant of time the network 

topology can be represented as a geometric random graph G = G (r0, n), where n represents vertices (nodes) and r0 is the 

transmission range of nodes. We are interested in finding the probability that the network (graph) being connected, when 

existence of links (edges) connecting the nodes (vertices) is probabilistic. When edge between nodes exists independently with 

some probability p, then the probability of graph being connected is given in [26] as: 

11 n
conP nq    (14) 

where, conP represents probability of graph connectivity, n = number of vertices (nodes), and q= (1 – p) is probability that edge 

does not exist. 

The graph (network) is said to be surely connected if 0.95conP   [27]. 

4.4.   CQAG-AODV connectivity illustration 

To illustrate the connectivity of CQAG-AODV, let’s consider the same particular case of simple ad hoc network as in Fig. 

2. As discussed in previous sections, in the route discovery of CQAG-AODV, RREQs are flooded following adaptive gossip 

approach, where the gossip probability is decided on the basis of channel quality. Thus, here the existence (discovery) of 

links/hops between nodes is probabilistic, with probability taking one of the four values {1, 0.66. 0.5. 0.33}, that depends on 

observed channel quality. For finding the probability of network connectivity, we consider the average of these probability 

values as edge existence probability (p) and use in Eq. (14). 

For the network of Fig. 2, where n =10, 
91 10*(0.3775)conP   = 0.998. Since, here conP  > 0.95, we can conclude that 

CQAG-AODV results in a connected network. 
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5. Simulation-based Analysis 

In this section we analyze the connectivity and end-to-end performance of CQAG-AODV through simulation. The 

objective is to determine how well the proposed algorithm fares as compared to other routing approaches, in realistic network 

setup consisting a fairly large number of nodes. The analysis is carried out considering static as well as mobile networks. Static 

network simulation presents the connectivity analysis in an explicit manner, whereas in the mobile network scenario the 

analysis is based on end-to-end performance. Next subsections present performance analysis of CQAG-AODV in static and 

mobile network scenarios. 

5.1.   CQAG-AODV performance in static scenario 

In this section, we find the probability of ad hoc network consisting of n nodes being connected when each node has a 

transmission range r0. The connectivity analysis of [28] suggested that, for given node placement, the network is connected if 

r0 ≥ rth (i.e longest link in the minimum spanning tree is the minimum range). Very small values of n and/or r0 result in a 

disconnected network, and as n or r0 or both increases, the probability of connectivity increases. The range should be large 

enough to keep the network connected, at the same time small enough to render low interference between nodes and lesser 

power consumption. Following this analysis, we analyzed the network connectivity as a function of transmission range r0 when 

the number of nodes in the network is fixed. 

   
(a) Network Connectivity for r0 = 150m 

   
(b) Network Connectivity for r0 = 200m 

Fig. 3 Network Connectivity with different flooding probability (p) values 

Consider the placement of n nodes generated by uniform random distribution on a square area. A static network consisting 

of 150 nodes uniformly distributed over 1000m * 1000m terrain, with a single source-destination pair is simulated in Matlab, 

that represents a geometric random graph G (r0, n). Initially, the transmission range of all nodes is set to 125 m and then 

gradually increased so that links will be added to the network. Thus, at some point of time transmission range, r0 will be 

sufficiently large to make G (r0, n) connected. It is expected that although CQAG-AODV controls the RREQ rebroadcasts, it 

should maintain same level of connectivity as AODV. Fig. 3 presents connectivity diagrams for different transmission range 

(r0) and flooding probabilities (p). Here, diagram for p = 1 represents connectivity achieved with flooding based route 
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discovery of conventional AODV, the connectivity of gossip-based AODV+G is shown by p = 0.66, and the graph with p = (1, 

0.66, 0.5, 0.33), illustrates the connectivity of channel quality based flooding mechanism of CQAG-AODV. From the 

connectivity diagrams, it can be concluded that, although the probabilistic flooding algorithms; AODV+G and CQAG-AODV, 

flood lesser number of RREQs,  they offer the same level of connectivity as AODV when transmission range is sufficiently 

large.  

  

(a) Connectivity Vs Node Coverage Range (b) Saved RREQ Transmissions Vs Node Coverage Range 

Fig. 4 Connectivity and Saved RREQ Transmissions in the static scenario 

It can be seen from Fig. 4 (a) that, for all coverage distances routing mechanism of AODV results in a surely connected 

network (connectivity probability of 1). Whereas, for coverage distances less than 150 m, the connectivity of both probabilistic 

algorithms AODV+G and CQAG-AODV is poor, since for this lower coverage distance, the RREQ rebroadcasts of lower 

probability may have resulted in a partitioned network. For coverage distances above 150 m, CQAG-AODV delivers similar 

performance as that of conventional AODV in terms of network connectivity, requiring lesser number of RREQ 

retransmissions as compared to AODV (Fig. 4 (b)). 

Because, increasing transmission range gradually, will result in increased signal strength experienced, and thus selection 

of higher gossip probability (tending to 0.66) for RREQ rebroadcasts. Since the numbers of RREQ rebroadcasts will still be 

lower than flooding, CQAG-AODV rebroadcasts a lesser number of RREQs than AODV and thus results in significantly saved 

RREQ retransmissions. However, the connectivity and saved RREQ transmissions of CQAG-AODV is comparable to 

AODV+G. Hence it can be concluded that by tuning the gossip probability with different signal strength thresholds, 

CQAG-AODV can control the RREQ rebroadcasts and check the broadcast storm without adversely affecting network 

connectivity when the coverage distance of nodes is sufficiently large. 

5.2.   CQAG-AODV performance in mobility scenario 

To analyze the performance of CQAG-AODV in mobile network scenario, a medium-sized ad hoc network consisting of 

150 mobile nodes uniformly distributed in a square terrain is simulated in QualNet simulator. 10 Constant Bit Rate (CBR) 

connections are set between randomly selected source-destination pairs. Each CBR connection corresponds to a traffic rate of 

4 packets/sec. The nodes move following an RWP mobility model with pause time 0s and minimum node speed of 1 m/s. Two 

set of experiments were designed to represent an ad hoc network with dense and sparse node density. For representing dense 

and sparse networks, we selected two different terrain dimensions; 1000 m
2
 and 2500 m

2
, resulting in node densities of 15 

nodes/10m
2 
and 6 nodes/10m

2
 respectively. Since network connectivity is a function of node degree [28], it becomes important 

to consider these diverse network scenarios. For evaluating the performance, mobility speed of nodes is varied from 1.25 m/s to 

very high speeds up to 40 m/s. The speed is initially set to the lowest value of 1.25 m/s and doubled every time up to 10 m/s, 

thereafter it is gradually increased by 5 m/s up to 40 m/s. The objective is to analyze the ability of CQAG-AODV to maintain 

connectivity when channel quality fluctuations arise due to node mobility. Table 2 presents detailed simulation parameters. 
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Table 2 RSS Based Gossip Probability Selection 

Parameter Value 

No. of Nodes 150 

Area 1000m * 1000m and 2500m * 2500m 

Node Placement Strategy Uniform 

Simulation Time 180 sec 

Channel Frequency 2.4 GHz 

Path Loss Model/ Fading model Two ray Model/ None 

Propagation Limit -95 dBm 

Mobility Model RWP, pause time = 0s 

Mobility speed (m/s) 1.25, 2.5, 5.0, 10, 15, 20, 25, 30, 35, 40  

PHY / MAC Layer Protocol IEEE 802.11b 

No. of Traffic Flows 10 CBR connections  

Payload size 512 bytes 

Traffic Sending Rate 4 packets/sec (i.e 16 kbps) 

Performance of CQAG-AODV is evaluated on the metrics of Packet Delivery Ratio (PDR), throughput, routing overhead 

(RREQ forwarding overhead) and link breakages, and compared with conventional AODV and gossip-based AODV+G. 

A. Performance in dense network scenario 

  

(a) PDR Vs Mobility Speed (b) Throughput Vs Mobility Speed 

  

(c) Routing Overhead Vs Mobility Speed (d) Link Breakages Vs Mobility Speed 

Fig. 5 Performance Analysis of CQAG-AODV for Node Mobility in Dense Network scenario 

The objective is to analyze how CQAG-AODV performs when network is densely populated. Here 150 nodes are placed 

in a terrain of 1000 m
2
. Fig. 5 shows the results of different performance metrics. It is expected that CQAG-AODV should 

reduce the RREQ broadcast and link breakages, at the same time maintain the same level of connectivity as conventional 

AODV and AODV+G. It can be seen from Figs. 5 (a) and (d) that CQAG-AODV incurs 21% lesser routing overhead as 

compared to AODV but still delivers the same average PDR and throughput as that of conventional AODV and Gossip 

AODV+G. This implicitly confirms that network connectivity achieved with CQAG-AODV is comparable with AODV and 

AODV+G. However, the routing overhead of CQAG-AODV is ~17% more as compared to AODV+G. This is the result of 

fixed gossip probability (p = 0.66) used in AODV+G for RREQ rebroadcasting, which saves more RREQs than 
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CQAG-AODV’s RSS based adaptive gossip mechanism. In this network setup as the node density is higher, nodes are closer 

and hence most of the times the channel quality is best or good, so CQAG-AODV gossips with higher probability (p =1 or 

0.66), whereas AODV+G uses p=0.66 at all times and thus incurs lowest routing overhead. 

The average link breakages experienced with CQAG-AODV are lesser by 6% and 5% as compared to AODV and 

AODV+G respectively. This is because CQAG-AODV discovers better quality paths/routes as against the arbitrary paths 

discovered by AODV and AODV+G. As CQAG-AODV accounts higher RSS value than the default threshold in the route 

discovery decision, routes discovered with CQAG-AODV can sustain the channel fluctuations arising from node mobility; 

hence failures experienced in the discovered path are lesser. Whereas in conventional routing approaches channel quality is not 

accounted in the route discovery, thus discovered path will be contributed by weak links that experience frequent breakages. 

Moreover, as can be seen from Figs. 5 (a) and (b), CQAG-AODV achieves some improvement in end-to-end performance 

over the other two approaches, only for very low and very high mobility speeds (< 2.5 and > 25 mps). At these speeds, the 

nodes that are at the boundary of limiting communication radius, often move out of coverage of their neighbors, and hence the 

performance of AODV and AODV+G is degraded. 

B. Performance in sparse network scenario 

  

(a) PDR Vs Mobility Speed (b) Throughput Vs Mobility Speed 

  

 (c) Routing Overhead Vs Mobility Speed  (d) Link Breakages Vs Mobility Speed 

Fig. 6 Performance Analysis of CQAG-AODV for Node Mobility in Sparse Network scenario 

Here we analyze the performance of CQAG-AODV in the scenario where the nodes per unit area are less- 150 nodes 

placed in a terrain of 2500 m
2
. Since node density is less, the inter node distance is more, and thus links contributing to the 

multi-hop network will be weak and experience failures, thereby reducing the end-to-end performance. Hence, in this network 

setup, due to its signal quality-based route discovery mechanism, CQAG-AODV will discover robust paths contributed by 

better quality links and deliver improved performance than AODV and AODV+G. 

As can be seen from plots of Fig. 6, CQAG-AODV beats AODV and AODV+G on all performance metrics. The average 

link breakages experienced with CQAG-AODV are lesser by 16% and 12% as compared to AODV and AODV+G respectively. 
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CQAG-AODV incurs 29% lesser routing overhead to deliver 5% higher average PDR and throughput than conventional 

AODV. Although, as compared to AODV+G routing overhead of CQAG-AODV is reduced merely by 2%, its PDR and 

throughput show significant improvement of 10% over AODV+G. This shows the fixed probability gossip-based route 

discovery of AODV+G saves the RREQ broadcast but at the cost of degraded end-to-end performance, whereas 

CQAG-AODV does not compromise on end-to-end performance. 

The reason for the degraded performance of AODV+G as compared to AODV and CQAG-AODV lies in reduced node 

density. It may happen that, during route discovery process the probabilistic RREQ forwarding of AODV+G may not converge 

to successful route discovery, or RREQs will reach to destination after forwarded by intermediate nodes that are far away from 

each other (i.e. at the boundary of coverage). Due to mobility, the discovered path may not be useful for sending route replies 

or it cannot be sustained longer for data transfer, as the links/hops (that are already weak) contributing to the route may fail 

soon. 

5.3.   CQAG-AODV energy performance 

The connectivity an analysis proved that probabilistic approaches controlled the routing overhead without affecting 

network connectivity. It is affirmed through performance evaluation that in dense network scenario PDR of all routing 

approaches is almost the same. Whereas in sparse network scenario, as compared to AODV, CQAG-AODV delivers 5% more 

PDR, while the PDR of AODV+G is degraded by 5%. CQAG-AODV and AODV+G incur ~21% and 48% less routing 

overhead as compared to AODV when network is dense; whereas in sparse network scenario, this reduction is ~29%. Thus, it 

can be expected that as the RREQ broadcasts are saved, these schemes will conserve node energy. This section investigates the 

energy conservation capability of these proposals. 

The energy conservation achieved is analyzed on the metric of normalized energy consumption per successful packet 

reception; defined as the ratio of energy consumed by the nodes and number of packets received successfully. For analyzing 

the energy performance, the same simulation scenario of Table 2 is considered with an initial energy of nodes set to 2 mAh. 

Performance is evaluated by varying the node mobility speed, as was carried out in the previous sub-section. Figure 7 (a) and (b) 

present plots of normalized energy consumption per successful packet reception for dense and sparse network scenarios. 

  

(a) Normalized Energy Consumption per Successful Packet 

Reception in Dense Network 

(b) Normalized Energy Consumption per Successful Packet 

Reception in Sparse Network 

Fig. 7 Energy Performance of CQAG-AODV for Node Mobility in different Network scenarios 

It can be observed that in dense network scenario both probabilistic approaches (CQAG-AODV and AODV+G) result in 

lesser normalized energy consumption than AODV. This is obvious because the probabilistic flooding mechanism adopted in 

these schemes reduces the number of RREQs forwarded and thus conserves node energy. Since the network is densely 

populated; even though fewer RREQs are flooded, the network will not be partitioned as every node can easily find a forwarder 

and establish a path to a destination. 

However, in sparse network scenario, this is not the case. Since node density is lesser, the low probability broadcasts may 

end up in a void situation with no nodes forwarding the RREQs, and thus result in a partitioned network. Moreover, as the links 
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contributing to the discovered route will be weak, link breakages experienced will be higher. Thus as compared to AODV, 

AODV+G delivers lesser PDR incurring ~3.5% more normalized energy consumption. Whereas the channel quality based 

adaptive gossip flooding mechanism of CQAG-AODV discovers strong routes that are robust to failure to offer higher PDR as 

compared to AODV and thus incurring ~ 6% lesser normalized energy consumption. 

From this analysis it is clear that CQAG-AODV exhibits upper-edge over AODV+G since it delivers the same 

performance as conventional AODV incurring reduced energy consumption; both in dense as well as sparse networks. Thus, 

CQAG-AODV proves its usability as an energy optimized routing approach that can improve the node/network lifetime, as 

achieved with [28-29]. However, as node energy is not accounted for routing decisions, it is not able to salvage energy-critical 

nodes. 

6. Conclusions 

This paper presented a connectivity analysis of Channel Quality-based Adaptive Gossip flooding mechanism for AODV 

(CQAG-AODV), which was proposed to address “broadcast storm” problem. It is basically a cross layer design approach that 

exploits channel quality (RSS) at the physical layer to adaptively decide the RREQ flooding probability. The proposed 

algorithm discovers better signal quality paths by forwarding more RREQs over strong links as against weak links, and thus 

improves routing performance. The theoretical analysis proved that CQAG-AODV algorithm discovers best paths/routes from 

all available paths without affecting network connectivity. 

Simulation results show that by reducing the number of RREQ rebroadcasts CQAG-AODV addressed the “broadcast 

storm” problem. Moreover, as the discovered routes are of good signal quality, link/path failures experienced in 

CQAG-AODV are reduced. CQAG-AODV offered the same level of connectivity and end to-to-end performance as AODV 

and AODV+G in dense network scenario, whereas it outperformed both AODV as well as AODV+G on all performance 

metrics (PDR, throughput, routing overhead, and link breakages experienced), in a sparsely populated network. CQAG-AODV 

delivered 5% more PDR and throughput than AODV by incurring 29% less routing overhead. Whereas, as compared to 

AODV+G the routing overhead of CQAG-AODV is merely 2% lesser, it delivers 10% more PDR and throughput than 

AODV+G. Further, the improvement in PDR is achieved at the cost of ~ 6% lesser normalized energy consumption as 

compared to AODV. Thus, channel quality based adaptive gossip flooding mechanism of CQAG-AODV is an effective 

proposition for controlling broadcast storm as well as maintaining the connectivity so as to assure QoS and energy optimization 

in diverse network scenarios. 
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